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Abstract

Gene expression profiles have drawn broad attention in deciphering the pathogenesis of human cancers. Cancer-related
gene modules could be identified in co-expression networks and be applied to facilitate cancer research and clinical
diagnosis. In this paper, a new method was proposed to identify lung cancer-risk modules and evaluate the module-based
disease risks of samples. The results showed that thirty one cancer-risk modules were closely related to the lung cancer
genes at the functional level and interactional level, indicating that these modules and genes might synergistically lead to
the occurrence of lung cancer. Our method was proved to have good robustness by evaluating the disease risk of samples
in eight cancer expression profiles (four for lung cancer and four for other cancers), and had better performance than the
WGCNA method. This method could provide assistance to the diagnosis and treatment of cancers and a new clue for
explaining cancer mechanisms.
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Introduction

Cancer is caused by aberration of multiple genes, and thus its

pathogenesis is very complex and inconclusive [1,2,3]. Cancer-

related genes possess diverse functions [4,5], while genes with

similar functions are likely to be co-expressed [6,7] and located in

neighboring areas (known as network modules) [8,9] in biological

networks. The modules reveal the mechanism of multiple genes

underlying the disease and evaluate the risk of the disease.

Effective identification of cancer risk modules can assist cancer

researches [10,11,12,13].

Disease risk of cancer-related modules calculated from a

specific biological background can be a significant measure for

clinical prediction of cancer diagnosis [14,15,16,17,18]. Several

computational approaches have been developed for the disease

risk module analysis, including detection of differentially corre-

lated gene clusters and gene-specific analysis based the co-

expression network [19,20,21,22]. For example, weighted gene

co-expression network analysis (WGCNA) is a mature technique

and identifies gene modules as candidate biomarkers or

therapeutic targets based on the co-expression network [23,24].

WGCNA has been used to study complex diseases, such as

metabolic syndrome [25], schizophrenia [26], and heart failure

[27]. The expression activities of disease risk modules were

(induced or repressed) different among clinical conditions (in

tumor progress)[14].

Furthermore, it is feasible to identify cancer risk modules

from co-expression networks using network-based methods.

The analysis of gene co-expression networks shows that genes

within the same modules appear to have similar expression

patterns, share common regulatory mechanisms [28,29,30],

and thus have strong associations with specific biological

functions that determine the behaviors or phenotypes of cells

[31,32]. Modules derived from co-expression network were

organized into a higher-order structure correlated with clinical

characteristics, which provided insights into the underlying

biology of glioma [33]. Four modules of ovarian cancer from a

co-expression network were distinguished to be significantly

associated with biological processes such as cell cycle and DNA

replication in Gene Ontology (GO) categories[34]. The co-

expression modules associated with T-helper differentiation

and TGF-beta pathways improved clinical outcome of

hormone-insensitive breast cancers after treatment [35].

Moreover, sample signatures/labels considered in evaluation

of cancer-related risk modules would offer a new clue for

revealing the mechanisms of diseases [36]. Researches have

revealed that it is necessary to explore the relationships

between gene functions and disease risks [37,38]. The co-

expression networks taking into account of biological functions

would be more robust and authentic [39,40], and the modules

obtained from these networks could better reflect the function

information of the diseases.

In this paper, a new method was proposed to identify cancer-

risk modules and evaluate the module-based disease risks of

samples. A highly-confident co-expression network with func-

tional similarity information was first constructed by using
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Figure 1. Cancer-risk Modules Identification and Module-based Disease risk Evaluation.
doi:10.1371/journal.pone.0092395.g001
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expression profiles in lung cancer, and then candidate modules

were identified. The cancer risks of the modules were scored by

introducing sample labels, then the significant cancer-risk

modules were screened out by randomized trials. Finally, the

disease risks of samples were evaluated based on the cancer-risk

modules. These modules were expected to provide evidence for

disease diagnosis, treatment and clinical analysis in the future.

Identification of cancer-risk modules and evaluation of module-

based disease risks were performed in the following steps

(Figure 1).

