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Abstract

Objectives: Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts
approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported,
asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring
protection to individuals that remain clinically asymptomatic.

Methods: We determined the levels of neutralizing antibodies (nAbs) and gene expression profiles of host immune factors
in individuals with asymptomatic infections, and whose cognate household members showed symptoms consistent to
clinical dengue infection.

Results: We observed broad down-regulation of host defense response (innate, adaptive and matrix metalloprotease) genes
in asymptomatic individuals as against symptomatic patients, with selective up-regulation of distinct genes that have been
associated with protection. Selected down-regulated genes include: TNF o (TNF), IL8, C1S, factor B (CFB), IL2, IL3, IL4, IL5, IL8,
IL9, IL10 and IL13, CD80, CD28, and IL18, MMP8, MMP10, MMP12, MMP15, MMP16, and MMP24. Selected up-regulated genes
include: RANTES (CCL5), MIP-1a (CCL3L1/CCL3L3), MIP-1 (CCL4L1), TGFB (TGFB), and TIMP1.

Conclusion: Our findings highlight the potential association of certain host genes conferring protection against clinical
dengue. These data are valuable to better explore the mysteries behind the hitherto poorly understood immunopatho-
genesis of subclinical dengue infection.
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Introduction million represent dengue hemorrhagic fever (DHF) or dengue
shock syndrome (DSS), and ~300 million others representing mild

Dengue represents one of the world’s most dreadful vector- or asymptomatic cases [1]. DENV is a member of the family
borne flavivirus infections with its increasing incidence, making it a Flaviviridae and genus Flavivirus, a positive-stranded RNA virus

major disease burden in the tropics and subtropics. Global transmitted by Aedes aegypte (A.aegypti) and A. albopictus mosquitoes.
estimates show that ~3.6 billion individuals, representing ~55% There are four serotypes namely DENV 1, 2, 3 and 4, which can
of the world’s population, are at increasing risk for contracting all elicit the complete spectrum of disease severity, from the most

dengue virus (DENV) infection. A.nnual cstimates show .that the common asymptomatic subclinical infection to severe plasma
number of dengue cases reported is ~390 million, of which ~96
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leakage, shock, haemorrhage and, in some cases, death. The
viruses are maintained in an A. aegypti-human-A. aegypti cycle,
where humans acquire infection following the bite of a DENV-
infected female mosquito. The mosquito reportedly feeds on
multiple individuals over a given period of time. It is, thus,
common that the same mosquito could infect several members of
the same household [2—4].

The recent WHO classification has categorized the disease as
dengue without warning signs (DWOS), dengue with warning
signs (DWWS) and severe dengue (SD) [5]. A DWOS DENV
infection could manifest as asymptomatic or a ‘flu-like syndrome’,
while DWWS could be characterized by sudden onset of fever,
usually accompanied by nonspecific signs and symptoms, such as
headache, back pain, stiffness, and flushed facial skin [6]. In severe
dengue infections, for instance DHF (DWWS), plasma leakage and
thrombocytopenia can be life threatening, especially following
hypovolemic shock in severe dengue. Few studies of asymptomatic
dengue have been performed and thus knowledge on the full
burden of dengue infection is limited [7]. Primary DENV
infections are often asymptomatic and will generate immunity to
the homologous strain. However, ~90% of DWWS (DHF)
reportedly occurs following second exposure to a heterologous
strain of DENV [8]. This will greatly increase the future risk of
onset of SD following asymptomatic infections as the previous
DENV infection had gone undetected. Therefore, subclinical
infections provide ample opportunities for researchers to explore
host immune factors that confer protection against clinical DENV
infections.

Viral virulence [9], host genetic background [10], T-cell
activation [11], viral burden [12], antibody dependent enhance-
ment [13] and autoantibodies [14] are reportedly implicated in
disease pathogenesis. Host immune factors [15-20] have also been
reported as contributing to onset of DENV infection. It is
hypothesized that DENV infection of monocytes/macrophages
increases T-cell activation leading to release of cytokines and
chemical mediators resulting in increased vascular permeability,
plasma leakage, shock, and malfunction of the coagulatory system,
culminating in hemorrhage and shock. Evidence that implicates
immune factors in dengue severity is derived from chemical
mediators, such as tumor necrosis factors (7NF), interleukin-1
(ILI), IL2, IL6, platelet-activating factor (PAF), complement
components C3a and Cba, and histamine [21]. CD4+ T cells
produce a plethora of cytokines, which recruit numerous other
cytokines and chemical mediators that further increase vascular
permeability [22]. Nonetheless, these studies have all concentrated
on the apparent clinical dengue infection but not on asymptomatic
cases, which therefore, remains a grey area of investigation. Here,
we sought to investigate the molecular mechanisms underlying
asymptomatic DENV infection by determining neutralizing
antibody (nAb) levels and analyzing immunological genes expres-
sion profiles.

