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Norway

Abstract

Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the
genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new
opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and
thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response.
European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite
Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for
studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and
environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a
challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that
enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate
potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other
environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon
from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-
driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation
of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in
osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and
will enable future searches for the specific genes involved.
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Introduction

Parasites are considered to be among the strongest selective

forces driving the evolution of host populations (reviewed by [1,2]).

The efficiency of the host response following exposure to a novel

pathogen can vary considerably [3,4] and can even result in local

extinction [5]. Moreover, the formation of host defence may follow

different evolutionary strategies and take the form of either

resistance (decreases parasite fitness) or tolerance (increases the

ability to cope with parasite-induced diseases), and thus, different

strategies of host defense can have different effects on parasite

virulence [6,7]. Given that novel pathogens tend to increasingly

emerge in natural populations due to environmental changes [8]

and human-related activities [9], understanding the mechanisms

underlying the formation of host adaptation is of utmost

importance. Nevertheless, revealing the genetic basis of the

evolution of pathogen resistance or tolerance is still challenging.

During recent decades, the major histocompatibility complex

(MHC) genes have been a target of studies focused on investigating

how natural selection can facilitate adaptive immune response at

the gene level in vertebrates (rev. by [10,11]). However, a much

broader range of immune-relevant loci may also be important

[12,13]. Recent developments in genomic technologies have

enabled genome-wide scale approaches for the identification of

genes and gene networks affected by natural selection [14–16].

These approaches have been also used in the immunological

research of wild species, including salmon microarray studies (see

below).

Due to their commercial importance and their increasing

significance in aquaculture, Atlantic salmon have been the target

of considerable research, including a considerable focus on the

molecular basis of aquaculture strain response to various diseases

that have emerged in hatchery facilities (e.g. [17]). This research

includes studies on the genetic basis of resistance to infectious

pancreatic necrosis [18–20], anaemia virus [21,22] and furuncu-

losis-causing bacteria Aeromonas salmonicida [17,23,24], with a focus

on MHC diversity. Another line of research has focused on the
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molecular response to acute pathogen exposure at the RNA level

using Atlantic salmon cDNA microarray data [25–27]. However,

studies of the evolutionary responses of wild populations to novel

pathogen exposure at a genome-wide scale are sorely lacking, not

just in Atlantic salmon but in wild species in general.

One of the most remarkable examples of the evolution of

tolerance and/or resistance to a potentially harmful parasite has

been observed in Atlantic salmon (Salmo salar), with populations

differing widely in their susceptibility to the monogenean

ectoparasite Gyrodactylus salaris. Stocking of salmon originating

from one basin to another has inadvertently exposed numerous

populations of Atlantic salmon in Norway and one population in

Russia to this ectoparasite and subsequently decimated them (rev.

by [28]). Subsequent investigations have indicated that Atlantic

Ocean basin populations, including Barents Sea, White Sea and

Norwegian coast populations, are susceptible to G. salaris, with

mortality rates of up to 95% being commonly reported [29]. In

contrast, salmon from the Baltic Sea basin naturally coexist with

the parasite and show moderate resistance, with approximately

20% of fish being infected [30] but having little or no negative

effect on the host [31]. Further, landlocked populations from large

lakes in northwest Russia are almost completely resistant, with

low-level infections being observed in just 1% of fish [30].

The tolerance and near-resistance of Baltic and landlocked

populations is thought to have evolved as a result of the different

recolonization routes in northern Europe after the last glacial

maximum. During the retreat of the Scandinavian Ice Sheet from

its last Weichselian maximum (17,000-15,000 years ago), large

freshwater reservoirs began to form [32]. Lake Onega was formed

among the first, approximately 13,000 ya, followed by the Baltic

Ice Lake, the predecessor of the modern Baltic Sea and Lake

Ladoga [32,33]. The resistant Onega and Ladoga lake populations

were colonised by salmon that have been coevolving with the

parasite in the eastern freshwater refugium for up to 132,000 years

[30]. Modern tolerant Baltic salmon mostly descended from the

same refugium, but possibly was supplemented with gene flow

from Atlantic Ocean populations when the Baltic Sea gained its

current form. Finally, highly susceptible salmon from the Barents

and White Seas were not exposed to G. salaris until very recently

[34–36]. One exception to this general scenario appears to be a

single land-locked population of Pistojoki river (lake V. Kuito),

which exhibits G. salaris resistance and is thought to be most closely

related to the White Sea Atlantic salmon lineage [37].

The gradient in G. salaris resistance observed in north European

Atlantic salmon offers an opportunity to use an evolutionary

approach to study the genetic basis of parasite resistance. This,

combined with the availability of an Atlantic salmon SNP chip

[38], allows application of a genome scan approach to detect

signatures of G. salaris-induced selection in the Atlantic salmon

genome via approaches such as hitchhiking mapping [39]. Under

a scenario of strong directional selection, which we assume to be

the case in pathogen-threatened populations, the frequency of

advantageous alleles and linked sites increases along with a

simultaneous reduction in variability, a process known as a

selective sweep (rev. by [40]). If the target of the selection pressure

is different in the studied populations, then along with a reduction

of variability within the population, genetic divergence between

populations would increase: loci subject to directional selection

would show larger differences between populations compared to

non-selected loci [41]. Hitchhiking has proved to be a powerful

method for identifying or strengthening candidate genomic regions

in a broad range of species (e.g., zebrafish [42], threespine

sticklebacks [43], dogs [44], human [45]). Importantly, the

described approaches are suitable for detecting selection that has

occurred up to 3,200 generations ago [46], which for Atlantic

salmon would be approximately 13,000 years before present:

precisely the timing of post-glacial selection.

There are, however, several challenges for detecting G. salaris-

induced selection in Atlantic salmon populations. First, earlier

research has indicated that Russian landlocked salmon popula-

tions, i.e., those with the highest level of G. salaris resistance, have

relatively low population sizes and are hence strongly affected by

genetic drift [36,47]. Genetic drift can leave genomic ‘‘footprints’’

similar to natural selection, i.e., increased divergence and

decreased diversity, albeit at a genome-wide scale. Thus,

identification of signals of selection is expected to be more

challenging in populations with a small effective population size

[44,48]. Even though it is challenging to distinguish between

genomic signals of drift and selection, a promising approach is to

compare replicate events in search for a parallel signal: in contrast

to directional selection, one would not expect drift to cause the

same patterns multiple times in independent comparisons.

A second challenge for detecting G. salaris-induced selection in

north European salmon populations results from the fact that the

G. salaris resistance gradient co-varies with several environmental

gradients, one of the most prominent being salinity [13].

Therefore, distinguishing between the selective effects of G. salaris

exposure and, e.g., salinity tolerance may be difficult. However,

the phylogeographic history of the populations in the region

enables the design of specific comparisons to potentially separate

the signals of these alternative selective forces.