Materials and Methods

Materials
Cancer gene expression data were obtained from the Gene

Expression Omnibus(GEO, http://www.ncbi.nlm.nih.gov/

geo/)[37]. Here, our research was based on the profile

GSE7670 [41]in GPL96 including 20,995 genes of 56 samples

(28 lung cancer patients and 28 normal controls), for which

patients underwent surgery for lung cancer at the Taipei

Veterans General Hospital. These expression profiles

(GSE10072, GSE21933, GSE27262, GSE40791, GSE14520,

GSE15781, GSE20437, GSE26126) (Table 1) with disease and

normal samples were used to analyze the robustness of our

method and compare with the WGCNA method. Gene

function information was obtained from Gene Ontology

(GO, http://www.geneontology.org/) [42], updated to May

2011. Protein interaction information (95537 high-confidence

interactions between 12359 genes) was downloaded from

iRefWeb (http://www.wodaklab.org/iRefWeb/) [43], updated

to April 13, 2012 of the 9th version. The information of 1824

protein complexes was obtained from Munich Information

Center for Protein Sequences (MIPS, http://mips.helmholtz-

muenchen.de/genre/proj/corum, Corum Release February

2012 available).

a. The construction of a highly confident co-expression

network. A method was introduced to create a highly

confident co-expression network by taking both co-expression

correlation and functional similarity. This method was performed

as follows:

First, the Pearson correlation coefficient [44] r was used to

represent the co-expression relationship between every pair of

genes and calculated as follows:

r~
N
P

xiyi{
P
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where N is the number of samples in an expression profile, xi

and yi are the expression levels of genes x and y in the i-th

sample.

Second, GO semantic similarity was used to represent the

functional similarity between every pair of genes [45].

(1) The similarity score of GO term A was defined as:
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X
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where TA includes term A and all its parent terms; We is the

weight of edge; and it is 0.8 for ‘is-a’ relationship and 0.6 for ‘part-

of’ relationship.

(2) The semantic similarity between term A and term B,

SGO2GO A,Bð Þ, was calculated as follows:

SGO2GO A,Bð Þ~

P
t[T1\T2

SA tð ÞzSB tð Þð Þ

SGO Að ÞzSGO Bð Þ

A gene’s functions were considered as a set of GO terms in

Gene Ontology. Thus, functions of genes G1 and G2 correspond-

ed to GO sets GO1~ go11,go12,:::,go1mf gandGO1~ go21,f
go22,:::,go2ng, m and n are the number of terms in GO1 and

GO2 respectively.

(3) The semantic similarity between G1 and G2 was defined as:
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The robust gene pairs were retained by the function similarity.

Therefore, a highly-confident co-expression network was con-

structed by analyzing the Pearson correlation coefficient and GO

semantic similarity.
b. Differential gene selection based on Bayesian

model. A Bayesian model [46,47] was used to screen the

differential genes. Bayesian approaches compare the probability

of an association between a gene expression and a disease to the

probability given no such association. The formula was as

follows:

BFLn~

BLn nT
1 z1,nN

1 z1
� �

zBLn nT
2 z1,nN

2 z1
� �

{BLn nT
1 znN

1 z1,nT
2 znN

2 z1
� �

where n1
T, n2

T, n2
N and n2

N are the number of samples (tumor/

normal and high/low expression) for one gene (Table 2). B

denotes the Beta function, defined by

B(nTz1,nNz1)~
nT !nN !

(nTznNz1)!

BLn is the log value of B.

When BFLn.0, there was relationship between a disease and

gene expression; when BFLn,0, no relationship.

A randomized test was designed to calculate the significance of

BFLn by stochastically disturbing n1
T, n2

T, n2
N and n2

N and

retaining stable sum; after 10,000 times, the p-value was the

proportion when the random BFLn was larger than the real value.

Genes with p,0.05 were selected as differentially expressed genes

(DE-genes).
c. Identification of cancer-risk modules. The online

module mining tool GraphWeb (http://biit.cs.ut.ee/

graphweb/) [48] was chosen to find co-expression modules.

GraphWeb is designed to analyze individual or multiple

merged networks, search for conserved features across multiple

species, mine large biological networks for smaller modules,

and compare results of high-throughput datasets. Markov

Cluster (MCL) [49] algorithm via the GraphWeb tool was

applied to prune the network and to find gene modules. The

MCL algorithm simulates a stochastic flow in the expression

Table 2. The number of samples (tumor/normal and high/low expression) for one gene.

+ 2 Total

T n1
T n2

T n1
T + n2

T

N n1
N n2

N n1
N + n2

N

Total n1
T +n1

N n2
T + n2

N n1
T + n2

T + n2
N + n2

N

T represents tumor samples and N for normal ones, and ‘‘+’’ stands for high expression (above-average) and ‘‘-’’for low expression (below-average). n1
T and n2

T refers to
the number of tumor samples with high expression and low expression, and n1

N and n2
N for the number of normal ones with high expression and low expression.

doi:10.1371/journal.pone.0092395.t002

Figure 2. Z-test. Where m means the average expression value of all
genes in module1 for the tumor sample s1; e11 is the expression value
of g1 in module1 for s1, so do others; m means the average expression
value of all genes for all normal samples; s is the standard deviation of
all normal samples.
doi:10.1371/journal.pone.0092395.g002
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graph and removes edges that are visited infrequently,

resulting in a collection of densely connected groups of genes.