Materials and Methods

Specimens

Blood specimens were collected from clinical dengue cases
admitted to University Malaya Medical Center (UMMC),
Ampang Hospital and Klang Tengku Ampuan Rahimah Hospital,
Malaysia. Blood specimens were also collected from household
members of individuals presenting with clinical dengue for the
investigation. The study protocols were approved by the institu-
tional review board of the University of Malaya Medical Center
(FPU-DOF-BK-012-05-R01) and from both Ampang and Klang
Hospitals (Ethics no. NMRR-10-683-6420). Written informed
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consent from patients and asymptomatic donors was obtained,
and the study was conducted in accordance with the Declaration
of Helsinki. At least 1 household member’s blood was collected per
dengue patient. Clinical information and medical history for each
patient and the accompanying household member was document-
ed. Blood samples of dengue patients were collected during both
the acute and convalescence stage. In contrast, only one time point
of blood sampling was done for the suspected asymptomatic
household member.

Peripheral blood mononuclear cells

All blood samples were collected in BD Vacutainer (BD,
Franklin Lakes, NJ, USA) tubes for extraction of serum. For the
isolation of peripheral blood mononuclear cells (PBMCis), blood
samples were collected in Vacutainer Plus (Plastic) Sterile
Evacuated K2 EDTA spray dried Blood Collection Tubes (BD,
Plymouth, UK). Isolation of PBMC was done using the Ficoll-
Hypaque (Lymphoprep; Axis-Shield, Oslo, Norway) density
gradient centrifugation [23]. Briefly, the blood was centrifuged
at 2500 rpm for 15 min at 4°C; plasma was separated from the
whole blood and stored at —20°C.. Blood cells were washed with
RPMI1640 (Roswell Park Memorial Institute) media and were
gently layered over Ficoll in 50 ml centrifuge tubes. This was
followed by centrifugation at 2000 rpm for 20 min without brake
to separate the bufly coat from red cells. The buffy coat containing
PMBCs was collected and washed with RPMI and the total
number of PMBCs was determined using a hemocytometer. The
isolated PBMCs were stored in liquid nitrogen until further use.

Diagnosis of dengue

Sera from symptomatic cases and their corresponding house-
hold members were collected and subjected to in-house IgM-
Capture ELISA [24] for IgM detection, hemagglutination
inhibition (HI) test [25] for total dengue antibody detection, and
quantitative real-time (QRT-PCR) [26] for detection of viral RNA.
Samples were considered as confirmed dengue positive based on
the criteria that any of the diagnostic assays carried out showed
positivity, that is: 1) dengue nucleic acid detection through PCR, 2)
IgM detection during both acute and convalescence phases, 3)
sero-conversion, or 4) 4-fold increase in HI titre from acute to
convalescence phase. As for the presumptive dengue positive cases,
samples that showed IgM detection only during the acute phase,
HI titres of more than 1280 in a single serum, or >1:640 nAb
titres of 50% reduction in neutralization by the plaque reduction
neutralization test (PRNT) were considered [5]. PRNT was
performed to determine the levels of neutralizing antibodies (nAb)
against each of the dengue virus serotypes, following a protocol
slightly modified than others [27]. Briefly, porcine kidney
epithelial cells (PS cells) were seeded in 24-well plates and
incubated overnight. Serum samples were diluted to 1:10 dilution
and heat-inactivated at 56°C for 30 min, followed by four-fold
serial dilution using L-15 media containing 1% heat-inactivated
fetal bovine serum (FBS). Equal volumes of virus with PFU of 15—
30 per well were added to the diluted sera, and incubated at 37°C
for 1 hour. Prototype strains of dengue viruses were used and these
included Denl-Hawaiian, Den2-New Guinea C, Den3-H87 and
Den4-H241. Subsequently, the virus-antibody mixture was added
onto the cell monolayers in the 24-well plates, and incubated at
37°C for 3 hours. An overlay medium of 3% carboxymethyl-
cellulose (CMC) was then added to the monolayers and incubated
at 37°C without COs for 7 days, after which cells were washed and
stained with 1% naphthalene black. The viral plaques that formed
were enumerated and plaque neutralization titers were determined
accordingly.
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Sample selection

Twenty-nine pairs of patients and their accompanying asymp-
tomatic household members were recruited for gene expression
investigations based on positive results for DENV infection (see the
diagnosis section). Notably, among the 29 pairs, there were four
that corresponded to two distinct patients paired with two
asymptomatic household members each. In further microarray
experiments, only the acute blood samples of the 29 patient and
accompanying household member pairs were tested.