In this study, we used a novel genome-scan analysis approach

aimed at i) identifying signals of selection in salmon populations

affected by varying levels of genetic drift and ii) separating the

potentially selected loci into those affected by pathogen (G. salaris)-

driven selection and selection acting upon other environmental

characteristics.

Materials and Methods

Ethics statement
Samples used in this study were obtained according to relevant

national legislations and have been described previously [37].

Sampled populations
A total of 472 Atlantic salmon individuals representing 12 north

European populations (Table 1, Figure 1) were included in the

analysis. Population samples generally consisted of one to three

year old parr, electrofished from a single river stretch of 100 –

150 m2 at one time point between the years 1997 and 2005. Fin

tissue was stored in 96.5% ethanol for subsequent DNA extraction.

The sampled populations belong to different basins: the Barents

and White Seas (marine), the Baltic Sea (brackish) and landlocked

lakes (freshwater); and they represent different susceptibility levels

to the parasite G. salaris (Table 1).

Sample preparation, SNP genotyping and data filtering
The SNP data analysed here are a sub-set of data that have

been described previously in Bourret et al. ([37], Dryad accession

number doi: 10.5061/dryad.gm367). Briefly, DNA was extracted

from fin tissue using NucleoSpin Tissue (Macherey Nagel)

columns, a salt-based protocol [49], or using vacuum extraction

with glass beads (as in [50], with slight modifications). Salmon

individuals were genotyped using an Atlantic salmon Illumina

iSelect SNP chip [38] that successfully assayed 6176 SNPs. The

number of SNPs per chromosome varied from 46 (chromosome 8)

to 333 (chromosome 1), averaging 160. SNP genotyping and

quality control procedures were as in [37]. We conducted

Parasite-Driven Evolution in Atlantic Salmon
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additional filtering of the data using PLINK 1.07 [51] to eliminate

SNPs with .10% missing data (2 SNPs), and SNPs exhibiting a

minor allele frequency ,0.05 across all populations (1543 SNPs);

after filtering 4631 SNPs from 29 linkage groups remained. The

existing female Atlantic salmon linkage map [38], which is

2127 cM in length, was used for assigning SNP map locations.

The relative levels of population genetic diversity and divergence

estimated using the SNP chip are well in line with estimates based

on microsatellites in the same populations [47,52] and therefore it

is unlikely that ascertainment bias has had a large effect.

Population genetics statistics
Basic population genetic parameters were calculated using

PowerMarker 3.25 [53] and Arlequin 3.5 [54]. Analysis of

molecular variance (AMOVA) was used to partition the within-

population, between-population and between-group components

of genetic variation and was also performed using Arlequin 3.5.

Detecting loci under selection
As noted above, distinguishing between the molecular signa-

tures of genetic drift and natural selection, and subsequent

separation of the signatures of parasite-driven selection from

selection acting upon other environmental factors is not straight-

forward. We therefore developed a novel analysis approach based

on multiple tests for selection involving several combinations of

populations that vary in geographic location and susceptibility to

the parasite. These multiple tests hereafter will be referred as

‘‘designs’’ (summarised in Table 2, Figure 2). We assume that the

strongest selective force after G. salaris presence is salinity of the

basin fish migrates to [13]. By identifying loci detected as outliers

in several analysis designs, i.e., overlapping loci, we aimed to avoid

the detection of false positives and to pinpoint genomic regions

that have a higher probability of being affected by either parasite-

driven or salinity-driven selection.

Designs 1 – 3: Candidate genome region approach. We

first identified groups of adjacent markers that deviated from the

chromosome-wide average levels of divergence (FST) or diversity

(GD) and hence represent genomic regions potentially subjected to

natural selection [46]. SNP locus map positions were taken from

[38], and analyses generally followed those outlined in Hohenlohe

et al. [43] and Vaysse et al. [44]. More specifically, locus-specific

FST values were first calculated using the approach described by

Weir and Cockerham [55] and implemented in Arlequin 3.5.

Locus-specific genetic diversity (GD) was estimated as expected

heterozygosity using PowerMarker 3.25 software. To generate a

smooth chromosome-wide distribution of the statistics, we used a

kernel-smoothing moving average, as applied in the ‘‘locpoly’’

function included in the KernSmooth R-package [56]. For each

genomic region centred on a certain centiMorgan (cM) position,

the contribution of the FST or GD statistics to the regional average

was estimated using local polynomials and a bandwidth of 3.5 cM

(the half-length of estimated linkage disequilibrium in the dataset).

The width proved to be appropriate to reduce sampling variance

while being small enough to detect narrow regions of differenti-

ation (data not shown). A permutation procedure (with 10,000

permutations) was performed to statistically test whether the

smoothed curve was significantly (P # 0.01) higher or lower than

expected by chance within a local genome region. This candidate

genomic region approach was applied to the following population

comparisons.

Figure 1. Map of northern Europe indicating the study populations: anadromous Atlantic Ocean, G. salaris susceptible (red);
anadromous Baltic, moderately resistant (blue); landlocked, resistant to the parasite (green).
doi:10.1371/journal.pone.0091672.g001
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Design 1 focused on completely Gyrodactylus-resistant landlocked

populations (LL_PIS, LL_PYA, LL_SYS). Despite the very low

genetic diversity in these populations (e.g. [36,47]), regions with

significantly reduced genetic diversity between populations may be

the result of selection, as explored in the study of domestic dog

breeds [44] and therefore identification of genomics regions with

significantly reduced genetic diversity may be a fruitful approach

for detecting signals of selection. The genetic diversity distribution,

based on expected heterozygosity per SNP, was assessed in all

three populations using the kernel smoothing approach outlined

above, and when reduced GD was observed in at least one

population the region was considered to be a candidate that is

potentially under directional selection.

Designs 2 and 3 focused on comparisons between two

landlocked lakes (Ladoga and Onega) and either populations

from the Barents Sea (design 2) or from the Baltic Sea (design
3). When compared to populations from landlocked lakes, Barents

and Baltic Sea salmon populations differ in their phylogeographic

history and vary in their relative response to the parasite, salinity of

the basin and, possibly, other environmental characteristics;

therefore these designs may help to disentangle the effects. The

landlocked population, V. Kuito lake (LL_PIS), was excluded from

these designs as it originates from a different glacial refugium than

the other landlocked populations [36,37]. For both design 2 and 3

we identified regions with elevated FST by conducting six pair-wise

population comparisons: design 2) between Ladoga (LL_SYS) &

Onega (LL_PYA) and three Barents Sea populations (B_TUL,

B_LEB, BW_YAP), and design 3) between Ladoga (LL_SYS) &

Onega (LL_PYA) and Baltic Sea populations (BA_TOR, BA_

VIN, BA_KUN). In each case, regions were identified as

potentially under directional selection when elevated FST was

observed in a particular genomic region for at least two

comparisons out of six, with the additional criterion that both

LL_SYS and LL_PYA should be represented in the significant

comparisons. This ensured that observed elevations in FST

statistics were not artefacts of a high genetic drift in a single

landlocked population. Populations from the White Sea were not

included in Design 2 in order to avoid a skew in number of

individual tests between designs 2 and 3.

