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Abstract

It has been proposed that the history and evolution of scientific ideas may reflect certain aspects of the underlying socio-
cognitive frameworks in which science itself is developing. Systematic analyses of the development of scientific knowledge
may help us to construct models of the collective dynamics of science. Aiming at scientific rigor, these models should be
built upon solid empirical evidence, analyzed with formal tools leading to ever-improving results that support the related
conclusions. Along these lines we studied the dynamics and structure of the development of research in genomics as
represented by the entire collection of genomics-related scientific papers contained in the PubMed database. The analyzed
corpus consisted in more than 49,000 articles published in the years 1987 (first appeareance of the term Genomics) to 2011,
categorized by means of the Medical Subheadings (MeSH) content-descriptors. Complex networks were built where two
MeSH terms were connected if they are descriptors of the same article(s). The analysis of such networks revealed a complex
structure and dynamics that to certain extent resembled small-world networks. The evolution of such networks in time
reflected interesting phenomena in the historical development of genomic research, including what seems to be a phase-
transition in a period marked by the completion of the first draft of the Human Genome Project. We also found that
different disciplinary areas have different dynamic evolution patterns in their MeSH connectivity networks. In the case of
areas related to science, changes in topology were somewhat fast while retaining a certain core-stucture, whereas in the
humanities, the evolution was pretty slow and the structure resulted highly redundant and in the case of technology related
issues, the evolution was very fast and the structure remained tree-like with almost no overlapping terms.
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Introduction

Complex networks theory is taking over where other theoretical

approaches to complexity –such as synergetics, chaos theory and

self-organized criticality– have had limited success. This is what

Lászlo Barabási recently published in a paper called the The

Network Takeover [1]. Complex networks theory has become the

most recent attempt to tackle complexity, it has developed a great

variety of methods and techniques with a wide scope of generality.

So far, it has been possible to find properties such as power-law

behavior in node degree distributions that are common among

different kinds of systems, from regulatory transcription networks,

to friendship networks, to epidemic networks [2–4]. But what

seems to have been the difference between complex networks

theory and the former approaches to complexity is its ability to

incorporate (or build upon) empirical data: massive amounts of

data. So, it has become an effective way to deal with the –so to

speak– real complexity in which we are embedded, in a simple and

beautiful way.

Science itself has been the subject of complex networks analysis

[5–10]. Most studies are close to or framed inside scientometrics,

the discipline that studies science by measuring and analysing its

products. Network-based scientometrics rely on collaborations,

coauthorship and citation networks. These kinds of networks are

interesting for complex network analysis for reasons that can be

found in current literature. Nevertheless, scientometrics has also

produced many valuable findings that help us understand the

sociology of science: the flows of knowledge, its cultural and

disciplinary differences, as well as its political and economical

aspects [11–13]. On those efforts we build upon. We are very

much interested in how scientific knowledge is generated by a

descentralized collectivity, and how it is organized. Our view is a

little bit different from scientometrics in that we are mainly

concerned on how to frame these data, patterns, processes and

networks from the perspective of complex systems analysis, as an

epistemological issue and as a subject of philosophy of science. We

believe this is something that as far as we know, has not been

systematically studied yet. For these matters, our methods are close

to those of scientometrics, however, our interests are even closer to

sociology and philosophy of science.

In this paper we explore the networks formed by the terms that

describe the content of an article. These terms are known as

MeSH, an acronym that stands for Medical Subject Headings. We are
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interested in the structure and dynamics of a network of the set of

MeSH terms related to the term Genomics; we believe that to some

extent, this particular MeSH terms network represents the image

of a part of the biomedical human knowledge evolution and its

current state in a specific time in history.

To be clear, MeSH is the controlled vocabulary defined by the

National Library of Medicine of the United States that is used for

indexing, cataloging, and searching for biomedical and health-

related information and documents. It is composed of terms that

name the descriptor of an object that can be a scientific paper, a

film, a book or any other format in which medical knowledge is

recorded and transmitted [14]. MeSH vocabulary constitutes what

is called a MeSH tree, and it is structured alphabetically and

hierarchically. By 2013, the tree included 17 hierarchies. Each

hierarchy is a branch that goes from general to specific and every

hierarchy is independent from the others, this means there is no

dependance relationship between terms belonging to different

hierarchies. For example: Hierarchy number 2, tagged [B],

corresponds to Organisms; Eukaryota is the first subdivision of

Organisms, that places Eukaryota in the classification system in B01.

Drosophila melanogaster belongs to hierarchy [B01] but it goes all the

way down to [B01.050.500.131.617.289.310.250.500]. The Or-

ganisms hierarchy is independent from the rest of hierarchies such

as hierarchy [K], that makes reference to the Humanities.

From the 17 branches, 16 define the existing headings and 1 is a

branch for all the existing subheadings to date. The 16 branches

start with the root [A] that stands for the branch Anatomy, followed

by [B] for Organisms, [C] being the root for Diseases and it goes all

the way to the letter [N] that is for Health Care, then, it skips to

letters [V] and [Z] for Publication Characteristics and Geographicals

respectively. The remaining root is [Y] which includes all

subheadings and is not part of the main MeSH tree. In order to

define a precise meaning, a MeSH term starts with a heading and

it is refined using subheadings. Every heading begins with

uppercase letters and all subheadings begin in lowercase. When

a composed MeSH term is formed, headings are followed by

subheadings separated by slashes, for example: Breast Neoplasms/

diagnosis/genetics/psychology.

