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Abstract

Recently, planthoppers outbreaks have intensified across Asia resulting in heavy rice yield losses. The problem has been
widely reported as being induced by insecticides while other factors such as global warming that could be potential drivers
have been neglected. Here, we speculate that global warming may increase outbreak risk of brown planthopper
(Nilaparvata lugens Stål.). We present data that demonstrate the relationship between climate variables (air temperature and
precipitation) and the abundance of brown planthopper (BPH) during 1998–2007. Data show that BPH has become
significantly more abundant in April over the 10-year period, but our data do not indicate that this is due to a change in
climate, as no significant time trends in temperature and precipitation could be demonstrated. The abundance of BPH
varied considerably between months within a year which is attributed to seasonal factors, including the availability of
suitable host plants. On the other hand, the variation within months is attributed to fluctuations in monthly temperature
and precipitation among years. The effects of these weather variables on BPH abundance were analyzed statistically by a
general linear model. The statistical model shows that the expected effect of increasing temperatures is ambiguous and
interacts with the amount of rainfall. According to the model, months or areas characterized by a climate that is either cold
and dry or hot and wet are likely to experience higher levels of BPH due to climate change, whereas other combinations of
temperature and rainfall may reduce the abundance of BPH. The analysis indicates that global warming may have
contributed to the recent outbreaks of BPH in some rice growing areas of Asia, and that the severity of such outbreaks is
likely to increase if climate change exaggerates. Our study highlights the need to consider climate change when designing
strategies to manage planthoppers outbreaks.
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Introduction

Outbreak frequency of Nilaparvata lugens (brown planthopper;

BPH) has been increasing in Asian rice growing countries in recent

years (2005–2012) [1]. These trends are widely linked to adverse

effects on BPH natural enemies of the increased use of broad

spectrum insecticides for control of a range of pests [2–11]. They

are rarely linked to environmental changes such as global warming

that can directly or indirectly influence outbreak trends in rice

growing regions [12]. Insecticide resistance is another reason for

the increase.

Rice is extremely important for human food supply, yet a

comprehensive understanding of how climate change affects rice

pests is still premature. As the global climate continues to change,

there is a need to understand how planthoppers respond to low-

frequency (interannual or longer period) climatic variability. Such

low frequency climatic variability is of interest because of its

significance for the understanding and prediction of protracted

climatic anomalies [13]. Since ongoing climate change has a

profound effect on insect pests and changes their pest status [14]

and population dynamics [15], climate change probably contrib-

utes to recent destructive outbreaks of brown planthopper (BPH)

Nilaparvata lugens (Stål) (Homoptera: Delphacidae). BPH is one of

the most serious pests of rice in both temperate and tropical

regions of East and South Asia and has become especially

problematic over the past few years [16]. They are active

throughout the year in the tropics [17]. In Bangladesh, where

rice is grown year-round, they are prevalent throughout the year

and can produce 8–11 generations per a year [personal

communication, Nur Ahmed].

BPH’s life cycle comprises three distinct stages: egg, nymph and

adult. Both nymphs and adults directly damage rice plants through

sucking the cell sap from the base (stem) of the plants [18] and by

transmitting viruses such as rice ragged stunt (RRSV) and rice

grassy stunt (RGSV) [19–20] which cause severe losses. In 2005–

2006, more than 485,000 hectares of rice in southern Vietnam

were severely affected by viral diseases seemingly spread by BPH,

resulting in the loss of 828,000 tons of rice valued at US$120

million [21].

Recently, outbreaks of BPH have become ever more common

in Asia where farmers experience devastating losses [1], and have

threatened rice production in parts of Thailand, Philippines,

Indonesia, India, Bangladesh, Malaysia and China in the years of

2009–2010. Global warming may have been a contributing factor

because steadily warmer autumns have occurred since the 1990s.

Changed climatic conditions of particular interest are milder
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winters and warmer summers as well as changing patterns of

precipitation. The latter includes increased risk of both extreme

precipitation and severe dry spells. These conditions are predicted

by the IPCC [22] to become more frequent due to changes in the

global climate. Overall, temperature is predicted to increase 1.5–

4.5uC during the present century [23] and precipitation to rise 10

to 15% because a warmer atmosphere holds more water [24–25].