Design 4. Single-outlier test. To detect the potential effects

of selection on a regional scale, we applied an FCT - based

‘‘outlier’’ test that accounts for hierarchical population structure

[41], as implemented in Arlequin 3.5. Outlier loci are detected

based on differentiation among groups of populations (FCT),

controlled for heterozygosity of the loci. The expected distribution

of FCT values was obtained by 50,000 coalescent simulations, and

loci falling outside the upper boundary of the 0.95 confidence

interval were considered to be potentially affected by directional

selection.

The hierarchical structure was formed based on the G. salaris

susceptibility levels. Populations were combined into three groups:

susceptible Atlantic Ocean (B_TUL, B_LEB, BW_YAP, W_EMT,

W_SUM, W_PON), tolerant Baltic Sea (BA_TOR, BA_VIN,

BA_KUN), and resistant landlocked populations (LL_PIS,

LL_PYA, LL_SYS). Three pair-wise outlier tests were performed:

design 4a) Atlantic group vs. landlocked, 4b) Atlantic vs. Baltic,

4c) Baltic vs. landlocked. Resulting single SNPs outliers could

further be separated into a category of SNPs influenced by parasite

Table 1. Population information: regional grouping, G. salaris-induced mortality level, salinity of the basin river flows to, mean
water temperature, number of individuals (N), average call rate per population (CR), gene diversity (GD) and observed
heterozygosity (HO).

Basin Population
Population
abbreviation Coordinates

Mortality
(%)

Salinity
(July, %)

Mean water
temperature

(July, 6C) N CR GD HO

Landlocked

Lake Ladoga Syskyanjoki LL_SYS 61u38’N 31u16’E 0* 0 12{ 32 0.999 0.208 0.218

Lake Onega Pyalma LL_PYA 62u24’N 35u52’E 0* 0 12{ 40 0.998 0.176 0.181

V. Kuito Pistojoki LL_PIS 65u15’N 30u34’E 0* 0 12{ 40 0.997 0.181 0.189

Anadromous Baltic Sea

Gulf of Finland Kunda BA_KUN 59u31’N 26u32’E 10* 5’ 17,1˘ 40 0.999 0.245 0.252

Gulf of Bothnia Tornionjok BA_TOR 65u49’N 24u9’E 10* 3’ 16,1˘ 40 0.998 0.272 0.273

Gulf of Bothnia Vindelälven BA_VIN 63u44’N 20u19’E 10* 5’ 14,4˘ 40 0.998 0.267 0.270

Anadromous Atlantic Ocean

Barents Sea Tuloma B_TUL 68u53’N 33u0’E 98** 35, 7,5 ˘ 40 0.996 0.356 0.355

Barents Sea Lebyazhya (Ponoi) B_LEB 67u3’N 38u34’E 98** 35, 7,5 ˘ 40 0.998 0.340 0.345

Barents&White Sea Yapoma (Varzuga) BW_YAP 66u35’N 36u 9’E 98** 25’’ 15’’ 40 0.998 0.327 0.329

White Sea Emtsa (S.Dvina) W_EMT 63u32’N 41u52’E 98** 25’’ 15’’ 40 0.999 0.316 0.314

White Sea Suma W_SUM 64u17’N 35u24’E 98** 25’’ 15’’ 40 0.996 0.275 0.293

White Sea Pon’goma W_PON 65u20’N 34u24’E 98** 25’’ 15’’ 40 0.999 0.316 0.325

* G.salaris induced mortality level in the Atlantic salmon population. Based on (Kuusela et al. 2003, Bakke et al. 2002, 2004).
** Extrapolated from data of population from the Keret’ river, the White Sea basin (Kudersky et al. 2003) and Norwegian rivers (Johnsen & Jensen 1991), which have been
almost wiped out after introduction of the parasite.
’ http://www.itameriportaali.fi/en/tietoa/veden_liikkeet/en_GB/hydrografia/.
’’ http://www.itameriportaali.fi/en/muut_meret/en_GB/the_white_sea/.
, http://www.nodc.noaa.gov/OC5/barsea/barmap.html.
˘ http://water.travel.org.ua.
{http://www.nodc.noaa.gov/cgi-bin/OC5/SELECT/woaselect.pl.
doi:10.1371/journal.pone.0091672.t001
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and another category of SNPs influenced by salinity. To do so we

applied the following logic. Populations from the Atlantic group

are completely susceptible to G. salaris, whereas populations from

the Baltic and landlocked groups are, to some extent, similar in

their response to the parasite: with a certain level of effectiveness,

they are able to tolerate the pathogen [30]. Therefore, outliers

common for both 4a (Atlantic group vs. landlocked) and 4b
(Atlantic vs. Baltic) designs, but not found in 4c (Baltic vs.

landlocked), are considered more likely to be the result of parasite-

driven selection occurring in landlocked and Baltic populations.

Likewise, the Atlantic and Baltic groups both migrate to saline

environments (marine and brackish water), whereas landlocked

populations never experience a saline environment as they migrate

to freshwater lakes. Thus, we predict that outliers common for

both 4a (Atlantic group vs. landlocked) and 4c (Baltic vs.

landlocked) designs, but not for 4b (Atlantic vs. Baltic), are more

likely to be affected by salinity-driven selection in the Atlantic and

Baltic populations compared to the landlocked populations.

Combining information from several designs. The

genomic regions in which ‘‘footprints’’ of selection were detected

with each of designs 1–3 were compared identify overlaps in

selection footprints between the designs. Cases where the same

region was detected by at least two of the three designs were

highlighted as promising candidates that are potentially affected by

some form of selection. We then plotted outlier SNPs detected in

design 4 along the genome to relate the linkage map position of

these loci to the regions detected by designs 1 – 3. Genomic

regions highlighted as promising candidates potentially affected by

some form of selection in designs 1 – 3 and that also included

‘‘Parasite-influenced’’ outliers (common outliers from designs 4a

and 4b) were considered promising candidate regions that are

potentially affected by parasite-driven selection. The same logic

was applied for ‘‘Salinity-influenced’’ outliers (common outliers

from designs 4a and 4c) to identify genomic regions harbouring

signals consistent with salinity-driven selection.