MeSH is not a static vocabulary. The first list of terms was

published in the 1950’s, and the first catalog of Medical Subject

Headings appeared in the 1960’s. The 1960 MeSH edition

included 4,400 descriptors and the second edition of 1963 got

up to 5,700. The 2013 MeSH contains as many as 26,853

descriptors [15]. The MeSH catalog is updated every year and it is

the work of a staff specialized in the subjects. The National Library

of Medicine also receives recommendations regarding new terms

and indexing. The whole enterprise is supported by many external

professionals who are consulted for their expertise. The MeSH is

used to index articles from the most important biomedical journals

worldwide for the MEDLINE/PubMED database [14].

In this paper we explore the organization of knowledge that has

been developed along with genomics research. Our networks

display the emergence and decay of subjects, topics and disciplines

as research in genomics has changed and we wanted to know how

such behaviors have been taking place. Analyzing these networks

we pretend to have a better understanding on how the topologies

have changed during 25 years, how close are subjects from each

other –what is the average shortest paths between nodes–, how

different subjects and topics cluster, and how different areas of

knowledge behave. Particularly we explore the structure and

dynamics of different subnetworks defined by MeSH terms related

to the areas of science, the humanities and technology.

The main findings in this work are that MeSH networks present

a topology similar to that of small-world networks which is

maintained along the years, independently of the rate of growth of

such networks. Also we perceived differences in the connectivity

patterns between different disciplines. Such patterns seem to be

characteristic of each type of discipline. With regards to the

dynamics of network growth we found evidence that seem to point

out to the presence of three different regimes, roughly corre-

sponding to the pre-Human Genome Project, the completion of

the Human Genome Project (from now HGP) –whose behavior

resembles a dynamic phase transition– and the post-genomic eras.

The rest of the manuscript is organized as follows, a section on

Results and Discussion dealing with general aspects on MeSH

networks topology, with network dynamics as well as a detailed

analysis of some theme-specific subnetworks. Those networks have

been chosen to represent different fields of inquiry. Representing a

science-based theme are the subnetworks around the MeSH

Neoplasms, for the humanities the networks chosen were encom-

passed by the MesH terms Ethics as well as History; and for the case

of more technical/technological issues we chose the subnetworks

related to the MeSH terms Computational Biology and PCR. After this

discussion, a brief section dealing with the Materials and Methods

used is included.

Results and Discussion

Networks Topology
We would like to report three main topological results. First,

global networks (GNs) displayed an intricate and complex

topology as can be seen in their respective network structure

parameters [See Table S1]. Interstingly enough global networks

always consist of only one connected component. This seems to

imply that the whole corpus of biomedical knowledge related to

genomic research is somehow integrated. This non-trivial structure

may become evident by analyzing the values of quantities such as

network density SpT and clustering coefficient SCT. It becomes

clear that the structure of such networks cannot be the result of

random generated connections. In MeSH GNs, density decreased

as the networks grow bigger (in 1991 SpTv0:1 and since 2001

SpTv0:01). However SCT for all networks remained constant and

high-valued for the whole history of genomics research

(SCTw0:8). The topology of GNs, and specially their clustering

coefficient values would be very unlikely in an Erdös-Rényi

network with such density. It is also important to mention that

SCTw0:8 is indicative of non-tree-like networks.

The shortest average distance between any nodes i, j remained

low for all GNs: SlTv2:3. We believe such average distances

would not be possible without a particular topology, such as in the

Watts-Strogatz model, in which long distant links bring closer

every node in the network that otherwise would be quite apart

from each other. We also believe that there are communities that

may lead to a small-world-like topology [16]. We may recall that

Erdös-Rényi networks display low values of average shortest paths,

and their clustering coefficient is also very low.

All global networks displayed are sparse networks [Figures 1 and

2]. According to Watts and Strogatz, small-world topologies might

be common to large, sparse or low density networks found in

nature [17]. It has been pointed out by others that many real-

world complex networks have a small-world effect, but they are

different from a real small-world network in that their . . .average

path length increases slower than any polynomial function of the system size. . .
[16,18]. If we look up at Figure 3 and Table S1 we may see that

there is a strong resemblance of our GNs to small-world networks.

Many of the small-world properties networks seem to be modular

[16] and this also has implications for our work. If our GNs have a

small-world effect topology then it means that genomics, as it has

Structure & Dynamics of Genomics Related Networks
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been growing, is becoming a vast sea that is quite navigable with

islands of knowledge and lanes between them to be traveled. If

GNs have such modular structure is something that remains to be

elucidated and is part of our future agenda. Particularly, we would

like to see if there are any emergent modules, how are they

composed and how do they connect and affect each other. Most of

all, emergent modularity might indicate non-trivial ways of

organizing collectively produced knowledge, which would be

interesting to be studied from a sociological, historical and

philosophical point of view.