The parameter of Markov clustering parameter was set to a

default value 1.8.

The candidate modules containing the DE-genes were selected

to evaluate the disease risks. Next, Z-test[50] was applied to assess

the relationship between individual tumor samples and modules

(Figure 2).

Ztest~
m{m

s

Finally, the significant samples with Z-test higher than the

significance threshold (a= 0.05) were picked out. To measure the

risk of each module, we defined:

Mrisk~
number of significant samples

number of all samples

Mrisk could be used to assess the disease risk of a candidate

module. For each candidate module, 10,000 random modules

were constructed by randomly selecting genes from the back-

ground gene set with equal numbers of module genes. Then, Mrisk

was calculated for each random module, and the proportion of

modules with Mrisk larger than the real value (the significance p-

value) was computed. Modules with p,0.05 were considered as

cancer-risk modules.

d. Evaluation of the sample’s disease risk. To evaluate

the module-based disease risk of each sample, we defined:

Srisk(i)~

P
j[M M ’risk(ij)

N

M ’risk(ij)~
Mrisk(j)

0

�
, pv0:05

, p§0:05

where M includes all cancer-risk modules, N is the

number of cancer-risk modules, M 0
risk(ij) means the cancer-

risk of the sample i about the module j, and p is the significance

of Z-test.

Cancer-risk modules were applied to evaluate samples by

calculating the module-based disease risk of each sample. Then

evaluation performance was estimated by a receiver operating

characteristic (ROC) curve.

Figure 3. Co-expression Level and GO Semantic Similarity. Purple point means observations, red line indicates the curve fitting, the dotted
curve represents the first order tangent.
doi:10.1371/journal.pone.0092395.g003
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Results

The highly-confident co-expression network
The Pearson correlation coefficient and the GO semantic

similarity of every pair of genes in the expression profile GSE7670

were calculated. After that, curve fitting was applied to analyze the

variation trend of average distribution of co-expression value with

GO semantic similarity at a 0.05 interval (Figure 3). Functional

similarity increased when co-expression level was over the

tangency point. Therefore, the pairs of genes with functional

similarity over 0.582 and Pearson correlation coefficient over 0.82

(the tangent point) were selected to create the highly-confident co-

expression network, which consisted of 9841 nodes and 112,605

edges.

Cancer-risk Modules
A total of 472 DE-genes were screened out by applying BFLn to

the expression profile GSE7670. Then 75 candidate disease

Table 3. Lung cancer-risk modules.

