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Abstract

We describe our semi-automatic segmentation of whole-body diffusion-weighted MRI (WBDWI) using a Markov random
field (MRF) model to derive tumor total diffusion volume (tDV) and associated global apparent diffusion coefficient (gADC);
and demonstrate the feasibility of using these indices for assessing tumor burden and response to treatment in patients
with bone metastases. WBDWI was performed on eleven patients diagnosed with bone metastases from breast and
prostate cancers before and after anti-cancer therapies. Semi-automatic segmentation incorporating a MRF model was
performed in all patients below the C4 vertebra by an experienced radiologist with over eight years of clinical experience in
body DWI. Changes in tDV and gADC distributions were compared with overall response determined by all imaging, tumor
markers and clinical findings at serial follow up. The segmentation technique was possible in all patients although
erroneous volumes of interest were generated in one patient because of poor fat suppression in the pelvis, requiring
manual correction. Responding patients showed a larger increase in gADC (median change = +0.18, range = 20.07 to +
0.7861023 mm2/s) after treatment compared to non-responding patients (median change = 20.02, range = 20.10 to +
0.0561023 mm2/s, p = 0.05, Mann-Whitney test), whereas non-responding patients showed a significantly larger increase in
tDV (median change = +26%, range = +3 to +284%) compared to responding patients (median change = 250%, range = 285
to +27%, p = 0.02, Mann-Whitney test). Semi-automatic segmentation of WBDWI is feasible for metastatic bone disease in
this pilot cohort of 11 patients, and could be used to quantify tumor total diffusion volume and median global ADC for
assessing response to treatment.
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Introduction

The confident detection of metastatic bone disease and the

assessment of treatment response of bone disease remains one of

the major unfulfilled needs in oncology. However, recent studies

using whole body diffusion-weighted MR imaging (WBDWI) have

shown high diagnostic accuracy in detecting metastatic bone

disease in patients with non-small cell lung cancer, malignant

melanoma and breast cancers [1,2]. There is also compelling

evidence that the apparent diffusion coefficient derived from

WBDWI provides a potential quantitative response biomarker that

reflects tissue cellularity and has been shown to increase in

responders to a range of anti-tumor treatments [3,4].

WBDWI is a relatively recent imaging technique developed

independently by Ballon and Takahara [5,6]. It employs axial fat-

suppressed diffusion-weighted MRI acquired at multiple anatom-

ical stations using high diffusion sensitizing gradients (b-values).

Due to the combination of the relatively low diffusion rates and

high T2 relaxation time of water in tumor tissues, metastases

typically appear hyper-intense compared with normal background

tissue, thus providing excellent contrast for disease visualization.

At high b-values (e.g. b = 800–1000 s/mm2), the sensitivity of

WBDWI for detecting bone disease has been shown to be

equivalent or better than skeletal scintigraphy (SS), but with

superior spatial resolution to both SS and 18FDG-PET [7–9].

Further suppression of signal from healthy tissues may be achieved

by applying the ‘computed Diffusion-Weighted MRI’ (cDWI)
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technique [10], which extrapolates images of higher b-value

(assuming a monoexponential relationship between signal intensity

and b-value). The resulting high lesion-to-background ratio

facilitates segmentation of lesions to provide estimates of total

tumor diffusion volumes (tDV) and the associated global median

Apparent Diffusion Coefficient (gADC). By performing a similar

segmentation after treatment, changes in tDV and gADC may be

used to assess the treatment response of metastatic bone disease,

thus providing two quantitative metrics from a single radiologic

investigation.

Commercial software that enables radiologists to manually

define or region-grow individual Volumes Of Interest (VOI) is

beginning to emerge. However, in patients with metastatic bone

disease, the number of metastases can be large, making it

impractical to use such software to evaluate multiple lesions.

Our approach employs a recently developed region-growing

technique [11] to remove unwanted signal from background

using cDWI and then applies an advanced thresholding algorithm

(using a Markov random field model) to extract VOIs from

multiple lesions across the body.

In this manuscript, we describe our semi-automatic segmenta-

tion of WBDWI to derive tumor diffusion volumes (tDV) and the

associated global median ADC (gADC); and demonstrate the

feasibility of using these indices for assessing tumor response to

treatment in patients with bone metastases.

Materials and Methods

Ethics statement
Patients gave written informed consent and the Research Ethics

Committee of the Royal Marsden Hospital approved the research

study.