Networks Dynamics
Following the parameters of the whole sequence of networks,

from 1987 to 2011, it can be appreciated that they seem to grow in

a structured manner. The first GN corresponds to 1987 (our initial

time-point). During the first couple of years, the number of terms

(nodes) in the network increased by addition of approximately ten

new terms each year, starting with 25 nodes and 216 edges in

1987. From 1990 to 1999 the number of terms were added by

hundreds and in the last decade it increased by thousands, so that

by the year 2011, the number of terms summed up to 13,169 with

213655 edges. It is noteworthy that for the years that passed from

the beginning of the Human Genome Project to the announce-

ment of a working draft of the Human Genome in the year 2000,

the networks seem to be limited in adding new terms. For instance,

from 1990 to 1999 new terms were added at a rate of 58.2 per

year, a very conservative number compared to a rate of 1035.8

terms per year from 2000 to 2011, in average. Specially interesting

is the fact that in the year 2000 the curves for the number of nodes

and edges start growing much faster than before. The sudden

change in slope for the year 2000 curve suggests the beginning of a

substantial increase in the exploration of genomic-related issues,

contrary to the very limited scope before 2000 which might have

been the result of the somehow narrow objective of sequencing the

human genome in a limited time. It is in the year 2000 where there

is the only significant change in the average shortest path length,

from SlTv2 to 2vSlTv2:3.

From the 25 nodes in 1987, five nodes were the most connected

ones. Among these, the term Human Genome Project was present in

every GN. Another node that was one of the most connected terms

over time is Humans, but in this first network it was not relevant

(k~12). From 1989 to 1998 these two terms centralized the

networks without rivals. In 1999 Humans had a higher degree of

connectivity than Human Genome Project, and also, for the first time

in ten years, a new term that will be important in the networks for

the years to come emerges, such term was Animals. The year 2001

was the year in which the term Genomics became visible altogether

with the term Humans, Animals and Human Genome Project. From this

Figure 1. Global MeSH networks for the period (1987–1990). It is noticeable that there is a progressively growth of the network that induces
greater variability in the connection patterns. New terms arise that lead to the generation of a more complex connectivity structure that reduces the
relative importance of terms that were initially dominant. Nodes are size and color-coded according with their respective connectivity degree, i.e. big
red nodes present a high connectivity, whereas small green nodes have lower values. This is an example of only four years.
doi:10.1371/journal.pone.0092639.g001
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year onwards, this last term declined as an important, well-

connected node, since its connectivity started to decrease reaching

a k around the 300 in 2005, and remained close to this value for

the following networks. Another moment that seems to be

important in the history of genomics was the year 2003. During

this year the term Proteomics gained in connectivity, comparable to

the big nodes already mentioned. And for the year 2005, Proteomics

along with Proteomics, Methods, were more connected than Genomics

and it stayed like that for the following years. In our last network (i.

e., 2011), the most connected node was Humans, followed by

Animals, Proteomics, and Genomics.

The complex connectivity structure within different MeSH

terms lies behind the links among abstract terms, responsible for

the conceptual coherence of the biomedical publication corpus

represented in the PubMed database. In Figure 4 we can see a

Circos plot [19] showing the interconnectivity between all different

headings whose MeSH terms categorize PubMed-indexed publi-

cations related to Genomics, corresponding to the year 2011. Labels

in every section correspond to the key in Table S2. We can notice

that a blue histogram (shown in the inner circle) represents the

corresponding depth of specific MeSH tree levels for a given term.

Higher bars thus refer to more specific terms. The outer layer

displays an orange histogram showing the base-10 logarithm of the

number of published papers categorized for every MeSH term.

Higher bars are then hot topics, generating a very large number of

related publications.

As one can see in Figure 4, a multitude of different areas of

knowledge converge to conform a highly multidisciplinary corpus

in the research related to genomics. There is a dense, non-random

interconnection pattern spanning across traditional fields of

research (for instance, areas so-apparently disparate as pathology,

history, molecular biology, sociology, and computer science are

conceptually connected in this corpus). This may be indicative of

current phenomena leading to an increase in adequacy and a

reshape of the boundaries between contemporary research

subjects in the evolution of afore-mentioned traditional fields of

research. Very likely, this multidisciplinarity may be the driving

force (or at least one of the forces) behind the establishment of new

relations between already structured research areas, as well as the

evolution of trending research topics. Further evidence in this

regard may be observed when looking at the outer circle

histograms in Figure 4 that present the number of articles

published (on a logarithmic scale) that contain the connected

MeSH terms. By looking at the blue histograms in the inner circle

of Figure 4 we may notice that there is no apparent trivial

relationship between the specificity of research topics (as repre-

sented by the number of hierarchical levels in the MeSH tree

structure spanned by such topic) and the impact that such research

may have in the overall biomedical community (as represented by

the number of papers in the area given by the height of the orange

histograms in the outer circle).