Landscape genomics analysis
The methodological designs described above aim to target

parasite-driven selection by separating the ‘‘parasite’’ effect from

environmental effects, of which we assume salinity to be one of the

most prominent. To additionally test for associations between SNP

allele frequencies and other varying environmental characteristics,

the landscape genomics approach of Frichot et al. ([57])

implemented in LFMM (‘‘latent factor mixed models’’) software,

was applied. This method uses a hierarchical Bayesian mixed

model based on a variant of principal component analysis, and

accounts for residual population structure which is introduced via

unobserved or latent factors. The LFMM algorithm efficiently

estimates random effects due to population history and isolation-

by-distance, and does not require a control data set of a priori

neutral loci [57]. Genetic-environment correlation was tested for

the whole set of 4631 SNPs; environmental variables included

Figure 2. Analysis workflow and implementation of each of the methodological designs used.
doi:10.1371/journal.pone.0091672.g002
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population coordinates and mean surface water temperature, in

addition to estimates of G. salaris - induced mortality rate and

surface salinity of the basin. The number of latent factors required

for LFMM computations, which is the number of clusters best

describing structure of the original data, was set to 12. It equals to

the number of original populations in our dataset, which were

shown to be genetically distinct from each other previously

[36,37,52]. Absence of within-population structure was addition-

ally tested using STRUCTURE.2.3.4 [58] software. Bonferroni

correction for multiple tests was applied to significant SNPs.

SNP annotation and gene ontology enrichment analysis
Annotation of all 4631 SNPs to specific gene ontology (GO)

terms was performed using a customised python-based procedure

intended to maximise the number of successfully annotated

markers. Briefly, the general steps included tblastx and blastx

searches of SNPs flanking sequences against nucleotide and

protein NCBI databases with a 1610-10 e-value threshold followed

by subsequent collection of corresponding human GO identifiers

(as of 03.04.2012) from the GO database (www.geneontology.org).

For further enrichment and functional analysis, a more recent

version of the GO database (as of 08.10.2013) was used.

Enrichment analyses could only be conducted on the results of

tests that identified single SNP outliers, as opposed to genomic

regions i.e. design 4 and landscape genomics analysis. To

determine whether sets of parasite- and salinity-affected single

SNP outliers identified by design 4 and by landscape genomics

analysis were significantly enriched or depleted for particular GO

terms, a hypergeometric test for GO term over- and under-

representation was performed in Cytoscape 2.8.3. [59] using the

BiNGO 2.44 [60] plugin. For design 4, 58 GO terms associated

with annotated parasite-affected outliers and 47 GO terms

associated with annotated salinity-affected SNPs were investigated.

For landscape genomics analysis, the respective sets included 318

and 116 GO terms. As a reference set during the analysis we used

the annotations for all 2857 SNPs, for which any annotation was

available using the procedure outlined above. A significance level

of 0.05 and the Benjamini & Hochberg false discovery rate

correction were applied. The same enrichment/depletion analysis

was performed using a version of GO database with reduced

redundancy (Generic GO slim, 09.10.2013), in order to obtain an

additional generalized overview of possible functions ‘‘shared’’ by

the studied GO terms and respective SNP outliers.

Functional relatedness of GO terms included in the ‘‘parasite’’

and ‘‘salinity’’ lists of outliers resulting both from design 4 and

landscape genomics analysis was assessed using the Cytoscape

plugin ClueGo1.7.1 [61], which constructs and compares

networks of functionally related GO terms, using human gene

ontology (08.10.2013). A two-sided hypergeometric test (enrich-

ment/depletion) was applied, network specificity was set to

‘medium’(as in [62]), and false discovery rate correction was

performed as above.

Results

Population genetic structure
Basic genetic statistics across populations and markers are

presented in Table 1, and locus-specific information is presented in

Table S1. Allele frequencies per SNP per population are presented

in File S1. As expected, landlocked populations were characterised

by the lowest values of observed heterozygosity (from 0.181

LL_PYA to 0.218 LL_SYS) and genetic diversity (from 0.176

LL_PYA to 0.209 LL_SYS). Anadromous Baltic Sea populations

had intermediate values of HO and GD (0.252 and 0.245 in

BA_KUN to 0.273 and 0.272 in BA_TOR, respectively), while

populations from the Barents and White Seas were the most

variable (from 0.293 and 0.275 (BW_SUM) to 0.355 and 0.356

(BW_TUL), respectively; Table 2).

All pair-wise comparisons showed highly significant levels of

population genetic differentiation (P,10-5, Table S2). The highest

FST values were observed within landlocked comparisons (from

0.32 LL_PYA vs. LL_SYS to 0.52 for LL_PYA vs. LL_PIS); Baltic

Sea comparisons varied between 0.08 (BA_TOR vs. BA_VIN) to

0.23 (BA_VIN vs. BA_KUN), while the Barents and White Sea

populations were the least differentiated: FST varied from 0.05

(BW_LEB vs. BW_TUL) to 0.18 (BW_SUM vs. BW_EMT).

An AMOVA analysis indicated a significant genetic variation

among and within geographic regions (Atlantic Ocean, Baltic Sea,

landlocked populations). Notably, the amount of genetic variation

explained by the within-region component (17.8%, P,, 0.01) is

higher than the variation explained by the among-region

component (9.6%, P,,0.01), indicating markedly high be-

tween-population differentiation within regions (Table S3).

Signatures of directional selection
Designs 1–3: Candidate genomic regions under

selection. Regarding reductions in gene diversity within the

landlocked populations (design 1: see Figure 3 for a single

population example), 27 regions across 18 chromosomes had

significantly reduced GD (Table 2, S4, S5; Figure 4). Comparisons

of lakes Ladoga and Onega versus three populations from Barents

Sea (design 2) or Baltic Sea (design 3) exhibited significant

differentiation at 7 regions across 7 chromosomes and 15 regions

from 13 chromosomes, respectively.

Design 4: Single locus selection test. Hierarchical genome

scans were performed in a pair-wise manner between geographic

regions to detect markers that are potentially under directional

selection. In total, 359 SNPs (7.7%) showed signals of selection

when comparing Atlantic vs. landlocked populations (design 4a),

394 (8.5%) in the Atlantic vs. Baltic comparison (design 4b), and

523 (11.3%) in the Baltic vs. landlocked test (design 4c) (Figure

2_2). Using the approach outlined in the Methods, 90 (1.9%) and

85 (1.8%) outliers were found consistent with parasite- and

salinity-driven selection, respectively. (Table S4, Figure 4).

Combined signals of selection. Results of all comparisons

in designs 1 – 3 were combined to identify genomic regions

suggested to be potentially affected by selection by at least two of

the three designs. In total, seven genomic regions were identified

(Figure 4): five regions in two comparisons out of three and two

regions in all three comparisons. We then identified specific loci

within these seven genomic regions that were also indicated to be

affected by either parasite- or salinity-driven selection in the single

locus selection tests (design 4). Three genomic regions potentially

affected by parasite- but not salinity-driven selection were

identified (chromosomes 10, 11, 23), and another three regions

potentially affected by salinity- but not parasite-driven selection

were also identified (chromosomes 4, 6, 9) based on combination

of signals from designs 1 – 4 (Tables 3, S4, S6; Figure 4).

Therefore, a total of six genomic regions were shown to be affected

by either parasite- or salinity- influenced selection, based on

designs 1 – 4. Along with parasite- and salinity- influenced outliers,

design 4 has identified a number of SNPs possibly affected by

other forms of directional selection.