Study population
Imaging from eleven consecutive patients with metastatic bone

disease who underwent clinical WBDWI before and after

chemotherapy was evaluated: four female patients with metastatic

breast cancer (mean age = 51 years, range = 43–63 years) and

seven male patients with metastatic prostate cancer (mean age = 64

years, range = 40–78 years). Further details of these patients

including treatment type are shown in Table 1. The inclusion

criteria were: (1) Patients with predominant metastatic bone

disease demonstrated on CT, MRI, SS and/or 18FDG-PET. (2)

Patients who were treatment naı̈ve or showed recent disease

progression, and were about to commence anti-tumor treatment.

Patients with claustrophobia or contraindications to MRI exam-

inations were not included in the study.

Imaging was performed before and at a mean of 22 weeks

(range 12 to 38 weeks) after initiating treatment. All patients were

followed up clinically and radiologically for at least 12 months

following the second MRI and were characterized as responders or

non-responders based on combined clinical and radiological

follow-up assessment (including PSA levels for prostate cancer

patients, CT, anatomical MRI, SS and/or 18FDG-PET).

As there is no acknowledged gold standard for assessing

treatment response of bone metastases, we adopted a reference

standard based on all available imaging, clinical assessment and

laboratory results available for each patient for at least 12 months

[12]. Prostate Cancer Working Group Criteria 2 were used for

patients with prostate cancer [13]. This assessment was made by

two independent radiologists (NT and AP), not involved with the

image analysis, in the setting of a tumor board, where the cases

were discussed in detail in the presence of expert medical

oncologists and radiation oncologists, and all clinical and

radiological information were reviewed in detail. A patient was

deemed to be a responder if the serial radiological tests showed

improvement or absence of deterioration, supported by improve-

ment in clinical symptoms (e.g. pain score) and/or improvement in

laboratory markers (e.g. serum PSA, CA15-3 or circulating tumor

cells). A patient was deemed a non-responder if there was

radiological deterioration (including new adverse skeletal events

and new bone lesions), increasing pain symptoms and/or

worsening laboratory markers.

MRI technique
WBDWI studies were performed on1.5T MR imaging systems

(Avanto and Aera systems, Siemens Healthcare, Erlangen,

Germany). Axial images were acquired using free breathing

echo-planar diffusion-weighted imaging from the skull base to the

mid-thigh level, sequentially across three to six imaging stations,

each consisting of 50-30 slices respectively. At each imaging

station, images were acquired using the following parameters:

repetition time (TR) = 9000–14800 ms, echo time (TE) = 67–

75 ms, matrix size = 1286128–1506150, slice thickness = 5–

6 mm, receiver bandwidth = 1628–1961 Hz/pixel, 4–6 signal

averages, STIR fat suppression with an inversion time (TI) of

180 ms, imaging field of view = 400630 mm2 depending on

patient size. Images were acquired using low/high b-value pairs

of b = 50 and 900 s/mm2 for all 22 studies (11 pre and 11 post-

treatment scans). Imaging protocols have been optimized

independently for each scanner using the techniques discussed in

[14] to reduce the magnitude of geometric distortions inherent to

DWI, whilst maintaining high signal-to-noise ratio (SNR) and

voxel resolution and obtaining global fat suppression. The current

imaging protocol has been informed by a previous study where an

SNR of approximately 22 (b = 50 s/mm2) and 15 (b = 900 s/mm2)

were obtained using a similar imaging protocol on the same

scanner within regions of prostate cancer metastases in lumbar

vertebrae (unpublished data). In addition to WBDWI, anatomical

imaging were also acquired using breath-hold axial T1-weighted

fast low-angle shot gradient-echo (FLASH) imaging and/or

coronal DIXON T1-weighted volume interpolated breath-hold

gradient-echo (VIBE) imaging.

Image processing and disease segmentation
Image processing was performed using a proprietary IDL-based

software (Exelis Visual Information Solutions, Inc.) by an

experienced post-doctoral research fellow (MB) under the super-

vision of an expert radiologist, with eight years’ experience in body

DWI (DMK). Both reviewers were blinded to patient outcome

during image processing. An outline of the segmentation

procedure is presented in Figure 1:

Step 1. A post-processing algorithm is applied to the data to

correct for spatial and intensity misregistrations between imaging

stations [15]. The algorithm linearly scales the signal intensity of

each imaging station so that the intensity profiles of images on

either side of the station boundary have matched cumulative

histograms. A shift along the phase-encoding direction is then

applied to each station so that images on either side of the

boundary are registered according to the minimum of the mean-

square-difference of image intensities. This algorithm is applied in

turn for each station.