Microarray hybridization

The stored PBMCs of patients and asymptomatic subjects were
subjected to microarray hybridization (Miltenyi Biotec GmbH) as
described in the manufacturer’s instructions. Briefly, RNA was
isolated using standard RNA extraction protocols (NucleoSpin
RNA II, Macherey-Nagel). RNA samples quality was determined
by the Agilent 2100 Bioanalyzer platform (Agilent Technologies).
The results were visualized in a gel image and electropherogram
using the Agilent 2100 Bioanalyzer expert software. The RNA
mtegrity number (RIN) and the overall quality of total RNA were
determined using the same software. RNA with RIN value >6 was
subjected to linear T7-based RNA amplification to obtain
sufficient antisense RNA. Amplified RNA (aRNA) was again
examined on the Agilent 2100 Bioanalyzer platform, and the
samples subjected to fluorescent labeling according to PIQOR
user manual. The fluorescent-labeled samples were hybridized
overnight to human antisense topic-defined PIQOR Immunology
Microarrays (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgitacc = GPL17653) using the a-Hyb Hybridization Station.
Each dengue patient-asymptomatic contact pair’s RNA samples
were hybridized with each other. Fluorescence signals of the
hybridized PIQOR Microarrays were detected using a laser
scanner (Agilent Technologies). ImaGene software (BioDiscovery,
Hawthorne CA, USA) was used to obtain signal and local
background intensities for each spot of the microarray images.
These data are available in NCBI’s Gene Expression Omnibus
(GEO) database through GEO accession ID GSE50634 (http://
www.ncbinlm.nih.gov/geo/query/acc.cgi?acc = GSE50634).

Microarray data processing and statistical analysis

The median signal and median local background intensity
values for each spot of the microarray images (obtained from
ImaGene) were imported into Partek Genomics Suite (Partek Inc.,
St Louis MO, USA) for statistical analysis. Background subtraction
was performed using the median intensities of the arrays’ four
replicate spots for each gene. These signal values were normalized
by shifting their minimum to 2 and then converted to log2
notation for statistical analysis. Quality control of the results, using
principal component analysis (PCA) and supervised hierarchical
clustering (data not shown), revealed two samples to be extreme
outliers so they and their paired household members’ were
excluded from further analysis. The paired sample t-test was used
to analyze the remaining 27 household pairs, comparing the
asymptomatic member’s gene expression to that of the patient’s.

The t-test’s fold change and statistical p-values were then
imported into Spotfire DecisionSite with Functional Genomics
(TIBCO Spotfire Boston MA, USA) for further analysis and
graphical representation. The volcano plot in Figure 1 depicts the
patred sample t-test results, showing each gene’s asymptomatic to
symptomatic fold changes and that comparisons’ statistical
significance. The heat map in Figure 2 depicts a supervised
clustering of all 27 samples’ mean-subtracted log2 signal values for
genes that were differentially expressed at more than 2 and less
than —2 linear fold changes (p<<0.01).
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Pathway enrichment analysis

The Spotfire DecisionSite-processed data was uploaded to
Ingenuity Pathway Analysis (IPA) software for pathway enrich-
ment analysis in order to understand their biological meaning.
Ingenuity Knowledge Base (Genes Only) served as reference set
for p-value calculation and Fisher’s exact test was used to calculate
the p-values for the canonical pathways. Only human genes and
relationships were used from the database, and only experimen-
tally observed or high confidence (predicted) observations were
considered in the analysis. In addition, genes which were
differentially expressed at more than 2 and less than —2 linear
fold changes (p<<0.01) were selected, resulting in 334 analysis-
ready genes. The analysis produced a total number of 337
canonical pathways (data not shown). Among the canonical
pathways, those specific to other diseases, not directly known to be
relevant to dengue immune-pathogenesis/-protection, or general/
unrelated signalling pathways were eliminated, leaving 53
canonical pathways for detailed analysis. The 53 selected
canonical pathways were then classified into three groups, namely.
innate immune response, adaptive immune response and matrix
metalloproteases. Individual pathways of the innate immune
response and adaptive immune response groups were studied
and combined into a single mega pathway for each, whereas the
matrix metalloproteases group pathway was used as-is as it was the
only pathway in the group. Both the innate and adaptive mega
pathways included numerous cytokines and chemokines, which
are important for mediating communication among immune cells,
and thus were also studied as a separate mega pathway.