These changes could profoundly affect the population dynamics

and the status of insect pests of crops [24], [26]. At the same time,

migrant species may also change status to become major rice pests.

Thus, in Japan N. lugens was dominant until 1984, Sogotula furcifera

by 1993 and Cnaphalocrosis medinalis up to now [27].

Reported BPH outbreaks are mostly attributed to the applica-

tion of insecticides in 2008–2012 [2–11]. Other factors that may

induce the problem and threaten rice production in major rice

producing countries are greatly neglected although temperature

has already started to rise with concurrent changes in precipitation

patterns. For an array of insects these phenomena may affect e.g.

phenology and pest status. Analysis of trapping data from several

decades indicates that climate change also causes a change in the

phenology of insects [28]. It is suggested that the use of the lower

developmental threshold (T0) and the thermal constant (K) that

have been reported for insects would be useful in predicting the

phenology of insect communities under global warming [29].

Therefore, a more detailed analysis of correlations between

climatic parameters and phenology, abundance and pest status

are needed. The hypothesis is that a higher frequency of

destructive outbreaks of plant hoppers is related to climatic

changes.

In this paper, we use concurrent information on air tempera-

tures, precipitation and abundance of BPH, recorded in

Bangladesh over a 10-years period, to analyze the complex

relationship between the climate variables and the dynamics of

BPH. The aim of the present study is to provide a better

understanding of the role of global warming in eliciting destructive

outbreaks of BPH during the recent years as well as predicting its

future role.

Materials and Methods

Study Site
This study was conducted at a field site belonging to Bangladesh

Rice Research Institute (24u0900N, 90u259480E), which is about

36 km north of Dhaka, the capital of Bangladesh. The site, which

is located in a rice-growing area, has been used mainly for insect

pest monitoring and forecasting since 1980.

Data Collection
The BPH population was monitored daily by a light trap (Fig. 1)

which was placed close to rice fields. The trap used a 100-watt

tungsten light bulb positioned at 2 m height. Lighting hours were

set for 12 h (from evening to dawn) and a strip with dichlorvos (or

Vapona) was put in each collecting cage to kill the insects when

caught. A steel drum was placed below the cages to collect all

insects including minute ones and to allow for their easy removal

from the cages. The bulb and Vapona were changed when

needed. The insects in the cages were removed every morning and

preserved temporarily in paper bags dated daily before processing.

Trapped insects were identified, counted and deposited in the

Entomology Division of Bangladesh Rice Research Institute.

There were no other lights near the trap. Monthly BPH catches

from January to December from 1998 through 2007 were then

calculated and used in this study (Appendix to manuscriptS).

Climate Data Source
Climate variables (daily maximum and minimum temperatures,

and precipitation) covering the same interval and study area were

provided by the Plant Physiology Division of Bangladesh Rice

Research Institute (www.brri.gov.bd).

Statistical Analysis
Trends in climate and abundance of BPH from 1998

through 2007. We analyzed whether the climate data showed

any long-term trends with respect to monthly temperatures and

precipitation. For this purpose, we applied three climatic variables

for every month through the 10 years period: MinTemp and

MaxTemp which represent the average of the daily minimum and

maximum temperatures during a month, and Rain which is the

average amount of rain falling per day during the month. The

three dependent variables were analyzed by a general linear model

(PROC GLM in SAS [30]) with Month as a classification variable

and Year (number of years since 1998) as a quantitative variable.

The model also included the interactions between Month and Year

to test whether trends differed among months. In the following,

this model is termed the ‘‘null-model’’. Overall, the model

included 12 month parameters, 1 year parameter, and 12 Month

X Year interaction terms, to a total degree of freedom of 23.

The monthly variation in BPH was analyzed in the same way as

the climate variables, using the dependent variable N calculated as

the average number of adult BPH caught per day during a month.