Since every heading belongs to a branch (or category), we also

wanted to know the proportion of every branch in each GN by

counting and plotting the normalized frequency of every root of

each heading branch. The heading [V] never appeared in our

networks, so we did not plot it. Semantic relationships between

these terms are built and are behind the conceptual structure

intrinsic to research in genomics. Figure 5 shows that in the first

Figure 2. Dynamics of the topological parameters for the global networks. Panels A–H.
doi:10.1371/journal.pone.0092639.g002
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two-year period the proportions of headings get the positions that

will keep for the following 7 years. This means that some headings

abruptly increased while some others decreased their proportions

in the 1987 and 1988 networks. From 1989 to 1995 most headings

had a steady position. During this period the most represented

headings were H, and N, the first one standing for Disciplines and

Occupations and the second one standing for Health care. In the

middle region (second period), one may find headings such as L for

Information science, E for Analytical, Diagnostic and Therapeutic Techniques

and Equipment and I for Anthropology, Education, Sociology and Social

Phenomena. The least represented headings were A for Anatomy, C

for Diseases, D for Chemicals and Drugs, F for Psychiatry and Psychology,

J for Technology, Industry, Agriculture, K for Humanities, M for Named

Groups, and Z for Geographicals.

From 1995 to 2004 things changed again: H and L went

upwards and then downwards between 1996 to 1999. In 1999, the

proportions of headings E, D and G grew rapidly. Contrary to

these categories, category I abruptly started to decrease in 1997.

The proportions for the remaining headings grew or diminished

slightly. 2004 is the year when heading proportions stabilized and

reached the positions that they have maintained since then.

Headings D, E, G, H are placed at the top and moved all together

as a group, although in 2009 E, G begun to split away. Heading B

is alone, underneath the group of headings just mentioned. Under

heading B, there is another well packed group of four headings.

This group is composed by A, C, L and N. There is one last group

of headings for which since 2004 their representation in the

networks is close to zero, this group includes F, I, J, K, M and Z. It

is noteworthy that I begun as an important heading during the first

years, but its importance decreased, becoming almost unrepre-

sented in later networks.

Figure 5 shows the dynamics in the proportion of branches (i.e.

main categories in Table S2) for every GN. Analysis of this graph

led us to suggest that there are three somewhat distinguishable

periods in the evolution of genomics and related issues in the

biomedical literature. The plot, as well as the corresponding

networks, show that the benchmark for the identification of these

periods is located between years 1999 and 2003. It is noteworthy

that 2001 (the middle point in that interval) was the year that the

draft of the sequence of the Human Genome was published in

Nature and Celera’s paper on the methods used in the sequence

draft was published in Science [20,21]. Analysis of this graph in

conjunction with the parameters obtained from the GNs lead us to

hypothesize that in the period that ranged between 1999 and

2003, something similar to a phase transition took place. There were

rearrangements in the proportions of each category that ended up

in the actual configuration. Such transition may have been

triggered by an important change in the networks parameters that

occured during the 1999–2000 years, most surely due to the

completion and publication of the first draft of the human genome.

The number of nodes and edges increased substantially (from

hundreds to thousands) and network centralization dropped from

Figure 3. Average clustering coefficient versus time. We may see the average clustering coefficient for MeSH global (GN) networks, compared
to random Erdös-Rényi (ER) and to small-world Watts-Strogatz (WS) networks with the same parameters as these. We can notice that MeSH global
networks are not similar to tree-like networks (clustering coefficient = 0), neither to random networks (with clustering coefficient rapidly decaying)
but seem to be close to small-world networks with large and persistent values of clustering. In the other hand, MeSH networks are also different from
lattices since the average shortest path lenght values are not proportional to the size of the network but rather to the logaritm of such size.
doi:10.1371/journal.pone.0092639.g003
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0:91 in 1999 to 0:78 in 2000 and to 0:63 in 2003, due to the

emergence of new terms, such as Animals and Genomics as highly

centralized nodes. These two nodes rivaled with Humans and

Human Genome Project as the two main hubs during the pre-genomic

era. In summary, what we see in this apparent phase transition is

an explosion in the variety of terms related to genomic research.

So to speak, the number of nodes is at the same time, the number

of different terms and different topics that might be seen as proxies

for new grounds for genomics-framed exploration. In these years a

new regime shown in Figure 2, came to be and its growth rate has

been sustained so far. This must mean somehow that what sciences

produce is sufficient at least to create the same or more diverse

knowledge, a knowledge that is well connected to the major

component and is well integrated as the clustering coefficient

seems to suggest.

Our data about GNs also shows how in the postgenomic era,

different headings (a proxy for general subjects) cluster together,

and we assume that, at least in some cases, this is due to their

conceptual affinity. For example we find that heading H, that

stands for disciplines (in our networks mostly represented by

genomics and proteomics) is highly correlated with the under-

standing of biological processes and chemicals, and with technol-

Figure 4. Circos plot of MeSH-tree headings. Circos plot displaying the interconnectivity among different headings belonging to genomics-
related PubMed-indexed articles published in 2011. Letters correspond to the key in Table S2. The blue histogram in the inner circle represents the
corresponding depth of MeSH tree levels for a given term. Higher bars are more specific terms. The orange histogram in the outer circle displays the
base-10 logarithm of the number of published papers categorized for every MeSH term.
doi:10.1371/journal.pone.0092639.g004
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ogy and methods (such as PCR) [see Figure 5]. It is interesting that

the areas related to Ethical, Legal and Social Issues of Genomics (ELSI),

lost a great part of their representation share once the Human

Genome Project was accomplished. Since the graph shows

proportions, it might be the case that the production of ELSI

research is the same now as it was 20 years ago, but at the end the

message is that it did not grow accordingly to the amount of

subjects investigated, new areas of research, and new technologies

–all this represented by the ever increasing size of the networks.

