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Abstract

Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1
pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin
activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in
cells. Here, we show that the mammalian homolog of Xenopus XKLP1, Kif4, is both necessary and sufficient for the induction
of selective MT stabilization in fibroblasts. Kif4 localized to the ends of stable MTs and participated in the Rho-mDia-EB1 MT
stabilization pathway since Kif4 depletion blocked mDia- and EB1-induced selective MT stabilization and EB1 was necessary
for Kif4 induction of stable MTs. Kif4 and EB1 interacted in cell extracts, and binding studies revealed that the tail domain of
Kif4 interacted directly with the N-terminal domain of EB1. Consistent with its role in regulating formation of stable MTs in
interphase cells, Kif4 knockdown inhibited migration of cells into wounded monolayers. These data identify Kif4 as a novel
factor in the Rho-mDia-EB1 MT stabilization pathway and cell migration.
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Introduction

Rearrangements of microtubules (MTs) play a central role in

the establishment of cell polarity in many systems [1]. In migrating

cells, MTs contribute to the front-back polarity that is essential for

directional migration of cells in a variety of environments. MTs

are thought to provide the tracks for directional delivery of

membrane precursors and actin regulators necessary for protru-

sion of the leading edge [2,3,4]. MTs also regulate the turnover of

focal adhesions by stimulating the disassembly of focal adhesions

through endocytic processes [5,6,7,8]. In addition, MTs regulate

myosin contraction in the cell rear in certain migrating cells such

as neutrophils and T cells [9,10].

To contribute to front-back polarity in migrating cells, the MT

array itself becomes polarized. Several sources of MT polarization

in migrating cells have been identified. Radial MT arrays are

biased toward the front of many migrating cells by the specific

orientation of the centrosome toward the leading edge [11]. The

oriented centrosome positions the associated Golgi and endocytic

recycling compartment to direct vesicular traffic toward the

leading edge. The reorientation of the Golgi may also reinforce

MT asymmetry toward the leading edge as the Golgi itself can

nucleate MTs in certain cell types [3]. Factors that interfere with

centrosome orientation usually reduce the rate of cell migration

[12,13,14], although direct laser ablation of the centrosome has

modest-to-strong effects on cell migration depending on the cell

type [15,16].

A second source of MT polarization is the selective stabilization

of a subset of MTs oriented toward the cell’s leading edge [1,17].

Because of their longevity, these selectively stabilized MTs become

post-translationally modified by detyrosination and/or acetylation

of tubulin. Even in situations where the centrosome does not orient

toward the leading edge, for example, in a subset of fibroblasts

migrating in 2D or in fibroblasts migrating on fibrillar 1D

matrices, MT stabilization remains highly biased toward the front

of the cell [17,18,19,20]. Post-translationally modified MTs are

longer-lived than their dynamic counterparts [21,22] and serve as

preferred tracks for certain kinesin motors [23,24,25,26,27,28].

Thus, the generation of selectively stabilized MTs biases vesicle

trafficking toward the leading edge in migrating cells.

Posttranslational modification of MTs may contribute to their

stability [29], yet studies have shown that this is not likely

responsible for the initial generation of stability of the long-lived

MTs. Posttranslational modification of tubulin within MTs is

relatively slow compared to dynamic turnover of MTs and in

starved NIH3T3 fibroblasts stimulated with the serum factor

lysophosphatidic acid (LPA), MTs are stabilized within minutes,

long before the accumulation of posttranslational detyrosination

[30]. In addition, treatments that enhance the levels of

detyrosinated or acetylated tubulin do not directly lead to

stabilized MTs [31,32,33].

Factors have been identified that contribute to the selective

stabilization of MTs in cells. Rho GTPase and its downstream

effector the formin mDia are key factors in a MT stabilization
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pathway that mediates the selective stabilization of MTs in

migrating fibroblasts [31,34,35] and other cell types [36,37,38,39].

