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Abstract

We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a
randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we
use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable
periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are
mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct
algorithms that allow our theoretical results to be implemented successfully in practice.
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Introduction

Periodic orbits are the most basic oscillations of nonlinear

systems, and they also underlie extraordinarily complicated

recurrent dynamics such as chaos [1-5]. Moreover, they occur

ubiquitously in applications throughout the sciences and engi-

neering. It is thus important to develop a deep understanding of

periodic dynamics.

It is important and common to question how long it takes a

point in phase space to reach a stable periodic orbit from an

arbitrary initial condition. When studying synchronization and

other forms of collective behavior, it is crucial to examine not only

the existence of stable periodic orbits but also the time that it takes

to converge to such dynamics in both natural and human-designed

systems [6-8]. For example, it is desirable to know how long it will

take an engineered system that starts from an arbitrary initial

condition to achieve the regular motion at which it is designed to

work [9,10]. A system can also be perturbed from regular motion

by accident, and it is important to estimate how long it will take to

return to regular dynamics. Similar questions arise in physics

[11,12], biology [6,13,14], and many other areas. It is also

important to consider the time to synchronize networks [15-17]

and to examine the convergence properties of algorithms for

finding periodic orbits [2,18].

To study the problem of convergence time to periodic orbits,

let’s first consider the Hartman-Grobman Theorem [19,20],

which states that the flow of a dynamical system (i.e., a vector

field) near a hyperbolic equilibrium point is topologically

equivalent to the flow of its linearization near this equilibrium

point. If all of the eigenvalues of the Jacobian matrix evaluated at

an equilibrium have negative real parts, then this equilibrium

point is reached exponentially fast when one is in a small

neighborhood of it. To determine convergence time to a

hyperbolic equilibrium, we thus need to calculate how long it

takes to reach a neighborhood of the equilibrium from an arbitrary

initial condition. After reaching the neighborhood, the temporal

evolution is then governed by a linear dynamical system (which

can be solved in closed form). An analogous result holds for

hyperbolic periodic orbits in vector fields [21]. To turn periodic

orbits in vector fields into fixed points in maps, one can use

Poincaré return maps, which faithfully capture properties of

periodic orbits. A Poincaré map can be interpreted as a discrete

dynamical system, so the problem of determining how long it takes

to reach a hyperbolic stable periodic orbit from arbitrary initial

conditions in a vector field is reduced to the problem of

determining how long it takes to reach the neighborhood of a

hyperbolic fixed point in a discrete dynamical system.

Our work considers how long it takes to reach a periodic orbit of

a differential equation—starting from an arbitrary point in phase

space—by using a Poincaré return map of its associated vector

field. For simplicity, suppose that a return map (which is built from

a Poincaré section) is unimodal. If we approximate the unimodal

Poincaré map by using a unimodal function f (x), then we can use

f (x) in our algorithm to estimate the convergence time to the

periodic orbit. Periodic motion is ubiquitous in models (and in

nature), and it is important to explore how long it takes to

converge to such behavior.

In this paper, we prove a theorem for the rate of convergence to

stable periodic orbits in discrete dynamical systems. Our basic

strategy is as follows. We define the neighborhood Ip of a

hyperbolic fixed point, and we calculate what fraction v of the

entire phase space I is mapped into Ip after q iterations. Using

m(w) and m(I), respectively, to denote the measures of w and I , a

point that is selected uniformly at random from I has a probability

of m(w)=m(I) to reach Ip in q iterations. To illustrate our ideas, we

will work with a one-dimensional (1D) discrete dynamical system

xnz1~f (xn; r) that is governed by a unimodal function f and is

parametrized by a real number r. We focus on unimodal functions
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for two primary reasons: (i) many important results in dynamical

systems are based on such functions; and (ii) it is simpler to

illustrate the salient ideas using them than with more complicated

functions.