ELSI research simply became less relevant once the project was

over. Something similar happens to Health care, or heading N.

Personalized, preventive and predictive medicine was the promise

of genomics. All these important concepts were part of the vision

of the proximal future in Health care. But once again, as other issues

of public interest (or at least, closer to the public), its relevance in

the share of proportions, faded away in the postgenomic era

[Figure 5].

Along with the history of genetics and genomics [22], the

dynamics of the proportions tells us a story of how genomics has

departed from a set of preconceptions regarding human nature (as

beings with rights and dignity) inherited from a bioethical and

science policy and society agenda, in order to set the limits to

human research. Nevertheless, the development of genomics has

now created an image of what a living being is and how we fit into

that description. It also tells us about what are the tools that have

been applied in order to create that image. Such tools might be

technological or conceptual. Furthermore, the very idea of

genomics, reflected in the first networks and closely related to

the HGP, must have changed considerably after 2003 and 2004.

Today genomics may not be as much as the study of the whole

genome but more of a generic name for a systemic view of the

biology of living things. This drive, if there is such a thing, might

be the focal point leading to a better understanding of how

different levels of biological organization interact among each

other, as well as to how different biological systems interact in an

ecological fashion, as it is currently studied by metagenomics.

A closer analysis of the hot-topics was made by selecting the top-

10 most connected MeSH terms for each year. It reveals

interesting facts and trends while supporting our previous

discussion. In figure 6 we can see that during the former years

of genomic research (1987–2001) there were a lot of issues under

discussion, dominated by health care and policy matters, as well as

social phenomena, in what may be called an ELSI stage of

genomics. In the other hand, most recent years show a completely

different trend by having fewer issues, most of them related to

more technical and scientific aspects of genome research.

By examining the color code in figure 6 (which corresponds with

the log-2 of the degree of each node) we can see that the discussion

has become more rich in recent years with a much larger number

of edges for the Top-10 topics that in those corresponding to the

former years.

Subnetworks
Since the GNs include the whole set of MeSH terms related to

the term Genomics we were able to substract smaller networks based

on particular terms such as Neoplasms, Ethics, History, Computational

Figure 5. Dynamic evolution of MeSH-tree headings. Dynamics of the proportion of participation for every heading in terms of the number of
PubMed indexed publications each year. There are noticeable changes in the trends for different issues that are consistent with different periods of
time within the genomics age.
doi:10.1371/journal.pone.0092639.g005
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Figure 6. Dynamics of the Top-10 of the most connected MeSH terms. The Y-axis corresponds to a list of the 57 most connected MeSH terms
in the global networks from 1987 to 2011. X-axis is the corresponding year. We may notice that some terms remain in the Top-10 list for several years,
and even appear and dissappear from the list. Color-intensity is given by the log2 of the degree. The relative importance of the top-10 nodes reflects
the fact that in the former years there was a lower number of potential connections in the global networks.
doi:10.1371/journal.pone.0092639.g006
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biology, and Polymerase Chain Reaction (commonly known as PCR).

The networks reflect the use of the specific term in such a context

for every year explored. Some terms like Ethics appeared in the

earliest networks (1988), some others like Computational biology come

to be part of the GN in the year of 1996. We chose these subjects

because we were very much interested in the approach of different

‘‘disciplines’’ or perspectives towards a particular topic (in our case

that topic is genomics), how they behave over the years and if in

that regard there are substantial differences between the human-

ities (e.g. Ethics and History), science (e.g. Neoplasms research) and

technological development (e.g. Computational biology and PCR). For

these set of SNs we recorded values for the number of nodes n and

edges m, clustering coefficient SCT, network centralization NC,

shortest path length SlT and density SpT [see Tables S3–S7].

Every set of subnetworks (SNs) display a different structure and

dynamics [see Figures 7, 8, 9, 10, 11]. When compared against

each other, we noticed that despite the low density of each

network, there were important differences in the clustering

coefficient values. While the set of networks for the humanities

had high clustering coefficient values [Figures 7, 8 Panel C], the

science subnetwork (represented by the SN Neoplasms), were slightly

higher than those presented by a random network [Figure 9 Panel

C]. Contrary to the results of the humanities and science SNs

clustering coefficients, the technology SNs were below the results

for a random network [Figures 10, 11 Panel C]. We believe that

these results somehow mirror the nature of the different areas. The

results of these thematic SNs suggest that not all areas of inquiry

behave in the same way. The humanities appear to move at a

slower pace as compared to the other areas. The humanities seem

to be quite redundant in their subjects and concepts. For instance,

in the case of Ethics, concepts that are central to debates are words

like justice, dignity, equity, words that have been in the ethics

vocabulary for hundreds of years. Interestingly enough, in an

article recently published in the New York Times, Nicholas

Christakis makes reference to an apparent state of stagnation in

the Social Sciences [23]. From what we see in our Ethics and

History SNs, it seems that what is to be for the Social Sciences it

might be also true for the Humanities –although the pupose of the

formers is different from the latters, since the Social Sciences

purport themselves as sciences. We also explored the content of the

triangles (responsible for the clustering coefficient) of a fraction of

all SNs for each of these subjects, nevertheless, we were able to see

that for History, a network with very high clustering coefficient and

network centralization [see Tables S3–S7], the terms with the

highest connectivity were the terms present as two of the nodes in

the triangle. Quite different from this, the Ethics SNs had a high

clustering coefficient and network centralization, still triangles

were not dominated by highly connected nodes, on the contrary,

clusters were more diverse.