Prior to the analyses we checked the dependent variables for

normality and variance homogeneity. Variables that did not meet

these requirements were transformed with the appropriate

transformation obtained by means of Taylor’s power law [31].
Effect of weather variables on the abundance of

BPH. The null-model predicting the expected number of BPH

by means of the independent variables Month and Year and their

interactions was expanded to include temperature and rainfall in

order to investigate how much of the residual variance that could

be accounted for by taking the actual weather in the month into

account. The null-model expanded with the quantitative climate

variables (called Temp and Rain) is termed the ‘‘full climatic

Figure 1. The light trap used to collect brown planthopper
(BPH) in this study. It was placed adjacent to a rice field belonging to
Bangladesh Rice Research Institute (BRRI).
doi:10.1371/journal.pone.0091678.g001
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model’’. To avoid collinearity between the independent variables,

minimum and maximum temperatures were not used in the same

model because they tend to be positively correlated.

The full climatic model included first and second order terms of

Temp and Rain plus all interaction terms between these indepen-

dent variables. Temp could be either MinTemp or MaxTemp.

Variables were transformed if needed to meet the criteria of

normality and variance homogeneity. Analyses were conducted by

means of PROC GLMSELECT in SAS [30] using a backwards

elimination procedure based on Akaike’s corrected information

criterion (AICC). The model with the lowest AICC was regarded

as the best.

Predicted effects of climate change on BPH

population. We used the general linear model identified above

to simulate what will happen to the BPH if climate change results

in higher temperatures in combination with a changing pattern of

rain. We applied the following scenarios: Daily average temper-

atures were assumed to increase with 0uC, 1uC or 2uC and daily

precipitation was either increased or decreased with 10%. The

relative change in abundance of BPH for each month was

calculated as R = 100(N2N0)/N0%, where N is the predicted

catch of BPH for a given scenario and N0 is the corresponding

value in the status quo scenario (i.e. the scenario with no climate

change).

Results and Discussion

The period from December to February is the cold and dry

season with low abundance of planthoppers (Fig. 2A–C). Insect

pests often respond rapidly and dramatically to changes in climatic

conditions affecting development (such as sudden precipitation

and extreme temperatures), leading to large temporal variations in

insect pest populations [32].

Trends in Climate and Abundance of BPH from 1998
Through 2007

Figure 2 indicates that standard deviations of rainfall and BPH

tend to increase with the average. We therefore applied Taylor’s

power law [31] to identify the transformation of data that best

stabilizes the variance. The appropriate transformations were

obtained as y�~yp where p = 12b/2, b is the slope of the

regression line fitted to the empirical values of log(variance) plotted

against log(average) from each of the 12 months (Fig. 3). As p for

daily rainfall is close to one third, the cubic root transformation

was used to transform daily rainfall values into R = Rain1/3. For

daily counts of PBH, b is close to 2, which means that this variable

should be log transformed. As N in two cases was 0, we used the

log(N+1) transformation. There was no need of transforming

temperature values.

The model consisting of Year, Month and the interaction between

them explained 97.2% of the variation in minimum temperatures,

89.0% in maximum temperatures and 76.8% in the transformed

values of daily precipitation. However, for all three variables,

neither Year nor the interactions between Year and Month were

significant (P.0.05). There was a considerable monthly variation

in both temperatures and rainfall, but the analysis did not indicate

that this pattern has changed over the 10-years period.

With respect to a trend in BPH abundance, the null-model

explained 84.8% of the variation in y* = log(N+1) (F23,119 = 23.21;

P,0.0001). There was no overall trend over years (P = 0.2468),

whereas both Month and the interactions between Month and Year

were significant (Month: P,0.0001; Year*Month: P = 0.0020). Only

April showed a significant trend in BPH over the 10 years with a

slope of 0.1540 per year (P,0.0057). Month alone explained 79.4%

of the total variation in log (N+1). As we could not demonstrate

that the climate had changed, the most likely explanation for the

increased abundance of BPH in April is that this month coincides

with the growing and harvesting period of Boro rice, and that

areas planted with Boro rice have expanded during the recent

years [33–34].