Results

Patient characteristics

As shown in Table 1, we obtained 30 confirmed dengue positive
cases of which 29 were dengue patients while 1 individual was an
asymptomatic household member. There were 28 presumptive
positive dengue samples of which all are asymptomatic household
members. From the summary of diagnostics in Table 2, the
confirmed dengue patients showed only 2 (7%) positive results for
viral RNA detection. However, we found one (3%) asymptomatic
household member with positive detection in PCR for viral RNA
which confirmed dengue positivity. Our results showed 28 (97%)
patients with positive paired IgM or seroconversion and 13 (45%)
patients with HI titer >1:1280. For presumptive positive dengue,
we observed 18 (62%) asymptomatic houschold members with
positive IgM in a single sample and 10 (34%) of these individuals
had HI titre >1280. Additionally, for the PRNT that was
performed, our investigations showed 9 (31%) patients and 11
(37.9%) asymptomatic individuals had nAbs against one DENV
serotype as shown in Table 3. We observed dengue patients had a
higher percentage (65.5%) of nAbs for polytypic infection in
comparison with asymptomatic individuals (48.3%). We also
observed that almost half of the asymptomatic individuals
exhibited polytypic nAbs towards DENV infection.

Differentially expressed genes determined from paired-
sample t-test

The volcano plot, Figure 1 displays relative gene expression,
showing the standard deviation (SD) of the paired t-test logy fold
change against —log)y p-value of the paired t-test. The high
statistical significance of genes as depicted in this plot provided
confidence in reliability of the expression values. A total of 345
genes were differentially expressed at more than 2 and less than
—2 linear fold changes (p<<0.01) and were considered statistically
significant.
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Figure 1. Asymptomatic versus patient paired volcano plot to determine differentially expressed genes. The x-axis shows the paired-
sample t-test log, fold change of asymptomatic versus symptomatic patients, whereas the y-axis shows the —log,, of the paired t-test p-values of
asymptomatic versus symptomatic patients. Each dot represents a gene and the dot color depicts the gene’s expression as shown by the standard
deviation (SD) of the paired t-test log, fold change, e.g. shades of blue for less than or equal to —1 SD, grey for between —1 SD and +1 SD, and red
for greater than or equal to +1 SD. A total of 345 genes were differentially expressed at more than 2 and less than —2 linear fold changes (p<0.01)

and were considered statistically significant.
doi:10.1371/journal.pone.0092240.g001

Supervised hierarchical clustering discriminates
symptomatic patients from asymptomatic individuals

The hierarchical supervised correlation clustering of 27 sample
pairs (SPs), Figure 2, shows that a majority of the patients clustered
together as they had similar gene expression patterns, except for
SP16 and SP17 patients who separated the asymptomatic
household members into two clusters. This separation, however,
was not considered significant as it was attributed to batch effect as
suggested by the PCA plot (data not shown). SP23_asymptomatic,
which clustered by itself in a single group, was not deemed as an
outlier according to the PCA plot and thus was retained for further
analysis. Based on the overall clustering, it is clear that the gene
expression patterns of the asymptomatic houschold members’
were different from the patients’.
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Gene profiling for biological significance

Pathway enrichment analysis of the 27 paired sample data was
performed to glean the biological significance of the differential
expression pattern observed between asymptomatic individuals
and symptomatic patients. The resulting 53 selected pathways with
their respective expressed genes shown in Table 4 (see Table S1
for more details) were grouped according to the two broad
categories of reported dengue host defence mechanisms, namely
innate immune response (Figure S1) and adaptive immune
response (Figure S2). Additionally, the global role of the cytokines
and chemokines, which mediate communication between the
immune cells, was studied through a separate pathway in Figure
S3. The matrix metalloproteases pathway was studied as well and
shown in Figure S4.
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Figure 2. Supervised hierarchical correlation clustering of 27
sample pairs. The heat map shows the gene expression of samples in
columns, with a dendogram representing their similarity based on
correlation. The samples’ mean-subtracted log2 signal values were
clustered using complete linkage (maximum) method and the genes’
expression is shown with blue representing down-regulation, white for
no change (zero), and red for up-regulation.
doi:10.1371/journal.pone.0092240.g002

Innate immune response. The expression of Toll-like
receptors (TLRs), which are critical for pathogen recognition,
was observed (Table 4; Figure S1, and S5 for pathway legends).
The TLR complex indicated in the figure includes several genes
(TLR2, TLR3, TLR4, TLR7 and TLRY) that remained unchanged
between asymptomatic household members and symptomatic
patients, and one (7LR6) that was down-regulated. We also
observed expression of (D40, (D83 and CD86 but at no
significant level change. However, CD80 expression was signifi-
cantly down-regulated. Besides that, we observed a no change in
CD32A (FCGR2B), but an up-regulation in CD16A (FCGR3A).
Regarding the complement system, we observed down regulation
of C1§ and complement factor B (CFB). CIS is a protein
component that cleaves G2 and C4 into CG2a, C2b, C4a and
C4b in the classical pathway, while CFB is a component of the
alternative pathway.