In the case of science, we think that the low but constant

clustering is a sign of the fact that in science there must be some

conserved knowledge as a scaffold or dynamic supportive structure

on which novelty and new ideas are built upon. We wonder what

is the nature of such conserved knowledge and we will try to

identify it as part of our future work. However we think that

perhaps these scaffolds rest on the form of models, and model

organisms. Finally, technology seems to be an area that is always

on a rush. These SNs have average clustering coefficients SCT~0

Figure 7. Dynamics of the topological parameters for the Ethics networks. Panels A–F.
doi:10.1371/journal.pone.0092639.g007
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for most of the years. We suggest that this is the case because

technology, although built on previous technologies, it might not

need to make reference to them because, possibly, there are

different technical solutions to the same problem. Even if this can

be the most common case, we found that for the PCR case there

are some years in which there was a clustering coefficient over

zero. In these PCR networks, one of the nodes in the triangle was

the new technology, the other the precedent technology and

another node that could change but probably was relevant for the

new technology, such as gene expression and in a lesser degree,

sequencing, proteomics, methods, and organisms. In summary, the

humanities change very slowly compared to science and technol-

ogy. Science develops fast but needs to rely on previous

knowledge, and technology always goes ahead, almost with no

explicit reference to previous works. In order to test the validity of

these ideas and as part of our future work, we will perform studies

to properly characterize these areas as communities or neighbor-

hoods and study their local dynamics compared to those of the

GNs [16,24].

In the networks we studied, there were terms that were used

both as headings and subheadings. The terms Neoplasms, Compu-

tational Biology and Polymerase Chain Reaction exist in the MeSH

database as headings only, which means that they only appear at

the beginning of the MeSH term. The terms Ethics and History exist

as headings and subheadings, that is, they can be at the beginning

or in the middle of a MeSH term. Headings and subheadings can

be distinguished from each other because headings always start

with a capital letter and subheadings always begin in lowercase, e.

g., the term Ethics, can be found as Ethics or as ethics, and can

be the heading of a MeSH term such as: Ethics, Medical, or as a

subheading like: Informed Consent/ethics/legislation & jurisprudence. We

believe that this is interesting because ethics was an important area

of research that was promoted since the beginning of genomics

and the Human Genome Project. We think that the fact that ethics

moved from a heading into a subheading as years went by, is

telling us that there is a cultural progressive shift regarding the place

of moral values in science. At the beginning, the concept of ethics

was about a discipline and linked necessarily to the Human

Genome Project and as things were developing, ethics became

part of many other, more specific areas related to genomics,

biomedical research and its clinical and societal consequences.

Ethics changed from being the big word for socially legitimating

the Human Genome Project to the ethics of many things. Still, it is

important to mention that even if the results regarding the shift

from ethics as a heading to ethics as a subheading might suggest

some ideas related to the role of moral values and the dynamics of

science, we recognize that due to the lack of more evidence (that

we will explore in the future) we cannot generalize any of these

results.

It is no news to say that the Human Genome Project was

primarily a State project with the Department of Energy and the

National Institutes of Health of the United States as the main

actors behind one of the biggest scientific, technological and

economical enterprises in the course of research history. It is

evident that genomics research somehow was born with the HGP.

Even if the HGP was launched officially in 1990, there is a record

of publications regarding it since 1987. Such early publications

clearly reflect the nature of the project. All articles published from

Figure 8. Dynamics of the topological parameters for the History subnetworks. Panels A–F.
doi:10.1371/journal.pone.0092639.g008
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1987 to 1989 are by no means technical in terms of science but

technical regarding what was needed economically, socially and

politically for the proper development of the HGP. Some of the

terms that appear in the first three years networks were United

States, Risk Assessment, Resources Allocation, Government Regulation, and

Ecology, as well as others of more ethical concern, like Eugenics,

Abortion, and Christianity.

This is interesting in several ways: it is so for the history of

science, technology, and society studies because the HGP is

probably one of the first big scientific projects that it was planned

ahead and looked for a formal way to gain social legitimacy; this

strategy was an antecedent for another big project, that of

Nanotechnology. It was not only planned in terms of budget, it

somehow implied political planning (in order to get the budget

approved), but it also looked for social approval. It is no

coincidence that James Watson –being the head of the National

Center for Human Genome Research– suggested (even before the

HGP was formally launched) to include a research area for the

study of the Ethical, Social and Legal implications of Genomics.

From the history of the HGP and the networks we built, it seems

that genomics was the outcome of a top-down style of planning

science. Genomics might have appeard in the long run as a

consequence of technological and scientific interests as it has

happened to many other scientific areas. For example, the Sanger

sequencer was first developed in 1977, which means that there

were some antecedents heading towards the emergence of

genomics as a discipline, and of course, it played an important

part in its future appearence. But it was in the context of the HGP

that genomics really fluorished. In the particular case of genomics,

we think that the HGP played a central role in accelerating the

process. The behavior we just described for the first 10 years of the

HGP might have be the reflection of a centralized, top-down,

control over the development of the project, with a very precise

objective in mind. Once the draft of the Human Genome was

released and published, –results along with the technology

developed in the former years– opened the door to a bottom-up

style science, in which scientific communities were relatively free to

set their particular problems and follow their own interests. Such

change might be related to the change in the rate of new terms

added per year, which somehow can be seen as a proxy of new

emerging research subjects and areas.