Landscape genomics analysis
The number of SNPs significantly correlated with environmen-

tal characteristics varied considerably among the environmental

variables. The greatest number of SNPs (523) was correlated with
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G. salaris-induced mortality, followed by the SNPs correlated with

longitude (193 SNPs), salinity of the basin (179 SNPs), latitude (10

SNPs), and water temperature (6 SNPs). The same SNPs were

frequently detected to be correlated with several environmental

characteristics, with salinity and G. salaris-induced mortality

associated with the same SNP on 124 occasions (Table 4, Figure

S1, Figure S2). Detailed information about significant SNPs is

presented in Table S4.

Annotation of outliers
A total of 2857 SNPs were successfully annotated (GO database

as of 05.04.2013) and used further for the enrichment tests (Table

S7). For design 4 (Arlequin3.5-based test), these included 58 of 90

identified parasite-affected outliers and 47 of 85 salinity affected

outliers. For landscape genomics analysis, 318 SNPs of the 523

parasite-correlated and 116 of the 179 salinity-correlated SNPs

were annotated (Table S8). For both the outliers identified with

design 4, and with the landscape genomic analysis, no significantly

Figure 3. Example of the results of a candidate region analysis (chromosome 23, design 1): search for regions of reduced genetic
diversity in landlocked populations. A. One of the three populations, LL_PYA. SNP GD values (black dots), kernel-smoothed distribution of GD
(black line) along the chromosome and the 99% confidence interval (area within grey lines) are shown. Distributions of logarithmically scaled p-values
for elevated (blue) and reduced (red) GD statistic are plotted below. B. Smoothed GD curves for all three populations. Horizontal bars indicate regions
of significant (p#0.01) reduction of GD. Vertical grey shading represents region which is significant in all three populations and which has been
considered further as one of a candidate regions under selection, detected by design 1.
doi:10.1371/journal.pone.0091672.g003

Parasite-Driven Evolution in Atlantic Salmon

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e91672



over- or under-represented GO terms were detected after

correction for multiple testing using the complete GO database

(as of 08.10.2010), nor when using a reduced redundancy

GO_slim database (as of 09.10.2013) (Tables S9, S10).

Functional network analysis conducted on outliers identified by

design 4 however, grouped SNPs in the parasite- or salinity-driven

selection sets into three significant and non-overlapping functional

clusters (Table S11a). Terms in the first cluster included GO terms

associated exclusively with the salinity-driven selection SNP set

and were involved in functional processes associated with negative

regulation of the protein kinase B signalling cascade and renal

absorption. Clusters 2 and 3 were comprised solely of SNPs from

the parasite-driven selection SNP set and were functionally

involved in translation pre-initiation (cluster 2) and long-chain

fatty-acyl-CoA metabolism (cluster 3). GO terms associated with

significant SNPs from the landscape genomics analysis also divided

into clusters composed of parasite- and salinity- related terms,

though the number of actual functional processes each of the terms

was part of was much higher, most likely due to the large number

of SNPs in the analysis, making the results for these loci difficult to

interpret (Table S11b).

Discussion

The goal of this study was to reveal the genetic basis of Atlantic

salmon inter-population susceptibility differences to the parasite

Gyrodactulus salaris. We have identified a number of single SNP

markers and several regions in the Atlantic salmon genome

exhibiting signatures of directional selection. Based on the

comparison and combination of results from different tests and

methodological designs, we propose at least three genomic regions,

on chromosomes 10, 11 and 23, potentially contributing to

parasite resistance in Atlantic salmon and three regions, on

chromosomes 4, 6, 9, presumably influenced by salinity-driven

Figure 4. Final overlap of results based on all applied designs: genome-wide evidence of directional selection. Vertical coloured
shadings (green) show genomic regions, where two or three regions detected by kernel-smoothing-based designs overlap. ‘‘Parasite’’ (red) and
‘‘salinity’’ (blue) single outlier SNPs from design 4 are plotted as smaller vertical lines. Chromosome numbers are given, chromosomes bearing regions
exclusively containing ‘‘parasite outliers’’ are marked with red font colour, and ‘‘salinity outliers’’ - with blue.
doi:10.1371/journal.pone.0091672.g004

Table 3. Contribution of each methodological design to the
final sets of overlapping candidate regions, as marked with
‘‘x’’.

Candidate regions Designs

Selection force Chromosome 1 2 3

Parasite 10 x x

11 x x

23 x x

Salinity 4 x x x

6 x x

9 x x x

doi:10.1371/journal.pone.0091672.t003

Table 4. Results of the landscape genomics analysis (LFMM).

Environmental characteristics N of outliers
N of unique
outliers

Latitude 10 (0.2%) 5 (50%)

Longitude 193 (4.2%) 123 (63.7%)

Mean water temperature (July, uC) 6 (0.1%) 2 (33.3%)

Mortality (%) 523 (11.3%) 328 (62.7%)

Salinity (July, %) 179 (3.9%) 22 (12.3%)

N of outliers: number (and % from the total) of SNPs correlated with
environmental characteristics.
N of unique outliers: subset (and % from N of outliers) of SNPs which are
correlated only with a given characteristic.
doi:10.1371/journal.pone.0091672.t004
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selection.

The combination of the results of several tests has been applied

in a number of studies in order to strengthen the reliability of the

identification of genome regions that are potentially affected by

selection (e.g. [45,63–65]). The suggested advantage of such an

approach is that the final results are based on the combination of

several lines of evidence, and hence, the probability of Type I error

is reduced. In other words, different lines of evidence showing the

same (parallel) signal of selection are unlikely to be caused by drift.

In our study we used the existing female Atlantic salmon linkage

map [38], which is 2127 cM in length, to estimate how many

regions consistent with directional selection we would expect to

identify based on chance alone for a single test. Given that the

bandwidth we used for candidate-region kernel-smoothing detec-

tion was 3.5 cM, the whole genome can be divided into 607

3.5 cM regions. The probability of any given region being

identified as an outlier purely by chance is equal to the significance

threshold used in the analyses, i.e., 0.01. Therefore, on average,

6.07 regions per test are expected to be the result of a Type I error.

The number of candidate regions detected by single designs was

seven in design 2, 15 in design 3, and 27 in design 1. Therefore, at

least designs 1 and 3 are likely to have identified a number of

regions potentially affected by selection. The likelihood of

identifying the same genomic region in two tests purely by chance

is likely to be considerably lower. However, as the designs

implemented in this study are not completely independent it is not

possible to make an exact calculation. Given that the same

landlocked populations (lakes Ladoga and Onega) were included

in all three designs, specific genetic features of one or more of

those populations could potentially result in an increase in the

detection of (false) positives in more than one design for this

reason, rather than due to selection. On the other hand, as the

landlocked populations are the only populations known to be

totally resistant to G. salaris, there are no clear alternatives. That

said, we attempted to limit the potentially biasing effects of a single

landlocked population by only including outlier signals detected in

more than one landlocked population in designs 2 and 3 (Tables

S5, S6). Moreover, even though it should be treated with caution

[66], the functional network analysis provides further support to

the detected separation of parasite- and salinity-affected candidate

regions (see below). Nevertheless, as highlighted in earlier studies

[63,65], while support of multiple tests elevates the candidate

status of the loci/region, further analysis is required to determine

the role of the identified genomic regions in potential selective

processes.