Rho only stimulates mDia in the presence of integrin and FAK

signaling, which may restrict the formation of stable MTs to the

leading edge [40]. mDia interacts with three MT +TIP proteins,

EB1, APC and CLIP170 and the interactions with EB1 and APC

have been implicated in MT stability [38,41,42]. In vitro, mDia2

binds directly to MTs and can stabilize them against cold-induced

depolymerization, although it does not generate nondynamic MT

ends typical of selectively stabilized MTs in vivo (see below) [43].

mDia and other formins have recently emerged as MT regulators

in addition to their role in regulating actin nucleation and

elongation [44,45]. Other factors, including two other +TIPs
CLASP and ACF7/MACF [37,46], actin capping protein [47],

and the negative regulator moesin [48] and are also involved in the

generation of selectively stabilized MTs. In addition to the Rho-

mDia-EB1 MT stabilization pathway, other MT stabilization

pathways have been described [49,50].

An unusual property of selectively stabilized MTs that may

explain their longevity is the inability of their plus ends to add or

lose tubulin subunits [22,34,40,51]. Indeed, these MTs behave as

if their ends are capped, a property that may also explain their

resistance to MT antagonists and to dilution after detergent

permeabilization of cells [32,51]. The nature of this putative cap is

unknown. Some of the factors functioning in the MT stabilization

pathway have been localized to the ends of stable detyrosinated

MTs [42], yet none of these factors have been shown to directly

cap MTs to convert them to nondynamic MTs. A study with

permeabilized cell models showed that the putative capping

activity of stabilized MTs has characteristics of kinesin motor

proteins, including inhibition by the non-hydrolyzable ATP analog

AMP-PNP [51]. Here we tested the possibility that kinesin motor

proteins may be involved in the generation of selective MT

stability in cells. Among a group of kinesins implicated in MT

stability, we identify Kif4 as a novel factor in the selective

stabilization of MTs in migrating cells and provide evidence that

this protein functions downstream of other proteins in the Rho-

mDia MT stabilization pathway and contributes to cell migration.

Results

Kif4 motor domain induces stable MT formation in vivo
We first tested whether kinesins can induce the formation of

selectively stabilized MTs by expressing motor domains of kinesins

in serum-starved NIH3T3 fibroblasts that have low levels of stable

MTs as judged by the lack of detyrosinated and nocodazole

resistant MTs [30,34,42,52]. Throughout this paper we refer to

stable MTs with high levels of detyrosinated tubulin as Glu MTs

(reflecting the newly exposed glutamate residue formed by removal

of tyrosine from the C-terminus of a-tubulin) and their dynamic

counterparts as Tyr MTs. We tested kinesins that have been

implicated in MT stability based upon: 1) their interaction with

known microtubule stabilizing factors (Kif3, a kinesin 2 which

binds APC) [53], 2) their ability to stabilize MTs in epithelial cells

(Kif17, another kinesin 2) [54]; or 3) their ability to render MTs

nondynamic in vitro (Kif4, a kinesin 4 and ortholog of Xenopus

XKLP1) [55,56] and in spindle midzone MTs [57]. We were

particularly interested in testing Kif4, because the motor domain

of XKLP1 prevents tubulin subunit addition to or lose from MTs

in biochemical studies [56]. We chose not to explore a possible

role for kinesin-8 motors (such as Kif18A), which also regulate MT

dynamics, as they seem to primarily affect spindle MTs and do not

appear to stabilize MTs against antagonists [58,59,60].

Green fluorescent protein (GFP)-tagged constructs encoding the

motor domain of these kinesins were microinjected into nuclei of

starved NIH3T3 fibroblasts bordering an in vitro wound and after

2 hr of expression, levels of Glu MTs were assessed in fixed cells by

immunofluorescence. The motor domain of Kif4 induced Glu

MTs in serum-starved NIH3T3 fibroblasts compared to unin-

jected neighboring cells (Figure 1A, B). The Kif4 motor domain

induced only a subset of the MTs to become Glu MTs and did not

detectably alter the distribution of Tyr MTs, consistent with it

selectively, rather than globally stabilizing MTs. Glu MTs in the

Kif4 expressing cells were preferentially oriented toward the

leading edge (as in Figure 1A) in 70 +/2 7% (N=3) of the cells,

similar to the response of starved NIH3T3 fibroblasts to serum,

LPA or active Rho [30,52]. Kif3 or Kif17 motor domains did not

induced the formation of Glu MTs above background levels when

expressed in starved cells under identical conditions, even though

the proteins were expressed at comparable levels to Kif4 as judged

by GFP fluorescence (Figure 1A, B).