Finally, it is also interesting the fact that methodologies like

those of complex network theory can be useful for historians. Data

mining and complex networks visualization and analysis can be a

way for supporting ideas and intuitions with data, regarding how

and why science changes and how does it interact with technology

and society. In this regard, the whole set of terms related to the

Ethical, Legal and Social issues (from now on ELSI) found in the

first 10 years of the HGP is the most informative corpus of data on

the social perceptions, conceptions and concerns about the human

genome. The human genome as the blueprint of life, as the

deepest repository of our identity as individuals and as a species.

What is even more interesting is that the HGP shaped and

materialized such concerns that were slowly framed over the 20th

century as has been noted by other authors [25].

At the end, what are our networks? MeSH terms that form the

networks are a simplified representation of the content of scientific

papers. Scientific papers are the result of many people’s work, a

work that goes beyond authors. A paper is the outcome of many

individuals, such as the peers that review the proposal in order to

Figure 9. Dynamics of the topological parameters for the Neoplasms networks Panels A–F.
doi:10.1371/journal.pone.0092639.g009
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get funding, research ethics committees, and the paper reviewers

as well (just to mention a few). It is also part of an institutional

enterprise. So to speak, every paper is a piece of knowledge that is

socially agreed (at least in terms of the community that believe that

the work should be published). In our specific case, the pieces of

knowledge are not only technical and scientific in their nature, but

also include knowledge from the humanities and the social

sciences. The content of every paper includes directly or indirectly

a diversity of topics, from a diversity of sources. By this, we do not

imply that, for example, to be part of a paper, ethical issues need

to have a MeSH term associated to the subject Ethics in it. What

we mean is that there are papers that in order to be published,

need many people to have agreed upon its content, including those

of the ethics committee that had to approve and follow up the

project. Therefore, our networks are the concise description of

these pieces of knowledge interacting massively among each other.

They are the image and the collective evolution of a world-wide

community around Genomics, arguing and agreeing on what and

how ideas are or may become knowledge. At the end, this is the

substance of our networks [10] and the main object of study in this

work.

A plethora of questions arise from these studies. The

implications of the highly structured connectivity patterns in these

networks for the evolution of scientific knowledge (or at least for

the case of biomedical research) are taunting and yet to be

discovered. Also intriguing is whether such structure emerges from

the particular classification approach in the case of MeSH terms or

is interwoven in other, more general approaches to knowledge

classification, perhaps even with ontological and epistemological

implications.

There is more work to be done. In particular, there are some

issues that we want to address in the near future. Some of these

issues are related to community-identification and how these

communicate among each other; what are the implications of a

small-world topology for knowledge organization, and how the

diversity of terms and edges impacts the topology and dynamics of

the networks. We would also like to study in more detail, from a

mathematical as well as from a historical point of view, the

suggested phase transition.

Finally, quantitative studies in the evolution of knowledge are

now arising. These studies may help us gain in understanding of

the structure and evolution of ideas behind academic publications,

not only (as is the present case) in the biomedical sciences, but in

every documented field of human inquiry. Computational studies,

as well as data and text mining techniques are now being

supplemented with analysis and visualization tools that will allow

researchers in this nascent discipline to construct more insightful

models of cognition in a wide variety of fields. These changes may

lead to an eventual development of data-driven approaches to

epistemological studies of science.

Materials and Methods

We extracted the MeSH terms that describe all the articles

indexed in PUBMED that included the MeSH term Genomics.

Data-mining was done using custom scripts written in Python. To

create and analyze the networks we used Cytoscape 3.0.0 [26] and

Figure 10. Dynamics of the topological parameters for the Computational Biology subnetworks. Panels A–F.
doi:10.1371/journal.pone.0092639.g010
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NetworkX [27], a Python library for the study of complex

networks.

We searched for all the articles that included the MeSH term

Genomics to December 2011, and retrieved their information in the

MEDLINE format, as it is offered by the PUBMED webpage. We

implemented BioPython’s API in order to parse our MEDLINE

files and generate a connectivity map in which source and target

nodes are the MeSH terms that describe the articles including the

MeSH term Genomics and the link between the nodes are the

PUBMED IDs, or PMIDs.

Major topics, or the main topic of an article is a MeSH term

marked with an asterisk. Since we were not interested at the

moment in separating major from minor topics, we eliminated the

asterisk from the terms in the connectivity map. Once the

connectivity map was clean, we created a connectivity map for

every year, starting from 1987 and ending in 2011. To every

connectivity map a bash script was run to count and give order to

the pairs of MeSH terms. By doing this we replaced the PMID

that linked every pair of terms with a ‘‘weight’’ according to the

number of occurrences of that pair. For example if a pair of terms

like animals and humans comes to occur 100 times, then, the weight

of that pair is 100. For this paper we did not analyze the role of the

weight of edges in the structure and dynamics of the networks, but

that will be part of our future work.