As outlined in Methods, an assignment of the seven regions

detected with multiple designs to either parasite-or salinity-affected

modes of selection was based on results of the single outlier tests

(design 4). It has been proposed, however, that FST -based outliers

might not only be an outcome of natural selection but can also

indicate a presence of intrinsic barriers of gene flow, especially

when the existence of intrinsically incompatible alleles is coupled

with environmental or ecological constraints of gene flow [67].

This could also be the case in our study, resulting in some of the

detected selection-affected outliers being ‘‘false positives’’. Design

1, however, is based on the assumption of reduced population gene

diversity, rather than increased divergence, which allows us to

strengthen the candidacy of detected outliers: single FCT -based

outliers (Table S4) falling within the detected regions are likely to

be affected by directional selection. It can be argued, however,

that some of genomic regions and SNP outliers detected by designs

1 – 4 can be artefacts of non-selective forces such as population

history and e.g. reduced recombination [68]. Since all significant

regions identified with designs 2 – 4 comprise several populations

we consider them to be relatively robust to the abovementioned

caveats, however genome regions with low intra-population

diversity detected by design 1 may be more likely to be affected

by non-selective forces. However, little is currently known about

the recombination rate differences in fish genomes [69] and

therefore more thorough scrutiny of the reduced diversity test

awaits further research.

The fact that the candidate loci/regions were based on the

results of several tests may also explain the differences in our

results compared to those recently reported by Bourret et al. [37],

who conducted several tests to identify signals of parallel

adaptation in Atlantic salmon populations spanning their natural

distribution. Only one of the seven final candidate genomic

regions detected in our study (chr 11) was also identified by

Bourret et al., although several regions detected by only one of the

designs were described in the mentioned study. This could be due

to the more stringent criteria of our testing design and/or because

Bourret et al. included populations from across the whole

European distribution of the species in most outlier tests and

were thus looking for more general trends. More detailed

comparisons would be required to distinguish between these

alternatives.

Parasite-driven selection
At least three genomic regions affected by parasite-driven

selection have been identified in our study. Given the plausible

implication of these regions in the mechanisms of immune

response, our findings support the existing conception of polygenic

control of immunity in Atlantic salmon. Differential expression

studies in response to various pathogens including Aeromonas

salmonicida and G. salaris identified significant RNA expression

changes in up to 162 transcripts [70,71]. A subsequent assessment

of microsatellite loci identified in the untranslated regions of some

of these transcripts detected signals of selection in a number of loci

[13]. Although the associated markers were assigned to particular

linkage groups in some of the studies [21], the exact position of the

candidate loci is generally unknown. A QTL approach has also

earlier identified multiple genomic regions associated with G.

salaris-tolerance in Atlantic salmon involving a back-cross of

Scottish (G. salaris susceptible) and Baltic (G. salaris tolerant)

Atlantic salmon [72]. However, the identified genetic regions

associated with G. salaris resistance were different to those

highlighted by our study. Marker-trait associations in the Gilbey

et al. [72] study represented entire linkage groups [73]; thus, a

direct comparison of results is difficult. Furthermore, the fact that

our study also included resistant landlocked populations could also

explain the differences in results. Additionally, our study focused

on detecting signals of exclusively directional selection because

FST-based methods have a number of limitations if applied to

search for signals of balancing selection, including high rates of

false positives [41], the tendency to underestimate the differenti-

ation of polymorphic loci [74] and low power when using

simulated data sets [75]. Balancing selection, however, is thought

to be an important mechanism that maintains the diversity of

immune system-related loci such as those of the major histocom-

patibility complex (MHC; [2,76–78]). Therefore, some immune-

related loci, such as MHC genes, are not expected to be detected

by our analysis, in contrast to a QTL approach. Nevertheless,

MHC loci and immune-related genes can also be the target of

directional selection [79,80]. Therefore, given that pathogen

presence can cause strong directional selection [1,81], the fact that

some immune loci under balancing selection might have not been

identified by our analysis does not conflict with the primary aim of

Parasite-Driven Evolution in Atlantic Salmon
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the study to detect specific loci contributing to G. salaris resistance

in Atlantic salmon.

Functional network analysis of the design 4 ‘‘parasite’’

influenced outliers is consistent with an immune-related role for

these regions. However, caution is warranted because it is possible

that the observed signals of selection may be due to selection acting

on a tightly linked gene with a different function. Recently, the

potential dangers of ‘storytelling’ based on GO annotations has

also been cautioned [66]. Nevertheless, when applied responsibly,

it has been demonstrated that the GO can provide valuable

functional information in species with poorly annotated genomes,

such as salmonid fishes [82]. ‘‘Parasite-associated’’ GO terms

resulting from design 4 clustered in two functional groups (Table

S11a). The first group was united by two genes involved in

translation initiation, EIF3B and EIF3D (eukaryotic translation

initiation factors). IEF3 genes have been suggested to contribute to

increased translation rates during T lymphocyte activation

[83,84], as well as to play role in immunoreceptor signal

transduction [85], and early stages of HIV [86] and hepatitis C

[87] infection. The mentioned studies are human-based, yet

immune system of fish have analogues of T cells, and functional

similarities between immune system of fish and higher vertebrates

have been strongly suggested [88]. More generally, EIF3

translation initiation factors contribute to translational control of

a variety of stress responses in addition to pathogen challenge,

including osmotic stress, nutrient starvation, temperature stress

(rev. by [89]). The system is considered to be very conserved (rev.

by [90]) and is observed in a variety of organisms including green

alga [91], plants [92], yeast [93] and mammals [94], therefore its

precise role in Atlantic salmon populations studied here is still

open for discussion. The second functional group of design 4 -

based ‘‘parasite’’ GO terms were united by two genes involved in

fatty acids synthesis and elongation, FASN (fatty acid synthase)

and HSD17B12 (estradiol dehydrogenase). A substantial number

of studies on a range of mammals have shown that fatty acids,

especially n-3 and n-6 polyunsaturated fatty acids (PUFA), play a

crucial role in the formation of immune response; in experimental

studies, over-supplied PUFAs performed as anti-infection, anti-

malaria, anti-tuberculosis, and anti-fungal agents (rev. by [95–97]).