To determine the set that is mapped into Ip, we take advantage

of the fact that points in periodic orbits are repeated periodically,

so their corresponding neighborhoods must also repeat periodi-

cally. In theory, an alternative procedure would be to iterate

backwards from Ip, but this does not work because one cannot

control successive iterations of f {1. The function f is unimodal, so

it is not bijective and in general one obtains multiple sets for each

backward iteration of a single set. The number of sets grows

geometrically, and one cannot in general locate them because an

analytical expression for f {1 is not usually available.

To explain the main ideas of this paper and for the sake of

simplicity, consider a stable periodic orbit Op of period p that is

born in p saddle-node bifurcations of f p. Every point xi (with

i[f1, . . . ,pg) of Op has a sibling point x�i that is born in the same

saddle-node bifurcation. Because f p(xi)~xi and f p(x�i )~x�i , it

follows that f p(Ii)~Ii, where Ii~½xi,x
�
i �. That is, xi, x�i , and Ii all

repeat periodically. Roughly speaking, we will build the interval Ip

from the interval Ii.

Consider a plot in which points along the horizontal axis are

mapped via f to points along the vertical axis (as is usual for 1D

maps). The orbit Op is periodic with period p, so xj[Op implies

that f(xj ,f
q(xj)), q~0,1, . . .g yields p periodic points with a

horizontal axis location of xj . We say that these points are located

in the ’’column" xj . Because f q(xj)~xi[Op for some q, we obtain

p points located in the same column xj . These points are given by

f(xj ,f
q(xj))~(xj ,xi), i~1, . . . ,pg. As we have indicated above,

each point (xj ,xi) is associated with an interval Ii. No matter how

many iterations we do, the fact that the orbit is periodic guarantees

that there are exactly p intervals in the same place (where the

points (xj ,xi) are located). We thereby know the exact number and

locations of all intervals.

To complete the picture, we must also take into account that if

there exists an interval Wqij
such that f q(Wqij

)~Ii, then any point

of Wqij
will reach a point of Ii in at most q iterations. The

geometric construction above yields the interval Wqij
, as one can

see by drawing a pair of parallel line segments that intersect both

f q and the endpoints of the interval Ii. We will approximate f q by

a set of such line segments so that we can easily calculate the

intersection points.

The remainder of this paper is organized as follows. First, we

give definitions and their motivation. We then prove theorems that

indicate how long it takes to reach the interval Ii from an arbitrary

initial condition. We then construct algorithms to implement the

results of the theorems. Finally, we discuss a numerical example

and then conclude.

Definitions

Consider the discrete dynamical system

xnz1~f (xn; r) , f : I?I , I~½a,b� , ð1Þ

where f (x; r) is a one-parameter family of unimodal functions with

negative Schwarzian derivative and a critical point at x~C.

Without loss of generality, we suppose that there is a (both local

and global) maximum at C. At a critical point of a map f , either

f
0
~0 (as in the logistic map) or f

0
does not exist (as in the tent

map). Some of the results of this paper related with critical points

only require continuous functions, which is a much weaker

condition than the requirement of a negative Schwarzian

derivative.

Remark 1 Because f has a negative Schwarzian derivative, f q does as

well (because it is a composition of functions with negative Schwarzian

derivatives). By using the chain rule, we obtain f q0~0 only at extrema.

Therefore, f q0
=0 between consecutive extrema. The Minimum Principle [22]

for a function with negative Schwarzian derivative then guarantees that there is

only one point of inflection between two consecutive extrema of f q. If there were

more than one point of inflection, then f q00~0 at least two points. One of them

would be a maximum of f q0 , and the other one would be a minimum. This

contradicts the Minimum Principle. Consequently, the graph of f q between two

consecutive extrema has a sigmoidal shape (i.e., it looks like or ), which

becomes increasingly steep as q becomes larger. This fact makes it possible to

approximate f q between two consecutive extrema by a line segment near the

only point of inflection that is located between two consecutive extrema.

Because the Schwarzian derivative of f is negative, Singer’s

Theorem [23] ensures that the system (1) has no more than one

stable orbit for every fixed value of the parameter r. Additionally,

the system (1) exhibits the well-known Feigenbaum cascade [24-

26], which we show in the bifurcation diagram in Fig. 1.