Effect of Weather Variables on the Abundance of BPH
When the null-model used above to predict the abundance of

BPH was extended by including climatic variables, MinTemp had a

higher predictive power than MaxTemp. We therefore used

MinTemp to represent temperature in the following analyses. The

full climatic model explained 86.3% of the variation in the

Figure 2. Monthly averages (±SD) of (A) Minimum and
maximum temperatures; (B) daily rainfall; and (C) daily catches
of Brown Planthoppers (BPH). Data from Bangladesh Rice Research
Institute (BRRI).
doi:10.1371/journal.pone.0091678.g002
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observed values of log(N+1) (F31,88 = 17.9; P,0.0001). The AICC

of the null-model (i.e. the model without climate variables) was 2

94.80. The climate-driven model with the lowest value of AICC

(2107.12) contained the terms Month, T, T2, R, R2, and T2R2,

where T is the monthly minimum temperature (i.e. T = MinTemp)

and. R = Rain1/3. This reduced version of the full model (called the

best climatic model) explained 83.6% of the variation in log(N+1)

(F16,103 = 32.8; P,0.0001). The parameters associated with the

model’s variables are shown in Table 1.

Though the best climatic model explained slightly less of the

variation than the null-model did (83.6% vs 84.8%), the former has

7 parameters fewer than the null-model. However, the main

advantage of the climate-driven model is that it provides a tool for

analyzing how temperature and rain influence the dynamics of

BPH. Thus, the model’s parameters indicate that increasing

temperatures will have a positive influence on BPH at low

temperatures but a negative influence at high temperatures. Low

levels of precipitation (e.g. ,5 mm) will benefit BPH as long as the

minimum temperature is below ca 23uC. Above this threshold,

Figure 3. Log (variance) plotted against log(average) for (a) daily rainfall and (b) daily catches of BPH adults. Each dot represents a
month. The straight line for daily rainfall is described by y = 1.3068x+0.1252 (R2 = 0.9587) and for daily catches of BPH by y = 2.0512x–0.2258
(R2 = 0.9793).
doi:10.1371/journal.pone.0091678.g003
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more rain will increase BPH. Figure 4 shows the predicted

combined effects of temperature and rainfall when added to the

monthly value of log(N+1).

Predicted Effects of Climate Change on BPH Population
Figure 5 shows the predicted monthly abundances of BPH

under the various scenarios while Figure 6 shows the predicted

relative changes in BPH abundance. The model predicts that BPH

will become more abundant in January and during June-July, in

particular if higher temperatures are associated with more

precipitation. As these months are usually characterized by low

abundances of BPH, the economic consequences are likely to be

negligible. On the other hand, climate change is expected to

decrease abundance of BPH during the spring and autumn

seasons. These changes in seasonal patterns seem to benefit Boro

rice crops (April–May), whereas rice grown in the Aus (July–

Table 1. Parameter values of the model that best describes the observed values of log(N+1), where N is the average number of
BPH caught per day during a month.

Parameter Estimate Standard Error t Value P

January 22.3351 1.5228 21.53 0.1282

February 22.3138 1.7269 21.34 0.1832

March 21.6957 1.8130 20.94 0.3518

April 20.2333 1.8110 20.13 0.8978

May 0.1209 1.7931 0.07 0.9464

June 21.0147 1.7756 20.57 0.5689

July 21.2602 1.7753 20.71 0.4794

August 20.6212 1.7711 20.35 0.7265

September 20.5186 1.7802 20.29 0.7714

October 0.2358 1.8074 0.13 0.8964

November 0.0983 1.8015 0.05 0.9566

December 21.4999 1.6344 20.92 0.3609

T 0.3528 0.1767 2.00 0.0485

T2 20.0120 0.0044 22.69 0.0083

R 0.7169 0.2094 3.42 0.0009

R2 20.9471 0.2213 24.28 ,.0001

T2R2 0.00119 0.00029 4.09 ,.0001

T is the temperature and R the cubic root of the daily rainfall in month i. The predicted value of log(N+1) for month i is obtained as

log (Nz1)~Miz0:3528T{0:0120T2z0:7169R{0:9471R2z0:00119T2R2 where Mi is the parameter associated with month i. P is the probability that the true
parameter value is equal to 0.
doi:10.1371/journal.pone.0091678.t001