Step 2. The corrected data are processed using the cDWI

technique to visually maximize the contrast between diseased and

normal tissues by manually tuning the computed b-value using a

sliding scale provided to the user during data visualization. A

threshold is then manually selected, which maximizes visual

suppression of signal from normal/benign tissue without suppress-
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ing signal from diseased areas. Residual signal from normal

structures or artifacts is then removed using a three dimensional

GrowCut algorithm developed by Vezhnevets and Konouchine

(Figure 2), which uses cellular automaton as an image model to

capture regions sharing similar statistical properties to the regions

that are roughly initially identified by a user [11]. A Markov

random field (MRF) model is applied to probabilistically smooth

the classification results (details given in Appendix S1). A

comparison of segmentation results achieved with and without

the application of a MRF model is demonstrated in Figure 3.

Applying the MRF model results in a smoothing operation, which

reduces the number of voxels misclassified as disease in the

presence of noise and incomplete fat suppression, compared with

Table 1. Clinical details of the patient cohort included in the study.

Patient ID Patient Diagnosis Treatment administered* Time between scans (weeks) Overall treatment response

Patient 1 Breast cancer HT 21 Response

Patient 2 Prostate cancer C 17.5 Non-response

Patient 3 Breast cancer C, RT 36.5 Non-response

Patient 4 Breast cancer APD, HT 21 Response

Patient 5 Breast cancer APD, C 10.5 Response

Patient 6 Prostate cancer C 24.5 Non-response

Patient 7 Prostate cancer C, RT, NTT 38 Response

Patient 8 Prostate cancer C 12 Response

Patient 9 Prostate cancer NTT 14.5 Response

Patient 10 Prostate cancer C 21 Response

Patient 11 Prostate cancer NTT 25 Non-response

*APD = Bisphosphonates, C = Chemotherapy, HT = hormone therapy, NTT = Novel Targeted Therapy, RT = radiotherapy.
doi:10.1371/journal.pone.0091779.t001

Figure 1. A flow diagram demonstrating the steps required for
producing whole body volumetric tumor burden estimates and
ADC histograms from WBDWI data. In step 2, S(0) and ADC
represent estimates of signal intensity at b = 0 and the apparent
diffusion coefficient respectively, calculated from acquired data.
(MRF = ‘Markov random field’).
doi:10.1371/journal.pone.0091779.g001

Figure 2. Coronal (a) and sagittal (b) MIP images of a patient
with diffuse bone metastases from primary breast cancer
shown at a computed b-value of 1355 s/mm2, with the
selection box placed over the spleen. Voxels within the bounds
of the red box are chosen as foreground seed points for the GrowCut
algorithm whereas voxels on the surface of the green box are chosen as
background seeds. Image (c) displays the results of the GrowCut
algorithm as a red surface and (d) displays the data after removal of the
spleen. In this way, the expert radiologist was able to refine VOI
definitions by removing incorrect tumor segmentations.
doi:10.1371/journal.pone.0091779.g002
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segmentation by simple thresholding of the WBDWI signal

intensity.

Step 3.The segmentation process generates multiple regions of

interests (ROIs) that are summed to produce volumes of interest

(VOIs) of disease across the body. These can be viewed by

maximum intensity projection (MIP) or multi-planar reformat

(MPR). To avoid the inclusion of the brain, normal cervical nodes

and salivary glands, data above the level of C4 were excluded from

analysis. The expert radiologist further fine-tunes the segmentation

by reviewing and manually excluding VOIs that are deemed

erroneous (see next section) and the results are saved.

Step 4. The generated VOIs are used to calculate an estimate

for the total body tumor burden of MR visible disease (in

milliliters). These VOIs are transferred onto the corresponding

ADC maps to derive gADC values. The distribution of ADC

values across all lesions is visualized by histogram analysis.

The total processing time for a typical WBDWI data set

consisting of 15061506200 voxels is of the order of 30 minutes.