Risk ID Size Genes Mrisk p-value

high M2 171 ZEB1, CAV1, HYAL2, MMP12, CLU, TIMP3, DKK3, LPL, TCF21, FOXF1… 1 0.0043

M72 9 ASPM*,BUB1B,CCNB2,CEP55,KPNA2*,MAD2L1,PBK,TPX2,TRIP13 1 0.0036

M46 13 BARD1,CDT1,DLGAP5*,DONSON*,GINS1,KIF4A*, 1 0.0062

MCM7*,MCM3,MLF1IP*,NDC80,PAQR4,TMEM48,TTK

M39 14 ADRM1,BYSL,CKS1B,CRABP2,DNAJA3,HAX1,LSM12, 1 0.0067

MPZL1*,MRPL17,MRPS7,NME4,RPN2,SLC2A4RG,STRA13

M281 3 CRYAB*,HSPB2*,VGLL3* 1 0.0018

M82 9 ALG3*,EIF2S1,HSPB11,LRRC42,MCTS1,P4HA2,PSMA5,SEC61G,VARS 1 0.004

M61 11 ADAMTS8*,CSRP1*,KCNK3*,LINC00312*,MYH11*, 1 0.0058

MYLK,PDE2A,PKNOX2*,RASL12*,SETBP1,TACC1*

M266 3 CDCA3,GALNT6,IDH2* 1 0.0017

M340 3 MRPS34,NUBP2,SNRNP25* 1 0.0015

M363 3 DDR1*,FLAD1*,SPINT1 1 0.002

middle M62 11 CCNB1,CKAP2,KIF11*,KIF20A*,MCM4,MELK*, 0.9642 0.0187

NCAPG,NETO2*,PRC1*,SHCBP1,TOP2A*

M27 17 CCT6A*,EIF2AK1*,EIF3B,FKBP14*,GART,GINS4,GNL3, 0.9642 0.0304

HEATR2*,KLHL7*,LSM5*,MRPS17*,MRPS33*,PHLDA2,

POLD2,PPP1R14B*,PSMD2,TMEM106B*

M268 3 HPRT1*,SCRN1*,TPBG* 0.9642 0.0065

M102 8 AVL9,CDK5,CORO1B,CHPF2*,ITPKA,NDUFS8,PPP1CA,SSH3 0.9642 0.0172

M63 10 A2M*,CASP1*,CD97*,FABP4*,GAS6*,GMFG*, 0.9642 0.0171

PDLIM2*,PLEKHO2*,RARRES2,TRPV2*

M54 12 CLDN5*,CRIM1*,DOCK6,FGR*,ICAM2*,INPP1*, 0.9642 0.0223

KANK3*,LIMS2*,LRRC32,PCDH12*,PTGIR*,RASIP1*

M258 4 FZR1*,CLDN4,LY6E,PRSS8 0.9642 0.0076

M188 5 BLVRA,KIAA0391,PSMA6,SRP54*,TFPI2 0.9642 0.0091

M297 3 AHCY*,PKP3,SLC38A1 0.9642 0.0088

M321 3 GLO1,EGFL7,PDXDC1* 0.9642 0.0056

M180 5 DHTKD1*,MEA1,SLC35A2,TMED3*,TPMT 0.9642 0.0096

M86 9 CDKL2,ENY2,HAND1,LY6D,ORM1,ORM2,RAB25*,S100G,TSTA3* 0.9642 0.0159

M387 3 GALNTL2*,SAR1B*,TSPAN6* 0.9642 0.0062

low M157 5 DHFR,DTL,GMPS,MYBL2,RFC4* 0.9285 0.0234

M241 4 COG8,FAM158A,PDF,PSMB5* 0.9285 0.0207

M249 4 KRT10,NIPSNAP1*,POLDIP2*,SEPHS2 0.9285 0.0173

M314 3 FAM65A*,GIMAP5*,SEPP1* 0.9285 0.0159

M280 3 GYPC,PTGDS*,RPL15 0.9285 0.016

M144 6 BCKDK,DECR2,GALE,NDUFB11,PYCR1*,RRNAD1 0.9285 0.028

M316 3 CTSA,ERGIC3,PAFAH1B3* 0.8928 0.0313

Risk is modules category, ID indicate the identifier of cancer-risk modules, size is the module scale, namely the number of genes in the module, genes is the genes in the
modules and the genes which were marked * were DE-genes, Mrisk is the cancer risk of modules, p-value is significance p value of random randomized test.
doi:10.1371/journal.pone.0092395.t003
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modules containing DE-genes were obtained through GraphWeb.

After the randomized test, 31 lung cancer-risk modules were

obtained (Table 3).

Evaluation of cancer-risk modules
The cancer-risk modules were evaluated at the functional level

and interactional level. On one hand, functional enrichment was

performed for each lung cancer-risk module using an online tool

DAVID (http://david.abcc.ncifcrf.gov/home.jsp) [51], and then

significantly enriched GO terms of each module were obtained

(More modules are in the Table S1). On the other hand, the

interactional relationships of modules were assessed using protein

interaction data from iRefWeb. The relationship network of

cancer-risk modules and known lung cancer genes was constructed

on the basis of functional and interactional relationships (Figure 4).

The results showed that lung cancer-risk modules were closely

related with the lung cancer genes, which indicated that these

modules and genes might synergistically cause lung cancer. For

instance, m46 was associated with cell cycle regulation and

phosphorylation [52], cell proliferation and cell cycle checkpoint

Figure 4. The relationship network of cancer-risk modules and lung cancer genes. The circles indicate cancer-risk modules, and the
proportion of orange parts indicates cancer risk (Mrisk). The disease-causing genes is represented by red triangles. Edges’ colors indicate the
relationships, purple represents for the protein-protein interaction, green for function sharing, and red for both functional and interaction
relationship.
doi:10.1371/journal.pone.0092395.g004

Table 4. Average Degree for three types of cancer-risk modules.