Figure 4. The effects of minimum temperature and rainfall on the predicted abundance of BPH (log(N+1)) (see Table 1 for further
explanation).
doi:10.1371/journal.pone.0091678.g004

Warmer Climate Favours Outbreaks of Planthoppers

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e91678



August) and Aman (November–December) seasons will become

more exposed to BPH. Overall, the daily mean number of BPH on

a yearly basis is predicted to decline with an increase in

temperature (Fig. 7). The only scenario that may increase BPH

is the one where precipitation declines without a concurrent

increase in temperature.

Even though our model indicates that BPH should become less

abundant in Bangladesh if climate change causes an increase in

the mean temperatures, it does not imply that this will be the case

everywhere. Areas characterized by climatic conditions similar to

those prevalent in Bangladesh during January (cool and dry) or

July (hot and wet) seems most vulnerable to a changing climate.

Using the model in combination with GIS-based climate

information could assist in pointing out regions where future rice

production is jeopardized.

The results confirm that the combined effect of temperature and

rainfall is complex [35–36]. Global warming may increase

evaporation and precipitation with 10 to 15% because a warmer

atmosphere holds more moisture [24–25]. In warm areas this is

expected to increase populations of BPH. In some areas, however,

global warming is predicted to result in a drier climate. Thus, Dai

[37] suggests severe and widespread droughts in the next 30–90

Figure 5. The predicted daily catches of adult BPH (±SD) if minimum temperature increases with either 06C, 16C or 26C, and daily
precipitation either decreases or increases with 10%.
doi:10.1371/journal.pone.0091678.g005
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years over many land areas. According to the model, this may also

exaggerate problems with BPH, but only in areas where minimum

temperatures stay below ca 23uC.

Climate change, and particularly global warming, may have a

dramatic impact on pest insect species [38]. Many authors predict

that climate change will have a number of effects on insects:

sweeping shifts in herbivory rates; altered distribution and

outbreak frequency of key insect pests; unpredictably altered

relationships with natural enemies; and a general decrease in

biodiversity [39–41]. The findings of the present study indicate

that the reported BPH outbreak in rice fields occurring during the

warm seasons might be attributed to global warming [42].

However, the model also shows that temperatures exceeding

23uC in a dry climate may have an inhibiting effect on population

density, implying that the consequences of global warming on

planthoppers are ambiguous. Thus, their long-term abundance

may increase during the cold season and decrease during the hot

season, depending on how the ambient temperatures change

relative to the threshold value of ca 23uC. Planthopper outbreaks

were observed in the boro rice growing season i.e. the dry season

[43] and significant BPH outbreaks were recorded during the dry

season in the early 1990s in the Vientiane Plain [44] along with

higher temperatures. The population subsequently declined in

January due to low temperatures and peaked again in March and

Figure 6. The predicted relative changes in daily catches of BPH under the various scenarios.
doi:10.1371/journal.pone.0091678.g006
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April 2008 during the dry season [45] when temperatures were

high. These weather conditions seem to promote BPH outbreaks,

which is in accordance with the predictions based on our model,

because minimum temperatures in the area during the dry season

rarely exceed 23uC [12].

Wide-scale outbreaks of BPH in tropical Asian rice in the 1970s

and 1980s [46–47] were attributed to the insecticidal destruction

of natural enemies [48]. One of the main causes of the recent

series of outbreaks in Thailand and Indonesia was also insecticide

misuse [49]. Although insecticide applications to rice do not

always trigger BPH outbreaks [46], they often disrupt the actions

of BPH’s natural enemies either by their direct killing action or by

disrupting food chains [50]. Spraying of insecticide in rice field for

controlling other pests destroys essential ecosystem services that

regulate invading planthopper adults, thus increasing the risk of

hopperburn on the farm [11]. Sublethal insecticide applications

could theoretically increase BPH’s capacity for migration because

the planthoppers would acquire more fat and sugar, which provide

fuel for flight, when feeding on insecticide-treated rice plants than

when feeding on untreated plants [49]. The applications of

sublethal doses of certain insecticides could enhance both BPH’s

reproductive and migratory capacity and theoretically increase the

threat of BPH outbreaks even if the insecticides do not harm

natural enemies [51].