Figure 3. Comparison of segmentation results, achieved by simple thresholding and with the inclusion of a Markov random field
(MRF) model, for a WBDWI data set of a patient diagnosed with multiple myeloma. It is clear that background noise and residual fat signal
can be included in data that are only thresholded and that the MRF model can help to remove these spurious regions (red arrows). Although the
resultant ADC histograms derived within these regions do not differ a great deal, simple thresholding results in an overestimate of tumour burden by
15%.
doi:10.1371/journal.pone.0091779.g003
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Figure 4. Boxplots of the percentage change in tDV and changes in gADC parameters after treatment in both patient cohorts.
Results of the Mann-Whitney U test are displayed as p-values on each plot.
doi:10.1371/journal.pone.0091779.g004

Figure 5. Treatment non-responder. The left figure demonstrates tumor burden estimates for a 78 year old male patient with metastatic prostate
cancer (patient 6) displayed as a red surface on maximum intensity projection images before and after treatment (b = 900 s/mm2). A clear increase in
tDV is observed after treatment for this patient. Images are displayed using the same windowing settings before and after treatment. On the right,
ADC histogram distributions derived from the segmentation demonstrate a global decrease in ADC after treatment.
doi:10.1371/journal.pone.0091779.g005
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Utility of WBDWI for estimating tumor burden and ADCs
Pre- and post-treatment estimates of tDV and distributions of

gADC were derived for all patients. Applying the same computed

b-value used for the pre-treatment data, VOIs for post treatment

imaging were obtained and estimates of tDV and gADC were

recorded.

The percentage change in tDV after treatment was compared

between responding and non-responding patient groups. We also

compared the absolute changes in gADC histogram parameters

(median, variance, skewness and kurtosis) calculated before and

after treatment by applying the same response categorization. We

report on the median rather than the mean values of gADC due to

their insensitivity to outliers and our previous observations that

whole-body gADC histograms tend to be positively skewed [16].

Statistical consideration
We performed a Mann-Whitney test to compare the percentage

changes in tDV and changes in gADC histogram parameters

between responding and non-responding groups of patients. For

median gADC estimates, a one-tailed test was used due to the

standard assumption that only increased ADC values are expected

following successful treatment [3]. For all other calculated

parameters, no such prior knowledge is available and two-tailed

tests were used. A p-value of #0.05 was considered to be

statistically significant.

Results

The semi-automatic segmentation process was applied in all 11

patients, before and after treatment. However, in one patient,

chemical shift and ghosting artifacts in the pelvis resulted in a

substantial number of erroneous VOIs, which had to be manually

removed following review by the radiologist.

Boxplots of changes in gADC distribution parameters and

percentage changes in tDV are presented in Figure 4. Patients

classified as not responding to treatment showed a significantly

larger percentage increase in tDV after treatment compared with

responders (p = 0.02, Mann-Whitney test), whereas those patients

classified as responding showed a significantly larger increase in

median gADC (p = 0.05, one-tailed Mann-Whitney test). Of the

other gADC histogram parameters calculated, a larger increase in

gADC variance was observed for responding patients compared to

non-responders (p = 0.01) whereas kurtosis was shown to decrease

for responding patients and increase in non-responding patients

(p = 0.01). Example tumor total volume images and full ADC

distributions for Patients 1 (non-responder) and 2 (responder) are

shown in Figure 5 and Figure 6 respectively.

Figure 6. Treatment responder. The left figure demonstrates tumor burden estimates for a 71 year old male patient with metastatic prostate
cancer (patient 10) displayed as a red surface on maximum intensity projection images before and after treatment (b = 900 s/mm2). A decrease in the
estimated tDV is observed after treatment for this patient. Images are displayed using the same windowing settings before and after treatment. On
the right, ADC distributions derived from the segmentation results shows significant increase in the median global value, with a clear shift of the
histogram distribution to the right, indicating treatment response.
doi:10.1371/journal.pone.0091779.g006

Table 2. Median values of tDV and gADC distribution parameters across responding (N = 7) patient cohorts, before and after
treatment administration.