For a particular value of the parameter r, the map f p has p

simultaneous saddle-node (SN) bifurcations, which result in an SN

p-periodic orbit. As r is varied, the SN orbit bifurcates into a stable

orbit fSigp
i~1 and an unstable orbit fUigp

i~1. The points Si and Ui

are, respectively, the node and the saddle generated in an SN

bifurcation, so Ui is the nearest unstable point to Si (see Fig. 2). In

other words, the points in the stable orbits (called "node orbits")

are node points, whereas the points in the unstable orbit (called

"saddle orbits") are saddle points. From Remark 1, we know that

the neighborhoods of these points are concave or convex.

The derivative of f p is 1 at the fixed point where the SN

bifurcation takes place. As one varies r, the derivative evaluated at

that bifurcation point changes continuously from 1 to {1. When

the derivative is {1, the stable orbit (i.e., the node orbit)

undergoes a period-doubling bifurcation. As a result, the stable

orbit becomes unstable (yielding the orbit fUigp
i~1) and two new

stable orbits (fSi1g
p
i1~1 and fSi2g

p
i2~1) appear. The points Si1 and

Si2 are nodes, and the point Ui is a saddle. From our geometric

approach, the intervals (Si1 ,Ui) and (Si2 ,Ui) that are generated via

the period-doubling bifurcation behave in the same way as the

interval (Si,Ui) that was generated in the SN bifurcation.

Therefore, we can drop the indices "1" and "2" and write

(Si,Ui) for the orbits that arise from both the SN bifurcation and

the period-doubling bifurcation.

Notation 1 Let U
0

i denote the nearest point to Si that results from the

intersection of the line xnz1~Ui with f p (see Figs. 2, 3, and 4).

Definition 1 Consider the points xi and x
0

i that satisfy f p(xi)~Ui

and f p(x
0

i)~U
0

i . If f p is concave (respectively, convex) in a neighborhood of

Si, we say that IPi
~(xi,x

0

i) [respectively, IPi
~(x

0

i,xi)] is the ith capture

interval of the stable p-periodic orbit fSigp
i~1 and that IP~

[
i

IPi
is the

(aggregate) capture interval of the stable p-periodic orbit fSigp
i~1.

Notation 2 Let IPi,C
denote the subinterval IPi

that contains the critical

point C.

From Definition 1, we see for all x[IPi
that f np(x)[IPi

and

f np(x)?Si as n??. Iterations of points x[IPi
are repelled from

Ui and U
0

i , and they are attracted to Si. The system (1) is

linearizable around the fixed points Si and Ui. (Observe that

f (U
0

i )~Ui, so we also have control over this point.) Consequently,
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the convergence of iterations of x[IPi
to Si is governed by the

eigenvalues of the Jacobian matrix Df .

Because we can control the evolution inside IPi
, we can examine

how long it takes to reach IPi
starting from an arbitrary point x[I .

As we will see below, to obtain this result, we need to discern

which subintervals of I are mapped by f q into IPi
for arbitrary q.

The first step in this goal is to split the interval I in which f q is

defined into subintervals in which f q is monotonic.

Definition 2 Let A~fq2,q3, . . . ,qk{1jq2v . . . vqk{1g be the

set of points at which f q has extrema. Let B~fq1~a,qk~bg, and we

recall that we are considering the interval I~½a,b�. We will call

Pmon{r~A|B~fq1,q2,q3, . . . ,qk{1,

qkjq1vq2v . . . vqk{1vqkg
the partition of monoto-

nicity of f q. We will call Iqj
~½qj ,qjz1� (where j~1, . . . ,k{1) the jth

interval of monotonicity of f q.

By construction, I~½a,b�~
[

j

Iqj
, and f q is monotonic in Iqj

. As

we will explain below, one can calculate intervals of monotonicity

Iqj
easily by using Lemmas 1 and 2.