It is tempting to conclude that human-controlled inputs such as

insecticides or insecticides in combination with nitrogen fertilizer,

for example, have been totally responsible for the synchronous

BPH outbreaks in tropical rice observed across many areas of Asia

shortly after the beginning of the green revolution and again more

recently [49], but there is a widespread concern that outbreaks of

herbivorous insects will increase in frequency and severity as a

consequence of global warming. These predictions, however, are

untested and still very uncertain.

In an environment conducive to more rapid BPH increases,

natural enemies and BPH-resistant cultivars would be expected to

have less effect in regulating the density of BPH, and pesticides

harming natural enemies would therefore be expected to have an

above-average negative impact [49]. Kiritani [27] also reported

that every 1uC rise from around X = 4uC would result in a

decrease in winter mortality of about 16.5% based on a regression

model linking winter mortality (Y) to the mean temperature in

January (X).

N. lugens is a long-range migrant species that immigrates into

Japanese paddy fields from mainland China in early summer [52].

Our study does not consider immigration of BPH into the study

area because this phenomenon has not yet been observed in

Bangladesh. Moreover, we accentuate that our model is a simple

measure of the importance of climate compared to all other factors

(such as pesticides, natural enemies etc). It does not focus on the

overall causes for pest outbreaks, nor does it independently

attribute pest trends to the many technological, climatic and biotic

factors that may affect such trends. However, it discloses a

pragmatic approach to assessing the combined importance of

climate variables with special reference to evaluating the possible

impact of climate change on pest outbreaks.

Long time series like ours provide a good basis for linking pest

outbreaks to climate change and to separate the influence of other

factors, such as pesticides, from that of climate. Our study

indicates that climate change may have contributed to the recent

destructive outbreaks of planthoppers in rice crops [53]. However,

more research is needed to predict more accurately the long-term

consequences of a changing climate, and especially how such

changes will affect pest dynamics at both regional and local scales.

Conclusion

Data collected from 1998 through 2007 did not indicate that

temperature and precipitation patterns have changed significantly

during this 10-years period. Therefore, we attribute the significant

increase in BPH during April to changes in agricultural practice

rather than climate change. However, the statistical models

demonstrate that temperature and rainfall are driving variables

for the dynamics of BPH, so any changes in these factors due to

climate change are likely to affect the outbreak patterns of BPH.

We tested this by simulating different climatic scenarios and found

a quite complex picture depending on the severity and direction of

Figure 7. The predicted mean daily catches of BPH averaged over a year if daily minimum temperature changes with either 06C,
+16C or +26C, and if daily rainfall changes with either 0%, 210% or +10%.
doi:10.1371/journal.pone.0091678.g007
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the expected climatic changes. Thus, our study emphasizes the

importance of taking future climate into consideration when

deciding which, where and when the different rice cultivars should

be planted and harvested so as to minimize crop losses due to

pests.

Given the challenge of linking pest impacts and directional

climate change for well-studied agricultural, maricultural (cultiva-

tion of marine organisms in their natural habitats, usually for

commercial purposes), and human diseases, it is not yet possible to

predict the consequences for biodiversity. Very few empirical

studies directly explore the relationship between climate and rice

pest problems. Even fewer explore interactions between temper-

ature and various components of an insect’s life cycle [54–56]. We

therefore identify three priorities for research to improve our

ability to predict impacts of climate change on rice pests:

1. Collect baseline data on insects of both major and minor importance:

Baseline data are critical to predict changes in a warmer

climate, but such data are rarely collected for rice ecosystems.

Monitoring programs for the prevalence and severity of pests

and their population- and community-level impacts must be

implemented for a wider range of natural systems.

2. Separate the effects of multiple climate variables on insects: To predict

accurately future responses to climate change, we must

quantify the direct and synergistic effects of multiple climate

variables, such as temperature and precipitation, on insects.