Adaptive immune response. The expression of both T-cell
antigen presentation molecules MHC class 1, found on all
nucleated cells, and MHC class II, expressed on B-cells,
macrophages and dendritic cells, were up-regulated. However,
there was no change in the expression levels of both CD8 and
CD4 complexes. Meanwhile, the results showed a down-regulation
of CD28 (Table 4; Figure S2, S5), which is expressed on T cells to
provide co-stimulatory signal for T-cell activation upon binding to
CD80, which was also down-regulated (Table 4; Figure S2). We
also observed an up-regulation in asymptomatic siblings for T-bet
(TBX21) (Table 4; Figure S2), which is a critical regulator for T
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helper cell 1 (Thl) differentiation and an inducer for the
production of IFNy (IFNG) [28]. It simultaneously inhibits the
opposing Th2 and Thl7 differentiation program. Additionally,
FOXP3, a transcription factor involved in regulatory T' cell (Treg)
development was seen to be down-regulated.

Cytokines and chemokines. Cytokines and chemokines are
important inflammatory mediators of both innate and adaptive
immune responses that are stimulated in response to pathogens. In
our study, we found a down regulation of ILla (IL1A), IL2, IL3,
IL4, IL5, IL8, IL9, IL10, IL15, IL18R (IL18RI), IL22R (IL22RA1),
TNFo (TNF), TGFBR (TGFBRI), GM-CSF (CSF2) and MIP-2
(CXCLS3) expression as shown in Table 4 and Figure S3. Observed
up-regulated genes included MIPlo (CCL3LI/CCL3L3), MIP1B
(CCL4LI), RANTES (CCL5), TGFBl (7GFBI), IL4R ILIOR
(IL10RA) and IL7R. Genes with no significant change in expression
level between asymptomatic siblings and symptomatic patients
included IL1P (ZL1B), IL6, IL7, 1L12 (IL12B), IL15, IL17A, IL17F,
IL18, IL21, IL24, IFNo. (IFNA1/IFNA13), IFNB (IFNBI), IFNy
(IFNG), CCL2 and CCRS.

Matrix metalloproteases (MMPs). MMPs are a family of
proteins that cleave most extracellular matrix constituents. We
observed the reduced expression of MT-MMP (includes MAMPI)5,
MMPI16, and MMP24, among others) and Extracellular MMP
(includes MAMPS, MMPI0, and MMPI2, among others) complexes
(Figure S4, S5). The genes MMP8, MMPI10, MMP12, MMPI)5,
MMPI6 and MMP24 were down-regulated in asymptomatic
siblings, while MMP2 and MMP9 were detected with similar
expression level in both groups of subjects (Table 4; Figure S4, S5).
TIMPI, a factor that inhibits activity of MMPs was up-regulated.

Discussion

The differences in dengue clinical manifestations are widely
being investigated to better understand the disease pathogenesis.
Herein, we investigated the protective mechanisms contributing to
the apparent lack of clinical manifestations in individuals that
remain asymptomatic when compared to clinical dengue cases.

We note that selection criteria for gene expression study herein
are based solely on the presumptive positive IgM levels and HI
titres of single asymptomatic samples as there were difficulties in
obtaining second voluntary blood samples from the household
members. From the diagnostic results, only three subjects were
PCR positive. Virus titre could not be determined through PCR
for most of the samples due to the duration of infection. The
samples collected for PCR were mostly from days 5 to 6, by which
time viral titres may have declined, with increasing antibody levels.
Thus, PRNT, a gold standard test used widely to determine and
quantify nAbs against DENV infection [29], was carried out to
mitigate these limitations. We observed that asymptomatic
individuals had high concentration of nAbs against DENV
infection. Despite having polytypic infections, half of these
asymptomatic individuals are protected against clinical dengue.
It has been reported that antibodies could play a greater role than
immune cells in heterologous DENV infection [30]. This entails
that individuals infected with DENV manifest clinical symptoms
differently with some presenting with more severe symptoms than
others due to the presence of pre-existing nAbs in the asymptom-
atic individuals. However, apart from nAbs, protection from
DENV infection in asymptomatic individuals could also be
attributed to other factors viz., host genetic factors [31], which
comprise a complex network of genes that are expressed
differentially in the asymptomatic individuals.

Inflammation involves the activation of immune cells and
recruitment of specific immune cells to the site of inflammation
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Table 2. Summary of dengue diagnostic results obtained
from patients and their corresponding/accompanying
household members.