Figure 1. Bifurcation diagram of a unimodal map with a negative Schwarzian derivative. There is a period-doubling cascade on the left,
and there are also period-doubling cascades inside several windows (the broad, clear bands) of periodic behavior. Saddle-node orbits arise at the
onset of such windows in the chaotic area.
doi:10.1371/journal.pone.0092652.g001

Figure 2. Geometric calculation of the three subintervals Wqij
corresponding to a 3-periodic orbit (in blue). See Fig. 3 for a better view

of the orbit. These subintervals are determined by the three pairs of black, horizontal, parallel line segments that intersect f q , Ui , and f p. (We only
indicate one Ui in the figure.) One needs to take into account the intersection points of f q with all 6 parallel line segments. See Figs. 4 and 5 for more
detail. The plot in this figure uses the logistic map. The blue orbit is a period-3 supercycle and r&3:83187405528331556841.
doi:10.1371/journal.pone.0092652.g002
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Figure 3. The 3-periodic orbit f p~f 3 from Fig. 2.
doi:10.1371/journal.pone.0092652.g003

Figure 4. Magnification of Fig. 2. We show the interval Wqij
, in which f q does not have any extrema in the region between the horizontal parallel

lines. The horizontal line that crosses Ui and intersects with f p determines U
0

i . The vertical lines that intersect Ui and U
0

i determine xi and x
0

i ,

respectively. We obtain locations for the points xi,qj
and x

0

i,qj
because their images under the map f q are xi and x

0

i , respectively. We thereby construct

the subinterval Wqij
. We depict the mapping of the subinterval Wqij

using a filled green arrow the mapping of another subinterval using the filled

blue arrow.
doi:10.1371/journal.pone.0092652.g004
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Once we know the intervals in which f q is monotonic, it is easy

to obtain subintervals of I that are mapped by f q into IPi
.

We proceed geometrically (see Figs. 2, 4, and 5):

N draw parallel lines through the points x
0

i and xi (i.e., through

the endpoints of IPi
);

N obtain the points at which the lines intersect f q;

N calculate which points are mapped by f q into the intersection

points of (ii), for which one uses the fact that f q is monotonic in

Iqj
~½qj ,qjz1�;

N determine, using the points obtained in (iii), the interval that is

mapped by f q into IPi
.

Using this geometric perspective, we make the following

definitions.

Definition 3 Let

Aij~
(xi,qj

,x
0
i,qj

) , if xi,qj
vx

0
i,qj

(x
0
i,qj

,xi,qj
) , if xi,qj

wx
0
i,qj

8<
: , ð2Þ

where the points xi,qj
,x
0

i,qj
[Iqj

~½qj ,qjz1�, and they satisfy f q(xi,qj
)~xi

and f q(x
0

i,qj
)~x

0

i.

(i) If f q does not have extrema in Aij (see Figs. 2 and 4), then we let

Wqij
~Aij : ð3Þ

(ii) If f q has extrema in Aij (see Figs. 2 and 5), then we let

Wqij
~

(xi,qj
,C� , if xi,qj

vC

½C,xi,qj
) , if xi,qj

wC

(
: ð4Þ

Remark: If we did not take point (ii) into account, then f q

would not be monotonic in Wqij
.

By construction, all points x[Wqij
reach IPi

in at most q

iterations (see Figs. 2, 4, and 5). That is, f l(Wqij
)~IPi

for lƒq.

Definition 4 We call WRi
~
[

j

Wqij
the q-capture interval of IPi

,

as IPi
is captured after at most q iterations. The interval

WR~
[

i

WRi
~
[
i,j

Wqij
is then the q-capture interval of the orbit

fSigp
i~1.

Observe that Wqij
can be the empty set for some values of j.

Theorems

Once we know WR, we can calculate the probability that a

point picked uniformly at random from phase space is located in

WR. We can then calculate the probability that that point reaches

a capture interval of Op in at most q iterations. We let m(WR)

denote the measure of WR, and we have the following theorem.