Laboratory and/or field experiments are crucial for studying

the specific effects of these variables [57].

3. Forecast epidemics: Forecasting models using climate variables can

effectively predict outbreaks for some crops and pests. Crop

disease programs have long been in effect as, e.g., rice blast

(Pyricularia oryzae) models based on temperature and moisture

forecasts when an epidemic will start and when to apply

fungicide for optimal control [58]. Such forecasting programs

are also in development for human diseases with climate

sensitivity, such as Rift Valley fever, which is associated with

warm El Niño events of high rainfall [58–59], and cholera,

which is predictable from sea surface temperature associations

with El Niño [59]. Similar forecasting models will be very

useful for predicting epidemic outbreaks of insect pests in rice

and we hope that the present paper will contribute to achieving

this goal.
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Resurgence of Nilaparvata lugens (Stål) populations as influenced by method and

timing of insecticide applications in lowland rice. Environ Entomol 11: 78–84.
47. Shepard BM, Khan ZR, Pathak MD, Heinrichs EA (1991) Management of

insect pests of rice in Asia. In: Pimentel D, editor. CRC Handbook of Pest
Management in Agriculture. CRC Press, Boca Raton, FL, pp. 255–278.

48. Matteson PC (2000) Insect pest management in tropical Asian irrigated rice.

Annu Rev Entomol 45: 549–574.
49. Bottrell DG, Schoenly KG (2012) Resurrecting the ghost of green revolutions

past: The brown planthopper as a recurring threat to high-yielding rice
production in tropical Asia. J Asia-Pacific Entomol 15: 122–140.

50. Heong KL, Schoenly KG (1998) Impact of insecticides on herbivore-natural
enemy communities in tropical rice ecosystems. In: Haskell PT, McEwen P,

editors. Ecotoxicology: Pesticides and Benefical Organisms. Chapman & Hall,

London, UK, pp. 381–403.
51. Yin JL, Xu HW, Wu JC, Hu JH, Yang GQ (2008) Cultivar and insecticide

applications affect the physiological development of the brown planthopper,
Nilaparvata lugens (Stal) (Hemiptera: Delphacidae). Environ Entomol 37: 206–212.

52. Kiritani K (2001) Insects and cimate (in Japanese). Seizando, Tokyo.

53. Hart AJ, Bale JS, Fenlon JS (1997) Developmental threshold, day-degree
requirements and voltinism of the aphid predator Episyrphus balteatus (Diptera:

Syrphidae). Ann appl Biol 130: 427–437.
54. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, et al. (2009)

Thermal tolerance of the coffee berry borer Hypothenemus hampei: Predictions of
climate change impact on a tropical insect pest. Plos One 4(8): e6487.

doi:10.1371/journal.pone.0006487.

55. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, et al. (2002) Climate
warming and disease risks for terrestrial and marine biota. Science 296: 2158–

2162.
56. Ishigua K, Hashimoto A (1991) Computer-based forecasting of rice blast

epidemics in Japan. In: Teng PS, Polland LR, Argosino G, editors. Rice blast

modeling and forecasting. International Rice Research Institute, Seoul, South
Korea. pp. 39–53.

57. Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, et al. (1999)
Climate and satellite indicators to forecast rift Valley fever epidemics in Kenya.

Science 285: 397.
58. Anyamba A, Linthicum KJ, Tucker CJ (2001) Climate-disease connections: Rift

valley fever in Kenya. Cad Saude Publica 17: 133–140.

59. Pascual M, RodoX, Ellner SP, Colwell R, Bouna MJ (2000) Cholera dynamics
and El Niño-Southern oscillation. Science 289: 1766.

Warmer Climate Favours Outbreaks of Planthoppers

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e91678

http://www.Scirp.org/journal/jep/
http://www.Scirp.org/journal/jep/
http://www.irinnews.org/report/90269
http://www.irinnews.org/report/95058/Thailand-rice-pests-multiply-post-floods
http://www.irinnews.org/report/95058/Thailand-rice-pests-multiply-post-floods