Diagnostic test Patients (%) Household members (%)

Real time RT-PCR 2(7) 1(3)
Positive IgM 28 (97) 18 (62)
HI>1280 13 (45) 10 (34)

doi:10.1371/journal.pone.0092240.t002

[32], eventually contributing to nonspecific clearance of DENV,
albeit causing mild symptoms. However, in some cases, exagger-
ated inflammation can culminate in detrimental clinical manifes-
tations, pathognomonic of DWWS/SD. The mutual synergism
between the innate and adaptive immune responses is the key to
responding to infectious microorganisms. Here, we hypothesize
that dengue asymptomatic individuals downplay the factors
responsible for inflammation and regulate the associated immune
factors to a level that is merely required to facilitate virus
clearance.

Genes of the innate immune response

The innate host response to DENV is mediated by dendritic
cells (DCs), phagocytes (macrophages) and natural killer lympho-
cytes which sense viral proteins or nucleic acids through Toll-like
receptors (TLRs). In our study, we observed no change in the
expressions of TLR3 and TLR7 between the asymptomatic
individuals and symptomatic patients. 7LR 3 has been shown to
play an important role in restricting DENV infection in synergy
with RIG-I and MDA)5 [33]. We could not assess this relationship
due to the absence of RIG-I and MDA5 from the array used.
Besides, each TLR recognizes distinct microbial components and
activates different signaling pathways by selective utilization of
adaptor molecules. Since dengue is a single stranded RINA virus,
TLR3 may not respond as it is known to recognize viral double
stranded RNA [34]. However, in support of TLR3 as a protective
factor, recent studies have demonstrated that its expression
induces type I interferon and inhibits the replication of DENV
in different cell lines [35,36]. In contrast, TLR7 receptor has been
shown to recognize the virus, with significantly higher expression
levels in DHF patients than in DF [37,38]. Although this does not
explain the role of 7LR7 in the protective mechanism(s) preventing
the development of clinical symptoms, a no change observation in
the gene may relatively reduce the effect of more severe clinical
symptoms that could have resulted from an up-regulation of
TLR7.

FcyR is critical in binding to the DENV immune complex,
enhancing virus uptake by DCs and macrophages [39]. We
observed a no change in CD32A (FCGR2B), but an up-regulation

accompanying household members.

Differentially Expressed Genes of Asymptomatic Dengue

of CD16A (FCGR34). These Fcy receptors connect the innate and
the adaptive immune responses by transmitting activating signals
to natural killer lymphocytes and myeloid cell upon recognition of
Fec of IgG [40]. CD32A is expressed in all myeloid cells, platelets,
and endothelial cells, whereas CD16A is present on monocytes,
macrophages, NK cells and y/8 T cells [41]. The up-regulation of
CD16A in our study suggests the activation of antibody response
by the NK cells, which may be a protective factor in dengue
clinical manifestation. This is supported in other studies that
CD16A 1is the only Fc receptor expressed on NK cells and is
responsible for IgG-initiated antibody dependent cell-mediated
cytotoxicity (ADCC) [42], which may reduce the incidence of
antibody-dependent enhancement (ADE), one of the hallmarks of
dengue pathogenesis.

The complement system is an important arm of innate
immunity. Farlier studies suggest that complement activation
plays a role in the pathogenesis of DHF [43,44]. We observed a
down regulation of C1S and factor B complement expression in
asymptomatic siblings. An @ vitro study provided evidence that
complements promote the uptake of DENV into myeloid cells
through CR3, augmenting the infection [45]. Several studies have
shown that DENV non-structural protein 1 (NS1) binds to C4 and
C1S, regulating complement activation and hence could be
involved in DHF pathogenesis [44,46]. Therefore, with the
decreased expression of (1§ in our study, the activation of
complement system is reduced, suppressing severe dengue
pathogenesis and allowing only subclinical symptoms to be
manifested.

Genes of the adaptive immune response

The adaptive immune system includes antibody-secreting B cells
and cytotoxic T cells that specifically and efficiently target the
pathogen and infected cells. Activated DENV-infected antigen
presenting cells (APCs), such as DCs, macrophages or B-cells,
acquire an activation profile with elevated expression of CD40,
CD80, (D83 and (D86 [47,48]. These surface proteins assist the
communication between DENV-infected cells and T cells. In the
present study, we observed a down regulation of CD80 expression
in asymptomatic siblings, and detected no expression change for
CD40, CD83 and (D86. An n vitro study demonstrated that defect
in co-stimulatory proteins failed to provide adequate signaling for
T cell activation and proliferation, resulting in impaired cell-
mediated response [49]. This suggests an ineffective interaction
between DENV-infected immune cells and T cells, despite up-
regulation of MHC I (Beta-2-microglobulin, B2M) and MHC 1I
(HLA-DQAI) complex members’ expressions. Nonetheless, there
was no change in the expression levels of CD8 and CD4 T-cell
complexes between both groups. This suggests that the host
immune response may have reduced disease severity that is caused
by T-cell-mediated tissue damage. It was reported in a study that
the magnitude of T-cell responses correlates with dengue disease
severity due to cross reactive T cells [50]. Moreover, the down