We used Cytoscape 3.0.0 to generate the MeSH terms network

for every year; we named these networks global networks or GN. For

each year we counted the frequencies of every main category

heading [see Table S2], that is, recorded how many A’s, B’s, C’s an

so forth. The results were normalized and plotted using Python.

We also counted the number of levels for each MeSH term from

the table distributed by the National Library of Medicine. Given

this, we encoded them to the Circos plot histogram format (blue

histogram) 4. For the orange histogram, for each term we counted

the number of articles containing it for every year from our data

base and encoded it in the Circos plot histogram format 4. For the

links connecting terms in the central area of the Circos plot, we

used the information already obtained for our networks. In order

to do this, we encoded the information in the Circos plot link

format 4.

We identified the nodes and edges that are in the intersection of

the global networks (GN) for the first network in 1987, to the 1990,

2001 and 2011 GNs. The intersections helped us to identify a

small set of nodes such as: Humans, Animals, Genomics, Human Genome

Project, Risk in order to analyze the dynamics of their degree,

clustering, centrality, betweenness centrality and specially, to see

who were their neighbors along this history of genomics

throughout the years. For this purpose we used NetworkX. By

using Cytoscape 3.0.0 [28], we identified the most centralized

terms and the emergence of new central terms at different

moments of history.

We extracted a group of subnetworks, for terms that are related

to different areas of knowledge that have become part of genomic

research. These areas are the study of Neoplasms, for a scientific

object of research, for the humanities we generated a subnetwork

for Ethics and History, and finally, for the technological areas we did

it for Computational biology and Polymerase Chain Reaction. In order to

extract these SNs, we searched the connectivity map of each year

and chose every pair of nodes that included the term of interest. In

the case of Computational biology we looked for the root comput, for

the others we searched for the whole word, that is Neoplasms, Ethics,

Figure 11. Dynamics of the topological parameters for the PCR subnetworks. Panels A–F.
doi:10.1371/journal.pone.0092639.g011
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History and Polymerase Chain Reaction. We also extracted the triangles

of the Polymerase Chain Reaction, and Computational Biology SNs to

those few years with a clustering coefficient above zero; we also

extracted the triangles to the History SNs because we wanted to see

what was behind the high network centralization and clustering

coefficient. Subnetworks were extracted using a bash script and

Cytoscape 3.0.0 was used to visualize and analyze them; triangles

were extracted with a bash script as well.

Supporting Information

Table S1 Data for the set of MeSH terms Global Networks
for 25 years. First column contains the year, second column (n) is

the number of nodes, third column (m) is the number of edges,

fourth column (SCT) is the average clustering coefficient, fifth

column (SpT) is the networks’ density, sixth column (SlT) is the

shortest average path length, and seventh column (NC) is the

network centralization.

(PDF)

Table S2 MeSH terms are organized according to a hierarchical

multilayered structure of main categories, subcategories and so on.

This table displays the two principal layers and the issues spanned

by them. Additional layers provide specificity to the conceptual

ontology.

(PDF)

Table S3 Data for the MeSH term Neoplasms networks for 22

years. First column contains the year, second column (n) is the

number of nodes, third column (m) is the number of edges, fourth

column (SCT) is the average clustering coefficient, fifth column

(SpT) is the networks’ density, sixth column (SlT) is the shortest

average path length, and seventh column (NC) is the network

centralization.

(PDF)

Table S4 Data for the MeSH term Ethics networks for 24

years. First column contains the year, second column (n) is the

number of nodes, third column (m) is the number of edges, fourth

column (SCT) is the average clustering coefficient, fifth column

(SpT) is the networks’ density, sixth column (SlT) is the shortest

average path length, and seventh column (NC) is the network

centralization.

(PDF)

Table S5 Data for the MeSH term History networks for 23

years. First column contains the year, second column (n) is the

number of nodes, third column (m) is the number of edges, fourth

column (SCT) is the average clustering coefficient, fifth column

(SpT) is the networks’ density, sixth column (SlT) is the shortest

average path length, and seventh column (NC) is the network

centralization.

(PDF)

Table S6 Data for the of MeSH term Computational
Biology networks for 16 years. First column contains the year,

second column (n) is the number of nodes, third column (m) is the

number of edges, fourth column (SCT) is the average clustering

coefficient, fifth column (SpT) is the networks’ density, sixth

column (SlT) is the shortest average path length, and seventh

column (NC) is the network centralization.

(PDF)

Table S7 Data for the MeSH term Polymerase Chain Reac-
tion networks for 23 years. First column contains the year, second

column (n) is the number of nodes, third column (m) is the number

of edges, fourth column (SCT) is the average clustering coefficient,

fifth column (SpT) is the networks’ density, sixth column (SlT) is

the shortest average path length, and seventh column (NC) is the

network centralization.

(PDF)
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(SciPy2008), Gäel Varoquaux, Travis Vaught, Jarrod Millman (Eds), (Pasadena,

CA USA), 1115, Aug 2008.

28. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, et al. (2012) A travel

guide to Cytoscape plugins. Nature methods 9(11): 1069–76.

Structure & Dynamics of Genomics Related Networks

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e92639