Theorem 1 Let Op~fSigp
i~1 be a stable p-periodic orbit of the

system (1). Given an arbitrary point x[I , the probability to reach a capture

interval of Op after at most q iterations is

Figure 5. Another magnification of Fig. 2. We show the interval Wqij
, in which f q has an extremum in the region between the horizontal parallel

lines. The horizontal line that crosses Ui and intersects f p determines U
0

i . The vertical lines that intersect Ui and U
0

i determine the points xi and x
0

i ,

respectively. We obtain the locations for the points xi,qj
and x

0

i,qj
because their images under the map f q are xi and x

0

i , respectively. We thereby

construct the subinterval Wqij
. We depict the mapping of the subinterval Wqij

using a filled green arrow.

doi:10.1371/journal.pone.0092652.g005
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Pq~
m(WR)

m(I)
~

m(WR)

b{a
: ð5Þ

Proof 1 From the definition (4) of WR, all x[WR satisfy f l(x)[Ip for

lƒq. There always exist values of lvq such that f l(x)[Ip because extrema

of f l(x) that satisfy lvq are necessarily also extrema of f q, and points

belonging to the latter set of extrema reach a capture interval of Op after at most

l iterations (see Lemma 1 below). Consequently, one reaches Ip from x[WR

after at most q iterations (and we note that it need not be exactly q iterations).

Thus, the probability to reach Ip from an arbitrary point x[I after at most q

iterations (i.e., the probability that x[WR) is

Pq~
m(WR)

m(I)
~

m(WR)

b{a
: ð6Þ

Corollary 1 With the hypotheses of Theorem 1, the probability to reach

a capture interval of Op in exactly q iterations is

Pq{Pq{1 :

This answers the question of how long it takes to reach a

capture interval of a p-periodic orbit from an arbitrary point.

However, we also need to calculate m(WR). To do this, we need to

understand the structure of Wqij
. As the following lemma indicates,

some of these subintervals are located where f q is monotonic and

others contain extrema of f q.

Lemma 1 If f : I?I is an unimodal C0 function with a critical point

at C, then f q(x) has extrema

(i) at points for which f q{1(x)~C;

(ii) at the same points at which f q{1(x) has extrema.

Proof 2

(i)For all x[I such that f q{1(x)~C, we know that

f q(x)~f (f q{1(x))~f (C). Therefore, f q has an extremum because f
has an extremum.

(ii)Write I~JL|fCg|JR, where JL~(a,C) and JR~(C,b), so f
is a monotonic function on the intervals JL and JR.

(ii.a) If x[JL or x[JR and the function f q{1(x) has an extremum, then

we know that f q{1(x) is a monotonically increasing function on one side of x
and a monotonically decreasing function on the other. Consequently,

f q(x)~f (f q{1(x)) is the composition of two monotonic functions (f and

f q{1), both of which are increasing (or decreasing) on one side of x. On the

other side of x, one of them is increasing and the other is decreasing. Therefore,

there is an extremum at x.

(ii.b) Otherwise, if f q{1(x)~C, then we see straightforwardly that f q

has an extremum.

We have just seen how to determine the locations of extrema of

f q. We also need to know the values that f q takes at these extrema.

As we will see below, if the system (1) has a stable p-periodic

orbit and qwp, then the values that f q takes at its extrema are the

same as those that f p takes at its extrema. This makes it possible to

calculate the subintervals Wqij that are associated with extrema of

f q by using IPiC
and the derivative of f .

Lemma 2 Let Op be a stable p-periodic orbit of the system (1). The

coordinates of the extrema of f q (where qwp) are (xiC ,f q{ijp(C)), where

xiC denotes the points x[I such that f i(x)~C, the index i takes values of

i~0,1, . . . ,q{1 (where we note that f 0:Id is the identity map), and

q{ijp~(q{i)mod p.

Proof 3 According to Lemma 1, the extrema of f q are

(i) x[I such that f q{1(x)~C;

(ii) x[I such that f q{1(x) is an extremum.