Risk D_W D_M D_D D_P D_F D_B

High 13.00 5.222 7.78 6.33 9.22 2.50

Middle 10.67 3.75 6.92 3.50 8.58 1.42

Low 4.71 2.00 2.70 2.14 2.80 0.28

D_W stands for degree of whole net, D_M for degree only between modules, D_D for degree only considered of modules with disease-causing genes, D_P for degree of
the protein interaction edges(purple edges), D_F for degree of function edges(green edges), D_B for degree of both protein interaction and function(red edges).
doi:10.1371/journal.pone.0092395.t004

Cancer-Risk Module Identification
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[53], and ATP binding [54] by interacting with known lung cancer

genes KRAS, KDR and TP53, respectively. These functions were

confirmed to be related to the occurrence of lung cancer. Another

module m63 was significantly enriched in functions associated with

the cancer, e.g. the response to corticosteroid stimulus, the

response to organic substance, and glucocorticoid stimulus and

steroid hormone stimulus together by interacting with known lung

cancer genes KRAS, NFE2L2 and NKX2, respectively

[55,56,57].

To further analyze the relationship network, the cancer-risk

modules were classified into three types according to the risks:

the high, middle and low risk modules (Table 3), and the

corresponding degree distributions were calculated (Table 4).

The results showed that the high risk modules tend to

have high degrees. Namely, they had more connections

with other modules and known disease genes at the functional

and interactional levels. They played pivotal roles in the

network.

Evaluation of the module-based disease risk
The lung cancer risk of each sample was evaluated by

considering the cancer-risk modules. By measuring the lung

cancer risk (Srisk), every sample in GSE7670 was evaluated. It

turned out that every sample could be successfully identified as

disease (Srisk.0.8) or normal (Srisk,0.8) based on its disease risk

(Figure 5).

The robustness of our method
In order to verify the robustness of this method, first, other four

expression profiles (GSE10072 from GPL96, the same as

GSE7670; GSE27262 and GSE40791 from GPL570; and

GSE21933 from GPL6254) about lung cancer and normal were

evaluated, respectively (Table 1). The results showed that the

module-based disease risks of cancer samples were higher than

those of normal ones (Figure 6a). ROC curves were then plotted

and the AUC values (.0.97) were used to measure the evaluation

performances of the cancer-risk modules which were obtained by

our method (Figure 6c). The method had good performance in the

expression profiles not only from the same platform, but also from

different platforms.

Next, we identified risk modules of liver cancer (GSE14520),

colon cancer (GSE15781), breast cancer (GSE20437), and prostate

cancer (GSE26126) in the same way, respectively (More cancer-

risk modules information in the four cancers are in the Table S3).

The cancer-risk modules were used to evaluate the disease risks of

the samples, and the corresponding ROC curves were drawn

(Figure 7).

Figure 5. The lung cancer risk of each sample in GSE7670. X-axis is samples. Y-axis is the lung cancer risk score of individual samples, and it is
ranked from smallest to largest. Red represents lung cancer samples; and blue represents normal samples.
doi:10.1371/journal.pone.0092395.g005

Cancer-Risk Module Identification
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Method comparisons
The WGCNA method [24] is a widely used technique to

construct gene modules within a network based on gene co-

expression relationships. In this paper, the accuracy

and robustness of WGCNA and our method were compared.

Fifty seven lung cancer risk modules were obtained from

GSE7670 using the WGCNA method. The lung cancer risk of

every sample in GSE7670 itself was evaluated with the

modules. Cancer risks of some cancer samples were smaller

than those of normal ones (Figure 8), which indicated the

WGCNA method could not completely identified samples as

disease or normal as accurately, while our method could

(Figure 5).

Then the evaluation of the samples’ lung cancer risks was

extended to other four expression profiles about lung cancer and

normal (Figure 6b). It was found that the cancer risks of cancer

samples were not significantly different from those of normal ones.

The ROC curves were then used to evaluate the performance of

the WGCNA method (Figure 6d). We found that our method had

better accuracy and robustness than the WGCNA method

(Figure 6).

Discussion

Studying the mechanisms of diseases by analyzing gene

expression profiles appears to be a convenient and effective way.