Table 3. Summary of plaque reduction neutralization test (PRNT) results obtained from patients and their corresponding/

Category Monotypic Infection Polytypic Infection No neutralizing antibody detected Total
Dengue patient acute sera 9 (31.0) 19 (65.5) 1(3.4) 29
Asymptomatic dengue individuals 11 (37.9) 14 (48.3) 4 (13.8) 29

The numbers within parentheses indicate percentage.
doi:10.1371/journal.pone.0092240.t003
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regulation of CD28, required to provide the co-stimulatory signal
for T-cell activation, and cytokines produced by T cells, namely
112, 114, IL5, IL10 and ILI18, further reinforces the broad
suppression of cell-mediated immune response in asymptomatic
siblings.

Naive T helper cells can differentiate into Thl, Th2, Thl7,
follicular T helper cells (TFH) and T regulatory cells (Tregs) [51].
We observed an up regulation of T-bet in asymptomatic siblings.
This is suggestive of a partial Th1 response, which plays a role in
viral clearance but not in causing clinical symptoms. Furthermore,
it has been shown that T-bet inhibits production of Th2 and Th17
cytokines [52], and with a reduced expression of IL4 in
asymptomatic siblings, it is reasonable to infer that Th2 responses
are suppressed by T-bet.

Cytokines and chemokines role in protection

Cytokines and chemokines are important inflammatory medi-
ators that are stimulated in response to pathogens and certain
cytokine profiles have been associated with dengue disease severity
[53-58]. It has been suggested that the pathogenesis of DF/DHF
involves amplified cytokine production, also known as “cytokine
storm” [59,60]. This ultimately leads to excessive Immune
activation that increases vascular permeability [58] and causes
plasma leakage and shock. Our results showed a general down
regulation in expression of cytokines and chemokines, specifically
for IL2, IL3, IL4, IL)5, IL8, IL9, IL10 and IL13. However, elevated
cytokines including L2, IL4, IL6, IL8, IL10, IL13, IL18, TNFo
(TNFA), IFNy (IENG), TGFB (TGEB), CCL2 and CCL3 have been
reported in patients with DHF [53,54,57,61-64]. This suggests a
limited inflammatory response trigger, sufficient for viral clearance
yet below the level that can lead to clinical symptoms. Similarly,
other studies have shown some of these cytokines to serve as
predictive markers for progression to dengue with warning signs
when cytokine kinetics and profiles of dengue patients at different
phases of illness were investigated [63].

We observed down regulation of TNFo herein, suggesting an
outcome similar to healthy controls. Studies have reported a
significantly higher level of TNFa in dengue-infected patients
compared to healthy controls, and the elevated TNFa is associated
with disease severity [66,67]. Hence, the down regulation seen in
our study’s asymptomatic individuals may have been a protective
factor in controlling the severity of the disease. In addition,
TNFa308 allele polymorphism was observed among the DHIF
patients and they expressed higher levels of TNFa [68]. We also
observed down regulation of IL1a, which may point to the possible
role of TNFo and IL1a in dengue pathogenesis. This is supported
by another study that has demonstrated TNFo and ILla to
increase vascular permeability @ vitro [69].

DENV-infected DCs or macrophages can produce chemokines
including /L8, RANTES (CCL5), MCP-1, MIPI and IP-10. IL8, a
chemokine produced by stimulated monocytes is down-regulated
in our study. This is consistent with a previous study that showed
association of higher /L8 level with disease severity [70]. It has
been shown that /L8 has a chemoattractant and degranulation
ability for neutrophils [71]. It can also increase the permeability of
the endothelial cell monolayer, as shown i vitro [72]. Increased
endothelial cell permeability may lead to the development of
plasma leakage, a clinical manifestation of severe dengue patients.
Therefore, the reduced expression of /L8 in asymptomatic siblings
could contribute to their protective mechanisms in preventing
clinical manifestations. RANTES is a chemokine that recruits T
cells, eosinophils and basophils to the site of infection. Our results
showed an up-regulation of RANTES in asymptomatic siblings.
We hypothesize that high RANTES levels may play an important
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role in mitigating clinical dengue symptoms in infected individuals.
This is because a previous study has reported that plasma
RANTES levels is lower in acute dengue infants compared to
infants with other febrile infections [73]. In another study, an
association was observed between decreased RANTES levels in
patients with acute dengue fever and lower platelet number or
thrombocytopenia [74]. Comparing our results with these earlier
studies, higher RANTES expression appears to be advantageous
in mitigating clinical disease.