It thus follows that the extrema of f q{1 are

(ia) x[I such that f q{2(x)~C;

(iib) x[I such that f q{2(x) is an extremum.

Repeating the process, we obtain that extrema of f q are located at xiC ,

where i~0,1, . . . ,q{1. The value of f q at xiC is

f q(x)~f q{i(f i(x))~f q{i(C).

Because Op is a stable p-periodic orbit, there exists one point of Op near C

that is repated periodically after p iterations. Consequently,

fC,f (C),f 2(C), . . . ,f p{1(C)g is a periodic sequence and

f
q{i(C)~f q{ijp (C).

Algorithms

As we discussed above, Lemmas 1 and 2 determine intervals of

monotonicity (see definition 2), and they also make it possible to

construct algorithms for calculating Wqij
.

For these algorithms, we approximate f q by line segments in the

subintervals in which f q is monotonic. This approximation is very

good unless one is extremely close to an extremum (see Fig. 6), and

this is already the case even for relatively small q (as we will

demonstrate below). Additionally, recall that Wqij
is determined by

the intersection points of f q with line segments. Therefore, once

we have approximated f q by a set of line segments, it is

straightforward to calculate those intersection points.

Algorithm 1 (Calculating coordinates for extrema of f q)

Suppose that we know the coordinates of the extrema of f q{1. According to

Lemma 1, the extrema of f q are located at the points

(i) x[I such that f q{1(x)~C and f q{1(x) is not an extremum;

(ii) x[I such that f q{1(x) is an extremum.

We know the extrema in (ii) by hypothesis. To find the extrema in (i), we

need to calculate the points x[I that satisfy f q{1(x)~C. Because we know

the coordinates of extrema of f q{1, we construct the lines that connect two

consecutive extrema (see Fig. 7). Let xnz1~axnzb be the equation for such

a line. We solve axnzb~C to obtain a seed that we can use in any of the

many numerous numerical methods for obtaining roots of nonlinear algebraic

equations. Observe that f q is monotonic in the interval in which the line

xnz1~axnzb is defined. This circumvents any problem that there might

otherwise be in obtaining a good seed to ensure convergence of the root solver.

Moreover, we have as many seeds as there are points x[I that satisfy

f q{1(x)~C. Note that we need to construct both the line that connects

(a,f (a)) with the first extremum of f q{1 and the line that connects (b,f (b))

with the last extremum of f q{1.

To calculate the points x[I for which f q{1(x) is an extremum, we apply

this algorithm recursively, and we note that we know by hypothesis that f has

an extrememum at C. We first build the line segments that connect (a,f (a))
with (C,f (C)) and (C,f (C)) with (b,f (b)). These two line segments give

seeds from which to determine the points x[I that satisfy f (x)~C. We

thereby obtain the coordinates for the extrema of f 2. We then use the same

procedure to obtain the coordinates for extrema of f 3, f 4, . . . , f q.

We will see below that if the system (1) has a stable p-periodic

orbit and q&p, then the points x[I with f q{1(x)~C are given to

a very good approximation by the intersection points of two lines.

Moreover, as one can see in Fig. 6, the value q~6 is already large

enough to approximate f q very successfully by a set of line

segments when f is the logistic map.

Algorithm 2 (Calculation of Wqij
in the system (1)) Suppose that

we know the coordinates of the extrema of f q (e.g., by computing them using

Algorithm 1). We want to obtain Wqij
from the definition (3), where

Convergence to Periodicity in Dynamical Systems
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f q(xi,qj
)~xi , f q(x

0
i,qj

)~x
0
i ð7Þ

and the ith capture interval is

IPi
~

(xi,x
0
i ) , if xivx

0
i ,

(x
0
i ,xi) , if xiwx

0
i :

(
ð8Þ

To determine the points xi,qj
and x

0

i,qj
, we first approximated them by

replacing f q by line segments that connect consecutive extrema of f q (i.e., by the

same procedure that we use in Algorithm 1 to obtain approximations of points).