Glu MT staining is widely used as a marker for MT stability,

but it was formally possible that Kif4 altered the enzymatic

removal of tyrosine from a-tubulin instead of directly stabilizing

MTs. To test this possibility and as an independent test of MT

stabilization, cells expressing GFP-Kif4 motor domain were

treated with nocodazole to depolymerize dynamic MTs and then

stained for Glu tubulin. Starved NIH3T3 fibroblasts expressing

GFP-Kif4 motor domain had numerous nocodazole-resistant Glu

MTs whereas uninjected cells had only one or two short

nocodazole-resistant MTs (Figure 1C, D). We conclude that the

motor domain of Kif4, but not that of several other kinesins, is

sufficient to induce the formation of stabilized and posttransla-

tionally modified MTs in starved NIH3T3 fibroblasts.

Kif4 is required for LPA-induced formation of Glu MTs
To test whether Kif4 was necessary for formation of Glu MTs,

we depleted Kif4 with small interfering RNAs (siRNAs) and then

induced Glu MTs in serum-starved NIH3T3 fibroblasts by

treating with the serum factor LPA. As controls, we depleted

either glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or

Kif3A (we note that we were unable to test the role of Kif17, as it is

not expressed in NIH3T3 fibroblasts, see Figure S1 in File S1).

Kif4 depletion inhibited LPA-induced Glu MT formation while

control siRNAs had no effect (Fig. 2A–C). Kif4 depletion had no

noticeable effects on Tyr MTs (Figure 2A), suggesting that it did

not affect dynamic MTs. Knockdown of kinesins was verified by

western blot, which showed that Kif4 and Kif3A were knocked

down approximately 70% compared to GAPDH (control) siRNA-

treated cells (Figure 2D, E). A second siRNA sequence to Kif4 also

blocked Glu MT formation limiting the possibility that the effects

of the Kif4 siRNAs were due to off-target effects (Figure 2C and

Figure S2 in File S1). While Kif4 depletion inhibited Glu MT

formation, it did not affect LPA-induced actin stress fiber

formation (Figure S3 in File S1). These results show that Kif4 is

necessary for LPA-induced formation of Glu MTs and suggest that

it specifically regulates MTs rather than actin filaments down-

stream of LPA stimulation.

Endogenous Kif4 localizes to the ends of Glu MTs
We localized endogenous Kif4 to determine if it associated with

Glu MTs. Kif4 has been described as a chromokinesin and much

of Kif4 is localized in the nucleus before mitosis [61,62]. Because

of this, we first checked if Kif4 was present in the cytoplasm of

serum-stimulated starved NIH3T3 fibroblast and whether its

nuclear localization was regulated during the cell cycle. In starved

cells or at early times after serum stimulation, there was little
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detectable Kif4 in the nucleus and diffuse staining of Kif4 in the

cytoplasm; at 12–24 hr of serum stimulation, corresponding to late

G1/S and G2 phases, Kif4 appeared in both the cytoplasm and

the nucleus suggesting that Kif49s nuclear localization is cell cycle

regulated (Figure 3A). The cytoplasmic staining of Kif4 in

unstimulated cells, which mostly appeared punctate, was dramat-

ically reduced by siRNA–mediated depletion of Kif4 (Figure S4 in

File S1), indicating that the signal detected with the Kif4 antibody

was specific. In LPA-treated cells, Kif4 cytoplasmic staining

appeared to increase coincident with the formation of Glu MTs

and in some cells appeared as linear accumulations that paralleled

MTs (Figure 3B).

To address Kif49s localization further and in particular to probe

whether Kif4 might be associated with Glu MTs, we used total

Figure 1. Kif4 motor domain induces the formation of stable Glu MTs in starved NIH3T3 fibroblasts. A) Immunofluorescence of Glu MTs
and Tyr MTs in starved NIH3T3 fibroblasts expressing the indicated GFP-tagged kinesin motor constructs. Arrows indicate expressing cells. B)
Quantification of Glu MT formation in starved NIH3T3 fibroblasts expressing the indicated kinesin motors. n.70 cells; error bars, SEM from at least 6
experiments. C) Immunofluorescence staining of Glu MTs in GFP-Kif4 motor expressing NIH3T3 fibroblasts treated with 10 mM nocodazole for 1 hr.
The expressing cell (arrow) has nocodazole-resistant Glu MTs. D) Quantification of cells with nocodazole resistant Glu MTs. Error bars, SEM from 3
experiments. Bars: A, C 10 mm.
doi:10.1371/journal.pone.0091568.g001
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internal reflection fluorescence (TIRF) microscopy. Most of the