Responders tDV (ml) gADC (median) gADC (variance) gADC (skewness) gADC (kurtosis)

Before Treatment 137.4 (100.5–266.4) 0.82 (0.78–0.85) 0.03 (0.02–0.03) 0.81 (0.65–1.30) 2.30 (1.58–3.64)

After Treatment 79.7* (66.0–139.8) 0.91* (0.83–1.43) 0.06* (0.05–0.19) 0.08* (20.15–0.45) 20.38* (20.64–20.05)

Inter-quartile ranges for each value are shown in parentheses.
*Significant changes in values among responders before and after treatment are indicated (p,0.05, Wilcoxon paired rank-sum test: one-tailed test for median ADC, two-
tailed test for all other metrics).
doi:10.1371/journal.pone.0091779.t002
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Median values across responders are shown in Table 2 for each

of the derived parameters and in Table 3 for non-responders.

Among the responders, there was a significant percentage decrease

in tDV, an increase in median gADC and gADC variance; as well

as decrease in gADC skewness and kurtosis (p,0.05, Wilcoxon

signed rank test). The population size for non-responders was too

small to perform significance testing in that group.

Discussion

In this technical development report we describe a novel semi-

automatic technique using Markov random fields for the

segmentation of bone metastases from whole body diffusion-

weighted MRI data. We have shown the feasibility of using this

technique on a small pilot cohort of eleven patients with bone

metastases arising from a range of primary malignancies; and

derived estimates of tumor total diffusion volume (tDV) and tumor

global ADC (gADC) before and after chemotherapy treatment.

We found significant differences in the changes in tDV and gADC

after treatment between the two groups of patients classified as

responders or non-responders to treatment. Non-responding

patients showed a significantly greater increase in tDV after

treatment (p = 0.02) compared with the responding group.

Responding patients showed a significantly larger increase in

median gADC after treatment (p = 0.05). Furthermore, derivation

of gADC histograms provides other statistical parameters such as

the variance, skewness and kurtosis of the distribution. Although

the utility of these metrics for characterizing disease and defining

treatment response is still evolving, it is conceivable that these

metrics may provide methods for quantifying heterogeneous

response. Thus, our method shows substantial promise for

evaluating metastatic bone disease, and may have a significant

impact in drug development and clinical practice, where no

standardized or reliable method of quantifying total burden or of

evaluating the response of bony metastases to treatment has been

established.

A number of potential limitations of our study should be

mentioned. First, the segmentation technique is sensitive to the

quality of the acquired DWI data, indicating the need for

meticulous technique at image acquisition to minimize ghosting

and other artifacts, which would result in erroneous VOIs due to

the artifacts. The reviewing radiologist could manually remove

these but this can be time consuming. Second, in all analyses,

segmentation results above the level of the C4 vertebra were

removed in order to eliminate potential spurious segmentation

from normal soft tissues in the head and neck, such as the brain,

salivary glands and lymph nodes. Whilst this may exclude some

areas of disease, these do not have a major impact on the

assessment of body burden of metastatic bone disease. Further-

more, except for a few select cases, disease was not observed in this

region and it is more likely that false positives may arise here.

Third, The utility of ADC and tumor burden estimates was tested

only on a small cohort of eleven patients. Thus, it was not possible

to obtain reliable estimates of the true diagnostic performance for

tDV and gADC and the true potential of the technique is yet to be

determined. Furthermore, the lack of a gold standard for

measuring response of bone metastases makes interpretation of

the true accuracy of the described technique difficult to define. In

this pilot study, we have used all available clinical information for

each patient to classify patients as either responding to treatment

or not, using independent observers for this categorization to avoid

bias. Fourth, we did not evaluate the interobserver variability of

the technique in this initial analysis. However, the interobserver

variability of this approach is currently being evaluated and if

found to be reliable, will add weight to its utility in future trials.

Last but not least the study was carried out on a small and

heterogeneous patient population with differences in timings

between pre- and post-treatment scans, which may impact on

the sensitivity of technique for detecting post-treatment changes.

In future trials with larger, more homogeneous patient populations

it will be necessary to evaluate sensitivity of technique in relation to

timing of the imaging and investigate the impact of our methods in

specific tumor subtypes, corroborating these with a panel of

clinical, laboratory and imaging tests. It will also be necessary to

explore more robust segmentation strategies that provide a faster

computation time, as current processing requires roughly 30 min-

utes, which may be regarded as being too long to be used

clinically. One approach could involve segmentation of the entire

skeleton followed by classification of disease based on ADC value,

which could improve repeatability and require less user input.

Supporting Information

Appendix S1 Markov Random Field image classifica-
tion.

(DOCX)
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