Balance between the n-3 and n-6 PUFAs is essential for the

regulation of inflammation and the functioning of immune cells

[98,99]. For instance, an excess of n-3 PUFAs leads to reductions

of secreted interleukin-1b (IL- 1b), interferon-a (IFN-a), and a

number of other cytokines, which subsequently lead to decreased

inflammation [100,101]. Interestingly, the dissimilarity in cyto-

kines produced in the first stage of inflammation was shown to be

the key difference in the way Atlantic salmon with different

susceptibility respond to G. salaris [102]. An experimental study

demonstrated that highly susceptible salmon from the east Atlantic

responded to G. salaris exposure by enhanced production of IL- 1b
and IFN-c cytokines and elevated proliferation of inflammatory

cells, which, in turn, triggers the proliferation of epithelial and

mucous cells that the parasite feeds on. Therefore, susceptible

salmon launch an immune response that might actually be

beneficial to the parasite [102,103]. Conversely, tolerant Baltic Sea

salmon respond to G. salaris infection later in time and with up-

regulation of genes encoding other molecules: IFN-c, T-cell

receptor-a and serum amyloid A [102]. Given the property of n-3

fatty acids to reduce a secretion of pro-inflammatory IL-1b, their

activity might be especially beneficial during the early stages of G.

salaris-mediated immune response, when, according to Kania et al.

[102], decreased inflammation and mucus formation would have a

negative impact on parasite survival. From this perspective, the

fact that ‘‘parasite-associated‘‘ GO terms clustered into a

functional network united by fatty acid metabolism brings

additional evidence of fatty acid involvement in immune response

and supports the notion of a broad range of molecules being

immune-relevant [12,13]. We also consider the n-3 polyunsatu-

rated fatty acids to be good candidates for agents underlying the

effective immune response performed by tolerant Atlantic salmon

in response to G. salaris infection. G. salaris, like other parasitic

flatworms, ([104], Aisala & Lumme, in preparation) lacks the

enzymes for de novo synthesis of the fatty acids, but has a collection

of enzymes needed in transporting, lengthening and processing

them; the dependency on the host for fatty acid synthesis might be

a key to understanding the role of the above observations.

However, acclimation to salinity was also shown to alter

composition of PUFAs, e.g. in tilapia, Oreochromis mossambicus,

[105], and two mullet species (Chelon labrosus and Mugil cephalus)

[106,107], which was suggested to be due to the substantial

energetic demands preceding activation of acclimation processes

[106]. Thus, it appears that studies addressing the role of lipid

metabolism in terms of fish osmoregulation have not reached a

consensus as the data are contradictory (rev. by [108]). Addition-

ally, fatty acids composition in the cell membrane can affect its

fluidity and consequently have an effect on velocity of Na+/K+
ion pumps, which is one of the mechanisms of acclimation to water

temperature changes (rev. by [109]). But given that change in

water temperatures does not necessarily lead to change in fatty

acids composition [109,110], the precise role of fatty acids in

temperature acclimation remains unclear.

Salinity-driven selection
Three genomic regions presumably affected by salinity-induced

selection were identified in our study. To our knowledge, an

outlier approach has not previously been used to investigate the

genetic basis of salinity tolerance in Atlantic salmon. However,

there have been a number of investigations of this topic in

salmonids and other fish species using alternative approaches. The

effect of varying salinity levels on the RNA expression level of

genes known to be involved in osmoregulation has been studied in

species with varying salinity tolerance [111]. At the intraspecific

level, approaches for studying the genetic basis of salinity tolerance

include differential RNA and protein expression analyses, as well

as QTL studies. These studies have indicated that there are several

important molecular components involved in salinity acclimation

at the population level. These include Na+/K+ ATP-ase

[112,113], pathways involving thyroid hormones [114] and

cortisol [115], as well as molecules involved in intracellular

calcium levels, such as otopetrin 1 [114]. Altogether, more than

100 proteins have been shown to be differentially expressed in a

recent study of fresh- and brackish-water spawning whitefish

[116], emphasising the complexity of salinity-tolerance mecha-

nisms. Along with salinity tolerance, it is tempting to speculate that

smoltification related processes could be the target of differential

selection in studied populations. Land-locked salmon have been

shown to undergo the smoltification process even though there is

no known physiological explanation for it [117]. Moreover, it has

been suggested that the process of smoltification may in fact be a

maladaption in freshwater salmon populations [117], being

therefore a presumably strong selective force acting on them.

Direct comparison of our results with those of RNA and protein

expression studies is difficult due to the currently limited

information regarding the specific genomic locations of the genes

in question in the Atlantic salmon genome. However, a

comparison with studies using a QTL approach is possible. One

of the three regions identified in our study that is presumably

affected by salinity-induced selection (the distal part of the q-arm
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of chromosome 9) was also identified by Norman et al., [118], who

used a QTL approach to pinpoint genomic regions involved in

osmoregulation in several salmonid fishes, including Atlantic

salmon. This region has been shown to include the calcium-sensor

receptor, CaSR [118]. This receptor senses the extracellular Ca+

concentration and activates the appropriate intracellular signalling

pathways, acting as an internal salinity sensor [119]. CaSR has

been shown to be upregulated during smoltification in Atlantic

salmon, supporting its importance in osmoregulation [120].

Interestingly, this observation is in strong concordance with the

study of Papakostas et al., [116], where proteins expressed

differentially between fresh- and brackishwater whitefish in

different salinities were shown to be enriched for Gene Ontology

(GO) biological process terms, including calcium ion transport and

calcium channel regulator activity. Thus, based on independent

studies using a variety of approaches, CaSR appears to be a very

strong candidate for involvement in salinity adaptation in

salmonid fishes. Although the remaining two genomic regions

we identified were not identified in the QTL study of Norman et

al., [118], this is perhaps not surprising given that North American

Atlantic salmon were used in their study, as opposed to European

populations in the current study, because the North American and

European lineages are thought to have diverged more than one

million years ago and include differences in chromosome number

[35,121,122].

Functional network analysis suggested that the ‘‘salinity-

selected’’ SNPs detected by design 4 were associated with GO

biological process terms involved in the protein kinase B cascade

and peptidyl-tyrosine phosphorylation (Table S11a), although, as

mentioned above, this analysis has to be interpreted with some

caution. The role of the protein kinase B (PKB) signalling pathway

is not directly evident in relation to osmoregulation and

smoltification given the broad range of processes the pathway is

involved in [123]. Nevertheless, the PKB cascade was shown to be

activated by hyperosmolarity stress [124], suggesting that it plays

role in salinity-mediated stress signalling. When actual genes

associated with the ‘‘salinity’’ group of GO terms are considered,

osmoregulatory function was suggested, e.g., for the Slc9a3r1

(sodium-hydrogen antiporter), which functions in kidney of mice

and controls phosphate and uric acid concentration in urine

output [125,126]. Nonetheless, the very same gene was suggested

to have immune functions as well: the protein it codes is psoriasis

responsible and is implicated in immune synapse formation in T

cells [127]. Notably, other genes associated with ‘‘salinity’’ group

of GO terms also have roles in immune processes. RUVBL1

(contributes to ATP-ase activity) promotes activation of gene

transcription and, when up-regulated, is likely to provoke

functional enhancement of immune cells and the enhancement

of the subsequent immune response involving B cells, T cells and

macrophages [128]. PPP2R1A (serine/threonine-protein phospha-

tase regulatory subunit A) contributes to regulation of cell

autophagy as part of an anti-bacterial response [129], and is

involved in T lymphocytes signaling processes throughout porcine

respiratory syndrome virus infection (rev. by [130]). These results

suggest that presumably ‘‘salinity’’ - affected outliers, identified by

the design 4, might also be due to population differences in

response to G. salaris. The landscape genomic analysis additionally

highlighted that distinguishing between selection acting upon

different environmental factors is not straightforward (see below).