Kif4 puncta observed by TIRF microscopy were associated with

MTs with linear accumulations detected on both Glu and Tyr

MTs (Figure 3C). We were particularly interested in the ends of

Glu MTs, because localization at this site is readily quantifiable

and because other factors in the Rho-mDia pathway are localized

on the ends of Glu [38,42]. In serum-stimulated NIH3T3

fibroblasts, Kif4 puncta were detected on a number of Glu MT

ends and also along their length (Figure 3D, E). In contrast, fewer

Kif4 puncta were localized on Tyr MT ends (Figure 3D, E). To

account for random localization, we determined the number of

Kif4 puncta on Glu and Tyr MTs ends before and after shifting

the Kif4 image relative to the MT images: for both types of MTs,

shifting the images eliminated the colocalization with the ends,

indicating that the Kif4 localization on MT ends was not due to

random overlap of Kif4 puncta with MT ends. A similar analysis

of Kif4 localization in TC-7 cells, which have particularly distinct

Glu MTs, also revealed specific localization of Kif4 on Glu MT

Figure 2. Knockdown of Kif4 inhibits LPA-induced formation of Glu MTs in NIH3T3 fibroblasts. A, B) Glu MT and Tyr MT staining of LPA-
stimulated NIH3T3 fibroblasts transfected with the indicated siRNAs. C) Quantification of the percent of siRNA-treated cells that scored positive for
Glu MTs. Two different siRNAs targeting Kif4 (#1 and #2) gave similar results. n.100 cells; error bars, SEM from at least 5 experiments. D, E) Western
blots of NIH3T3 fibroblasts treated with indicated siRNAs and blotted for the indicated proteins. Quantification of the bands revealed over 70%
knockdown of the indicated kinesins. Bars: A, B, 20 mm.
doi:10.1371/journal.pone.0091568.g002

Kif4 Stabilizes Microtubules Downstream of Rho-mDia

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91568



ends (Figure S5 in File S1). These results show that endogenous

Kif4 specifically accumulates on some Glu MTs ends, consistent

with a direct involvement of Kif4 in MT stabilization.

Kif4 is required for induction of Glu MTs by factors in the
Rho-mDia-EB1 MT stabilization pathway
To test the relationship between Kif4 and the Rho-mDia-EB1

MT stabilization pathway, we asked if Kif4 was necessary for the

induction of Glu MTs stimulated by known intracellular activators

of the pathway. The formation of Glu MTs in serum starved

NIH3T3 fibroblasts can be stimulated by expressing the Dia

autoregulatory domain (DAD) of mDia, which relieves the

autoinhibition of the formin and activates it toward both actin

and MTs [34,40]. Microinjection of GST-DAD into serum-

starved NIH3T3 fibroblasts depleted of Kif4 did not induce Glu

MT formation, whereas it did when introduced into control

(GAPDH) depleted cells (Figure 4A, B). While GST-DAD failed to

induce Glu MTs in Kif4 depleted cells, it still stimulated actin

cable formation showing that Kif4 depletion did not prevent DAD

from activating mDia (Figure 4C).

To test further whether Kif4 functioned downstream of mDia in

the formation of Glu MTs, we tested whether Kif4 was necessary

for the induction of Glu MTs in serum starved NIH3T3 fibroblasts

treated with LiCl, an inhibitor of GSK-3b. Activation of mDia by

Rho leads to the inhibition of GSK-3b and this is necessary for the

formation of Glu MTs in NIH3T3 fibroblasts [63]. LiCl treatment

of NIH3T3 fibroblasts depleted of Kif4 failed to induce the

formation of Glu MTs, whereas similar treatment of control

(GAPDH) depleted cells did (Figure 4D, E). Combined, these

results suggest that Kif4 functions downstream of mDia in Glu MT

formation and that Kif4 is not involved in mDia’s stimulatory

effect on actin filaments. Consistent with this interpretation, we

did not detect a significant alteration in the distribution of mDia1

or EB1 in GFP-Kif4 motor expressing cells (Figure S6 in File S1).