In this study, we observed an up-regulation of MIP-1p. MIP-1
has been reported to have an association with good prognosis
factors identified in different disease models [75,76]. In one study,
MIP-18 levels were higher in patients with mild dengue fever
compared to patients with severe clinical manifestation [77]. The
authors suggested that the relationship of MIP-1p and NK cells
may play a role in dengue protective mechanisms. Consistent with
these findings, our results of up-regulated MIP-1f in asymptom-
atic siblings further reinforces the possible protective role of MIP-
1B.

TGFB is a multifunctional cytokine that can act as a
proinflammatory or anti-inflammatory cytokine depending on its
concentration. Our results showed a higher TGFf expression level
in asymptomatic patients, which suggests a protective role for
TGFB in dengue disease. This is supported by a study that showed
a TGFp polymorphism that demonstrated high TGF production
was associated with protection and mild clinical manifestations
[78]. However, on the contrary, there are other studies that report
a significantly higher plasma level of TGFB in DHF patients as
compared to DF patients [54,79]. Given these effects, it remains to
be ascertained whether TGFp expression contributes to a
pathogenic or protective role in dengue infection.

MMPs role in dengue infection

MMPs are a family that cleave most extracellular matrix
constituents. In our study, we detected no change in MMP9 and
MMP2 expressions between patients and asymptomatic subjects,
but did observe a broad down-regulation of MMP8, MMPI0,
MMPI2, MMP15, MMPI16 and MMP24 expressions. Meanwhile,
the inhibitor of MMPs, TIMPI was up-regulated, which may
explain the broad down-regulation of extracellular MMPs that we
observed. These findings indicated an overall suppression of
MMPs, which may contribute to the protective mechanism in
dengue infection. This is reasonable given a study that pointed to
the role of MMP in triggering plasma leakage in DHF patients
[80]. Activation of IL6, TNFu, ILS, and TGFf can drive MMP
production, which is correlated to the vascular leakage character-
istics of DHF [54,71,81,82]. Additionally, overexpression of
MMP9 and to a lesser extent MMP2 were observed to have a
role in enhancing vascular permeability [20]. This study suggests
the role of MMP9 and MMP?2 in dengue pathogenesis.

In summary, DENV infection among asymptomatic individuals,
as compared to clinical dengue patients, provides a wealth of
information associating gene expression and immune correlates.
Overall, we observed broad down-regulation of host defense
response (innate, adaptive, cytokines and matrix metalloprotease)
genes in asymptomatic individuals against symptomatic patients,
with selective up-regulation of distinct genes that have been
associated with protection. Several of the genes examined herein
deserve further assessment to correlate expression with conferring
protection against clinical DENV infection. Given the emergence
of a wider network of immune molecules in subclinical DENV
infection, additional studies may be warranted to investigate the
molecular targets associated with improved clinical manifestations
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and increase understanding of the pathogenesis of subclinical
DENYV infection.

Supporting Information

Figure S1 Innate immune response mega canonical
pathway created using Ingenuity Pathway Analysis.
TLR complex includes 7LR6 (down-regulated in asymptomatic
individuals), 7LR3 (no change in expression between the two
groups) and 7LR7 (no change), among others. Please refer to
Figure S5 for a legend explaining Pathway molecule symbols. For
additional information, visit IPA legend help page at http://
ingenuity.force.com/ipa/articles/Feature_Description/Legend

(TIF)

Figure S2 Adaptive immune response mega canonical
pathway created using Ingenuity Pathway Analysis.
Please refer to Figure S5 for a legend explaining Pathway molecule
symbols. For additional information, visit IPA legend help page at
http://ingenuity.force.com/ipa/articles/Feature_Description/Legend
(TTF)

Figure S3 Role of cytokines in mediating communica-
tion between immune cell canonical pathways from
Ingenuity Pathway Analysis. Please refer to Iigure S5 for a
legend explaining Pathway molecule symbols. For additional
information, visit IPA legend help page at http://ingenuity.force.
com/1pa/articles/Feature_Description/Legend

(TIF)

Figure S4 Inhibition of matrix metalloproteases canon-
ical pathway from Ingenuity Pathway Analysis. MT-MMP
complex includes MMP15, MMPI6, and MMP24, among others,
and these three were down-regulated in asymptomatic individuals.
Extracellular MMP complex includes MMPS, MMP10, and MMPI2,
among others, and these three were also down-regulated. Please refer
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