Considering the functional similarity could better reflect the

function information of the disease. In this paper, a new method

was proposed to identify thirty one cancer-risk modules and

evaluate the module-based disease risks of samples by using a co-

Figure 6. The robustness of our method and comparison with the WGCNA method. a) X-axis is samples. Y-axis is the lung cancer risk score
of individual samples using our method, and it is ranked from the smallest to the largest. Blue represents GSE10072; green represents GSE21933; red
represents GSE27262; and brown represents GSE4079. Full lines represent lung cancer samples; and dashed lines represent normal samples. The
different experiment data sets have different numbers of the normal samples and the disease samples. In order to show the disease risk of every
sample in four expression profiles intuitively, all samples of each expression profiles are distributed uniformly throughout x-axis. b) The figure is
plotted the same way as a). The lung cancer risk of each sample is evaluated by the WGCNA method. c) Receiver operator characteristic curve using
our method for the four lung cancer expression profiles (see Figure 7a). The areas under curve provided at lower right of each diagram. d) Receiver
operator characteristic curve using the WGCNA method for the four lung cancer expression profiles (see Figure 7b).
doi:10.1371/journal.pone.0092395.g006
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expression network with functional similarity information. Finally,

the relationship network of cancer-risk modules and cancer genes

was constructed on the functional level and interactional level.

These modules were found to be closely related to cancers in

the aspects of functions, interactions, and literature. Our

method was proved to be fairly robust by evaluating the disease

risks of samples in four lung cancer expression profiles and in

four other cancers, and had better performance than the

WGCNA method.

Cancer-risk modules and the evaluation of the module-based

disease risk from this study were confirmed to be credible with

the following considerations. (i) Differentially expressed genes

were selected by using the BFLn method, which considered

both gene expression and sample label distribution so as to

eliminate outliers caused by bias expression of individual gene

or experiment errors. (ii) Our gene network was of high

confidence, because the method was used to calculate not only

the co-expression correlation, but also functional similarities

between genes. The gene pairs with both high expression

Figure 7. Receiver operator characteristic curve for expression profiles of liver cancer (GSE14520), colon cancer (GSE15781), breast
cancer (GSE20437), and prostate cancer (GSE26126).
doi:10.1371/journal.pone.0092395.g007
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consistency and functional similarity were retained for building

the high confident network, which was capable of avoiding

biased results merely depending on expression. (iii) The cancer

risks of modules were evaluated by using the proportion of

significant tumor samples, which could be a new method to

evaluate disease modules. The genes in cancer-risk modules

could be potential disease genes, and might act as drug targets

for the treatment of aggressive cancers. All genes of m46 were

related with lung cancer. For instance, MCM7 is a significant

subunit of MCM complex, which could be a novel therapeutic

target in lung cancer [58]. Another gene BARD1, whose

isoforms may be related to tumor initiation and invasive

progression, was a more suitable neoteric prognostic marker

for non-small-cell lung cancer [59]. KIF4A might hold a

promise for the development of anticancer drugs and cancer

vaccines as well as a prognostic biomarker in clinic [60]. For

the genes in module m63, A2M was in limited and extended

lung cancer patients compared to a nonsmoker and smoker

control population [61], FABP4 was down-regulated in lung

adenocarcinoma [62], and CASP1 affected the single-nucleo-

tide polymorphisms, increasing the cancers risk [63]. (iv) The

evaluation of samples’ module-based disease risks is accuracy

and robustness. Because our method integrated the differen-

tially expressed genes, a co-expression network and functional

similarities, the cancer-risk modules were closely related to the

pathogenesis of cancer in the aspects of functions and

interactions. On the functional level, the cancer-risk modules

could reflect the functional classes related to diseases; on the

interactional level, the cancer-risk modules could be very high

correlated with the disease genes.

Additionally, we investigated the overlap between the cancer-

risk modules and the protein compounds (Figure 9). The results of

hypergeometric distribution analysis showed that 17 modules had

significant overlap with 150 complexes (p,0.05). For example,

module m46 shared genes with 24 complexes, among which 19

complexes had an overlap rate higher than 20%. The complex

BRCA1_A recruited BRCA1 to DNA damage sites [64]. Partial

depletion of Mcm proteins which were typically loaded in

excessive number of locations led to cancers and stem cell

deficiencies [65]. The expression of ubiquitin E3 ligase was

associated with estrogen receptor (ER)-positive status in human

breast tumors [66] (More modules and complex information are

in the table S2). Our method will be more comprehensive

considering protein-protein information to construct an integrat-

ed network and developing a module mining algorithm in the

future.

In conclusion, this study presented a novel method to

evaluate disease risks of samples based on cancer-risk modules

and to analyze the relationships between the disease and

modules. This method could provide assistance to the diagnosis

Figure 8. The lung cancer risk of each sample in GSE7670 by the WGCNA method.
doi:10.1371/journal.pone.0092395.g008
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and treatment of cancers and a new clue for revealing the

cancer mechanisms.
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