Figure 3. Localization of endogenous Kif4 in interphase cells. A) Immunofluorescence images of Kif4, cyclin B and Tyr MTs in serum-starved
NIH3T3 fibroblasts (0 h) and in cells stimulated with serum for 12 and 24 h. B) Immunofluorescence images of Kif4, Glu and Tyr MTs in serum-starved
NIH3T3 fibroblasts (0 min) and in cells stimulated with LPA for 30 and 60 min. Arrowheads indicate linear accumulations of Kif4 that coaligned with
Glu and Tyr MTs. C) TIRF immunofluorescence images of Kif4, Glu and Tyr MTs in serum-stimulated NIH3T3 fibroblasts. Linear accumulations of Kif4 on
Glu MTs are indicted by arrowheads; on Tyr MTs by arrows. D). TIRF immunofluorescence images of Kif4 localization on Glu MT ends. The boxed
region in the merged image is shown at higher magnification in the right panels. E) Quantification of Kif4 on Glu and Tyr MT ends in serum-
stimulated NIH3T3 fibroblasts. To account for random colocalization, overlaid Kif4 images were shifted relative to Glu MT images and then recounted.
n.50 ends, error bars, SEM from three experiments. Bars: A, B, 20 mm; C, 5 mm. D, 10 mm; 5 mm (high mag).
doi:10.1371/journal.pone.0091568.g003
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Kif4 and EB1 require each other to generate stable MTs
EB1 functions downstream of mDia in the MT stabilization

pathway and overexpression of EB1 induces the formation of

stable MTs in serum-starved NIH3T3 fibroblasts [42]. We tested if

the induction of Glu MTs by Kif4 and/or EB1 expression in

starved NIH3T3 fibroblasts depended on each other. Kif4 or

control (GAPDH) depleted serum-starved NIH3T3 fibroblasts

were microinjected with GST-EB1 and the formation of Glu MTs

was assessed. GST-EB1 induced Glu MTs in control cells, but not

in Kif4 depleted cells (Figure 5A, B). Similarly, expression of either

GFP-tagged Kif4 motor domain or Kif4 full length in starved cells

knocked down for EB1 (Figure S7 in File S1), which inhibits Glu

MTs induced by LPA [42], did not induce Glu MTs (Figure 5C,

D). These results suggest that Kif4 and EB1 are mutually

dependent for inducing stable MTs.

Kif4 interacts directly with EB1
Given the mutual dependence of Kif4 and EB1 in inducing Glu

MTs, we tested whether the proteins might interact. Immunopre-

cipitation of endogenous EB1 revealed that endogenous Kif4

associated with EB1 in NIH3T3 fibroblast lysates (Figure 6A). Kif4

has predicted N-terminal motor, central stalk with coiled coils

domains and C-terminal tail domains (Figure 6B) [64]. Using

purified recombinant proteins, we found that EB1 interacted

directly with the tail of Kif4, but not the motor domain; there was

also a weak interaction of EB1 with the stalk domain of Kif4

(Figure 6C). Using fragments of EB1, we found that Kif4 tail

bound to the N-terminal domain of EB1, but not the C-terminal

domain (Figure 6C). These results show that Kif4 associates

directly with one of the previously established factors in the

pathway for selective stabilization of MTs.

Kif4 is necessary for efficient migration of cells
Selectively stabilized MTs have been implicated in cell

migration [17,42,65]. To test whether Kif4 contributed to cell

migration, we knocked it down and measured rates of migration of

NIH3T3 fibroblasts into in vitro wounds. Cells depleted of Kif4

still formed a normal confluent monolayer, but migration into the

wound was reduced about 40% (Figure 7A, B). Analysis of the cell

aspect ratio, a measure of overall cell polarization, revealed that

Kif4 depleted cells had a significantly reduced aspect ratio

compared to controls (Figure 7C). These results are consistent

with earlier studies suggesting that stable MTs in the lamella

contribute to cell migration by enhancing cell polarization and

strengthen the notion that Kif4 has non-mitotic functions.