Using the approximations of xi,qj
and x

0

i,qj
, we construct the interval

Iapp~(xi,qj
,x
0

i,qj
) and then check if there is an extremum of f q in Iapp. (This

is trivial because we know the coordinates of the extrema of f q.) We need to

consider two cases.

(i)The map f q has no extrema in Iapp. This is equivalent to case (i) of

Algorithm 1. We use the approximations of xi,qj
and x

0

i,qj
as seeds in a

numerical root-finding method.

(ii)The map f q has extrema in Iapp. This is equivalent to case (ii) of

Algorithm 1.

If there is an extremum of f q in Iapp, then that extremum is necessarily one

of the extrema given by Lemma 2: (xiC ,f q{ijp(C)). Because f i(xiC)~C

and f is a continuous function, there must exist an interval IiC such that

xiC[IiC and f i(IiC)5IPi,C

Taking into account that xiC is known, we construct the sequence

SiC~fxi,0,xi,1, . . . ,xi,i:Cg ,

where xiC:xi,0, xi,k~f k(xiC), and f 0(xiC)~xiC

Let Li,k be the linear map whose graph is the line of slope f
0
(xi,k) that

intersects the point xi,k. If the period p of the orbit is sufficiently large, then we

can approximate f near xi,k (where k~0,1, . . . ,i{1) by the linear map

Li,k. Thus, instead of iterating IiC with the map f to obtain IPi,C
, we iterate

IiC with the linear map Li,k that approximates f . That is,

IPi,C
&Li,i{1 . . . Li,0(IiC) :

Because each Li,k is a linear map, it is straightforward to compute L{1
i,k

and hence to compute

IiC&L{1
i,0 . . . L{1

i,i{1(IPi,C
) :

At the end of this section, we will discuss the error that is introduced by this

approximation.

Figure 6. Outside of the intervals Wqi,j
, we approximate the map f q using line segments. A line segments connects the upper endpoint of

the interval Wqi,j
to the lower endpoint of Wqi,jz1

. The map f 6 is very well approximated using line segments as long as one is not too close to an
extremum. We again use the logistic map to illustrate our procedure. The blue curve is a period-6 supercycle and r&3:99758311825456726610. See
Fig. 7 for a magnification of this figure.
doi:10.1371/journal.pone.0092652.g006
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The interval IiC that we have just constructed is the interval

Wqij
~

(xi,qj
,C� , if if xi,qj

vC

½C,xi,qj
) , if if xi,qj

wC

(
ð9Þ

that we seek.

In Algorithm 1, we constructed line segments that connect two

consecutive extrema of f q. They are located in the intervals

½qj ,qjz1) and ½qjz1,qjz2), respectively. We now have intervals

Wqi,j
5½qj ,qjz1) and Wqi,jz15½qjz1,qjz2) that contain these two

consecutive extrema of f q, so we construct the line segment that

connects the upper endpoint of Wqi,j
to the lower endpoint of

Wqi,jz1
. (Note that we do not connect the two extrema directly via a

line segment.) For q&1, this line segment approximates f q outside

of the intervals Wqi,j
and Wqi,jz1

. See Fig. 6, which illustrates (for

the case when f is the logistic map) that we can approximate f 6 by

a set of line segments for q~6. We can then use these line

segments in Algorithm 1, and we do not need numerical

computations to find the intersection points.

As we discussed previously, we can replace f q by linear

expressions to approximate the intersection points when deter-

mining WR in Algorithms 1 and 2. Replacing f q by a linear

approximation simplifies operations and reduces the amount of

calculation. To determine the desired intersection points, we have

thereby replaced a numerical method for obtaining roots of

nonlinear algebraic equations by an analytical calculation that uses

a system of two linear equations. We now estimate the error of

replacing f q by lines segments. The line segments that replace the

function f q intersect f q very close to the unique point of inflection

between a pair of consecutive extrema of f q (see Remark 1 and

Fig. 7). The Taylor polynomial of degree 3 of f q around the

inflection point xinf is

f q(x)^f q(xinf )zf q0 (xinf )(x{xinf )z
1

3!
f q000 (xinf )(x{xinf )