Landscape genomics analysis
The analyses used in our study were designed to provide a

means to tease apart the effects of pathogen driven selection and

other potential selective forces. We considered a simple scenario

where the only environmental characteristic, salinity of the basin

fish migrates to, was taken into consideration. Nevertheless, we

also tested for associations between SNPs allele frequencies and

other varying environmental factors using the LFMM approach.

The number of significant SNPs varied greatly depending on

the environmental characteristic in question. Unsurprisingly, the

greatest number of SNPs (523, of which 328 unique) was

correlated with mortality rate in presence of G. salaris (Figure

S2). When compared to a set of ‘‘parasite’’- influenced ‘‘outlier’’

SNPs derived from design 4, 32 out of 90 outliers were also present

in the set of unique ‘‘mortality’’ LFMM-based SNPs; or 84 SNPs

out of 90 if all 523 LFMM-outliers were considered. The greatest

overlap (124 SNPs) was observed between ‘‘mortality’’ and

‘‘salinity’’ environmental characteristics (Figure S1), indicating

that the effect of these factors cannot be disetangled using the

landscape genomics approach in this study. Therefore, we did not

utilize the ‘‘mortality’’ and ‘‘salinity’’ correlated SNPs in identi-

fying the final genome regions affected by these selective forces.

Nevertheless, they might additionally strengthen some of the

detected regions, where unique LFMM-based outliers duplicate

either ‘‘parasite’’ (chr 10, 23) or ‘‘salinity’’ (chr 6) outliers resulting

from design 4.

A surprisingly low number of SNPs were correlated with water

temperature (6, 2 unique i.e. only correlated with water

temperature and no other variable), given that temperature

regime is often associated with population genetic diversity in

salmonids (rev. by [131]) and other fish species (e.g. herring,

[132]). While adult Atlantic salmon show a great capacity of

temperature acclimation [133], water temperature can affect

population genetic structure through juvenile mortality, since

survival of salmon juveniles greatly depends on water temperature

regimes (rev. by [134]). And since in the current study (as in many

others, e.g. [13]) we used mean sea/lake surface temperature, it is

possible that we have not detected otherwise existing correlations

with river temperature. The other possibility is that for salmon

populations described in this paper, other environmental charac-

teristics, such as landscape features of river systems, might play a

more prominent role than water temperature [134]. Altogether

however, lack of temperature-associated genetic variation is

confirmed by similarly small number of SNPs correlated with

latitude (10, 5 unique) (Figure S2), since water and air

temperatures are closely correlated with latitude. Studies of

Atlantic salmon in Canada, for example, showed that genetic

diversity of MHC genes increases with temperature along a

latitudinal gradient, which was suggested to be in response to

pathogen selective pressure [8]. Somewhat unexpected however, is

the substantial number of SNPs significantly correlated with

longitude (193, 123 unique) (Figure S2).

Conclusion

We identified at least three genomic regions potentially

contributing to G. salaris resistance in Baltic Sea and landlocked

freshwater Atlantic salmon, compared to susceptible salmon from

the Atlantic Ocean. We detected three additional genomic regions

exhibiting signatures of selection that are possibly salinity-related.

These genomic regions are a good starting point for further

research to identify the specific genes contributing to the signals of

directional selection. For instance, targeted sequencing of detected

regions might be a promising approach, especially given that the

Atlantic salmon genome sequence is soon to be publically available

[135]. Although the non-independence of tests remains an issue,

our approach of outlier identification incorporating several outlier

tests based on different assumptions provides encouraging results
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for overcoming challenges related to high population divergence and

environmental selection pressures mimicking the influence of G.

salaris. The validity of the separation of the effects of parasite-driven

vs. salinity-driven selection was, to some extent, supported by a

functional network analysis of GO terms associated with the detected

outliers. Given the unlikeliness that the observed results could be

explained by chance alone, our study highlights the suitability of a

carefully planned multi-testing strategy for whole-genome screens for

signatures of directional selection in natural populations.

Supporting Information

Figure S1 Overlap between SNPs outliers detected by the
landscape genomics analysis for each of the environment
characteristics. Numbers within Euler diagram sectors represent

number of SNPs, shown to be associated with an appropriate

environment characteristic or combination of characteristics.

(TIF)

Figure S2 SNPs outliers based on the landscape geno-
mics analysis results, plotted along the genome. Both all

detected SNPs (orange) and unique SNPs (violet) for each

environmental characteristic are shown as vertical lines plotted

along the genome. For easier comparison of results, global results

based on Designs 1-4 are shown as in Figure 4: vertical coloured

shadings (green) show genomic regions, where two or three regions

detected by kernel-smoothing-based designs overlap; chromosome

numbers are given, chromosomes bearing regions exclusively

containing design 4 ‘‘parasite outliers’’ are marked with red font

colour, and ‘‘salinity outliers’’ - with blue.

(TIF)

File S1 SNP allele frequencies per population.
(XLSX)

Table S1 Gene diversity and observed heterozygosity
per SNP marker and per population.
(XLSX)

Table S2 Pairwise population differentiation as mea-
sured by FST.
(XLSX)

Table S3 Analysis of molecular variance (AMOVA)
results.
(XLSX)

Table S4 Significant genome region/outlier tests re-
sults for each of the 4631 SNPs.
(XLSX)

Table S5 Detailed list of all significant single test
results with design 1, 2 or 3.

(XLSX)

Table S6 Significant genome region/outlier tests from
each design that contributed to the six identified regions
suggested to be affected by "parasite" or "salinity"-
influenced selection.

(XLSX)

Table S7 List of the 2857 SNP loci with a significant
BLAST match and GO annotation.

(XLSX)

Table S8 Significant BLAST match and GO annotation
for the single outlier SNPs identified using Design4 and
landscape genomics analysis.

(XLSX)

Table S9 Results of an enrichment test conducted for
GO terms associated with the "Parasite" and ‘‘Salinity’’
subsets of SNP outliers identified using Design4.

(XLSX)

Table S10 Results of an enrichment test conducted for
GO terms associated with the "Parasite" and ‘‘Salinity’’
subsets of SNP outliers identified using landscape
genomics analysis.

(XLSX)

Table S11 Functional network analysis: comparison of
GO terms associated with "Parasite" and "Salinity" sets
of SNP outliers as identified by Design 4 and landscape
genomics analysis.

(XLSX)
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