Discussion

Previous studies revealed that long-lived Glu MTs in TC-7 cells

and NIH3T3 fibroblasts exhibit the unusual property of not

growing or shrinking for long intervals [33,34,42,51]. This

nondynamic behavior of Glu MTs contrasts with the bulk of the

MTs, which undergo dynamic instability and exhibit much more

rapid turnover. Glu MTs in detergent extracted TC-7 cell models

behave as if they are capped at their plus ends by an ATP-sensitive

activity that has characteristics of kinesin motors [51]. In this

study, we identified Kif4 as a kinesin that is necessary and

sufficient for the induction of Glu MTs and nocodazole resistant

MTs in NIH3T3 fibroblasts. Our results indicate that Kif4

functions in the Rho-mDia-EB1 MT stabilization pathway

because Kif4 depletion prevented the formation of Glu MTs in

response to extracellular (LPA) and intracellular factors (DAD,

LiCl and EB1) that activate this pathway, overexpression of Kif4

motor domain was sufficient to induce Glu MTs and Kif4

Figure 4. Kif4 functions downstream of mDia in the Rho-mDia-EB1 MT stabilization pathway. A) Immunofluorescence staining of Tyr MTs
and Glu MTs in NIH3T3 fibroblasts treated with GAPDH (control) siRNA or Kif4 siRNA and microinjected with GST-DAD. Arrows indicate injected cells.
B) Quantification of GST-DAD induction of Glu MTs in siRNA treated cells. n.50 cells; error bars, SEM from at least 4 experiments. C)
Immunofluorescence staining of GST-DAD and phalloidin staining of F-actin in NIH3T3 fibroblasts treated with GAPDH (control) or Kif4 siRNA and
microinjected with GST-DAD (arrows). D) Immunofluorescence staining of Kif4 and Glu MTs in starved NIH3T3 fibroblasts treated with indicated
siRNAs and 10 mM LiCl for 2 hr. E) Quantification of LiCl-induced Glu MTs in GAPDH control and Kif4 siRNA cells. n.50 cells; error bars, SEM from at
least 4 experiments. Bars: A, D 10 mm; C 20 mm.
doi:10.1371/journal.pone.0091568.g004
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interacted with EB1, a previously identified factor in the pathway.

Kif4 also localized to Glu MT ends where other factors in this

pathway have been localized [42]. Our data suggest a model in

which Kif4 contributes to the nondynamic behavior and stability

of Glu MTs potentially by accumulating on Glu MT ends.

Because only a subset of Glu MT ends had detectable Kif4

localization, we cannot rule out a model in which Kif4 may act

more transiently, perhaps by transporting another factor in the

pathway.

How does Kif4 stabilize MTs? Studies have identified two

activities for Kif4. A motor function for Kif4 in the delivery of L1

cell adhesion molecule was described in studies of rat neurons

[66,67]. Kif4 also appears to be required for transporting Gag

protein from murine leukemia virus and HIV [68,69], the

ribosomal protein P0 [66], and the mitotic protein PRC1 [70].

A MT stabilizing activity of the Xenopus Kif4, XKLP1 was

identified in in vitro studies [56]. In this study, the motor domain

of XKLP1 alone was shown to prevent the assembly and

disassembly of dynamic MTs in vitro. Three pieces of data from

our study are consistent with Kif4 generating nondynamic

stabilized MTs through its predicted stabilizing activity: 1)

induction of stabilized MTs by Kif4 motor domain, 2) localization

of Kif4 on Glu MT ends, and 3) the ability of Kif4 to function

downstream of other factors in the Rho-mDia MT stabilization

pathway. Such a role would also be consistent with Kif49s reported

role in cytokinesis where it contributes to the stability and

nondynamic nature of midzone MTs [57,61,70]. Additional

studies will be needed to test whether mammalian Kif4 exhibits

the direct MT stabilization activity of XKLP1 and/or whether

Kif4 transport activity is necessary for MT stabilization.