3 :

Consequently, the error of approximating f q by the line

f q(xinf )zf q0 (xinf )(x{xinf ) is

Error~D
1

3!
f q000 (xinf )(x{xinf )

3D&D
1

3!
f q000 (xinf )

b{a

2q

� �3

D , ð10Þ

where we have taken into account that there are more than 2q

local extrema of f q in the interval ½a,b�. The exponential growth of

2q enforces a fast decay in the error. Consequently, using line

segments to approximate f q is an effective procedure with only a

small error.

Numerical Example

Algorithms 1 and 2 are based on the same procedure:

approximate f q(x) by a line y(x)~axzb and solve y(x)~C to

obtain an approximation of the f q(x)~C (instead of solving

f q(x)~C directly). In this section, we consider an example

application of Algorithm 1.

To obtain the critical points of f qz1, we need to calculate the

points that satisfy f q~C. Suppose that q~6 (and again see Fig. 6

for an illustration of the line-segment approximation with q~6 for

the logistic map). The biggest distance between consecutive

Figure 7. Graphs of f 6 (blue) and f 10 (red) for the same value of the parameter r (when f is the logistic map) as in Fig. 6. The dark pink
line joins two consecutive extrema of f 6 , and the black line is the tangent line that crosses through the inflection point. Both lines are approximations
to f q . As expected, the approximation is better for the larger value of q.
doi:10.1371/journal.pone.0092652.g007
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extrema occurs near the critical point C, so we approximate f 6 by

a line segment in this region to obtain an upper bound for the

error. The extrema are located at (4:525|10{1,2:414|10{3)

and (4:787|10{1,9:994|10{1), and they are connected by the

line y&38:053 x{16, from which we obtain the approximation

xapp&0:453 for the solution of f 6(x)~C. From direct computa-

tion, the value of x that satisfies f 6(x)~C is x&0:465. The

relative error is Erel&2:58%, and this is the largest error in this

example from all of the approximating lines segments. As we

showed in equation (10), the error decreases exponentially. Hence,

when we approximate f 6zm using line segments, the relative error

will be bounded above by Erel&2:58=2m %. One can observe this

decrease in error in Fig. 7, in which we plot both f 6 and f 10 for the

logistic map and the same parameter value r. Observe that several

extrema of f 10 lie between onsecutive extrema of f 6, so using the

line-segment approximation in f 10 induces a much smaller error

than using it in f 6.

Conclusions and Discussion

When studying dynamical systems, it is important to consider

not only whether one converges to periodic orbits but also how

long it takes to do so. We show how to do this explicitly in one-

dimensional discrete dynamical systems governed by unimodal

functions. We obtain theoretical results on this convergence and

develop practical algorithms to exploit them. These algorithms are

both fast and simple, as they are linear procedures. One can also

apply our results to multimodal one-dimensional maps by

separately examining regions of parameter space near each local

extremum.

Although we have focused on periodic dynamics, the ideas that

we have illustrated in this paper can also be helpful for trying to

understand the dynamics of chaotic systems. Two important

properties of a chaotic attractor are that (i) its skeleton can be

constructed (via a ’’cycle expansion") by considering a set of

infinitely many unstable periodic orbits; and (ii) small neighbor-

hoods of the unstable orbits that constitute the skeleton are visited

ergodically by dynamics that traverse the attractor [4]. In Refs.

[21,22], Schmelcher and Diakonos developed a method to detect

unstable periodic orbits of chaotic dynamical systems. They

transformed the unstable periodic orbits into stable ones by using a

universal set of linear transformations. One could use the results of

the present paper after applying such transformations. Moreover,

the smallest-period unstable periodic orbits tend to be the most

important orbits for an attractor’s skeleton [4], so our results

should provide a practical tool that can be used to help gain

insights on chaotic dynamics.

Once unstable orbits has been transformed into stable ones we

can use results of this paper to answer the above question.
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