Given the potent stabilizing activity of the Kif4 motor domain

shown in the study of XKLP1, an interesting question arises in the

context of selective stabilization of interphase MTs: how is the

stabilizing activity of the motor regulated so that it selectively

stabilizes only a subset of MTs in vivo? One possibility is that other

factors in the Rho-mDia-EB1 pathway restrict its activity to

specific locations. Rho is activated near the leading edge of

migrating fibroblasts [71], but as yet there is no evidence that Rho

or mDia interact with Kif4. Another possibility is that EB1

interaction with Kif4 may regulate its stabilizing activity. The yeast

EB1, Mal3, interacts with the kinesin Tea2, and this interaction

activates its motor activity [72]. The mammalian kinesin-2, Kif17,

stabilizes MTs in epithelial cells in part by binding to EB1 [54]. A

number of destabilizing kinesin-13s also interact with EBs and this

interaction targets their activity to the MT plus end [73]. Perhaps,

the stabilizing activity of Kif4 needs to be targeted to or retained

on MT plus ends and this is accomplished by EB1. We note that in

addition to this possible role for EB1, it is likely that EB1 plays a

Kif4-independent role in MT stabilization, since EB1 interacts

with a number of other components implicated in MT stabiliza-

tion including mDia [42] and CLASPs [74].

Kif4 may also be regulated by phosphorylation, as has been

shown for other kinesins [75]. PKCe is activated and GSK3b is

inactivated downstream of mDia activation in fibroblasts and both

contribute to formation of stabilized Glu MTs [63]. The

downstream substrates of these kinases in the Rho-mDia

stabilization pathway have not been identified. Kif4 has 12 known

phosphorylation sites as shown by mass spectroscopy and two of

these are predicted to be sites for GSK3b (S1017 and S1186;

http://scansite.mit.edu/) [76]. Kif4 was recently shown to be

activated by Aurora B phosphorylation in mitotic cells [77]. It

Figure 5. Expressed Kif4 and EB1 require each other to induce Glu MTs. A) Immunofluorescence staining of Glu MTs in starved NIH3T3
fibroblasts treated with control (GAPDH) siRNA or Kif4 siRNA and microinjected with GST-EB1 (arrows). Human IgG (IgG) was used as an injection
marker for GST-EB1 injected cells. Arrows indicate injected cells. B) Quantification of the percentage of siRNA-treated cells exhibiting Glu MTs after
injection with GST-EB1 protein. n.100 cells; error bars are SEM from 4 experiments. C) Immunofluorescence staining of Glu MTs in starved NIH3T3
fibroblasts treated with control (noncoding) siRNA or EB1 siRNA and expressing GFP-Kif4 motor (arrows). D) Quantification of the percentage of
siRNA-treated cells exhibiting Glu MTs after expression of GFP-Kif4 full length (FL) or motor (M) constructs. n.100 cells; error bars, SEM from at least 4
experiments. Bars: A, C, 10 mm.
doi:10.1371/journal.pone.0091568.g005
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would be interesting to test whether it is phosphorylated by one of

these kinases during generation of stable MTs in LPA stimulated

cells.

Kif4 has a well characterized role in cell division but there is

growing evidence that Kif4 has roles in non-dividing cells (see

references above). Our results show that even in serum-starved

cells in G0 there is a small pool of cytoplasmic Kif4 and that

cytoplasmic Kif4 increases with either LPA or serum stimulation.

Consistent with a role in regulating interphase MT stability, we

find that the axial polarization and migration of serum-stimulated

cells was inhibited by Kif4 knockdown. Kif4 has a predicted

nuclear localization sequence, yet we observed that nuclear

accumulation of Kif4 was delayed for 12–24 h after serum-

stimulation, suggesting that its nuclear localization is regulated in a

cell cycle dependent fashion.

Members of the kinesin superfamily have been recognized for

some time to participate in the regulation of MT dynamics in

addition to their well-established role in acting as molecular

transporters. Indeed, a subset of the kinesins, those in the kinesin-

13 subfamily of which MCAK/Kif2 has been most intensively

studied, are well-established MT depolymerases that recognize

and promote the curved protofilament structure of depolymerizing

MTs [78,79]. The kinesin-8 family has also been implicated in

regulating MT dynamics [80]. There are fewer kinesins that have

been implicated in stabilizing MTs to generate long-lived and

post-translationally modified MTs. Indeed, other than Kif4/

XKLP1 the only other kinesin that has been reported to enhance

MT longevity is Kif-17 [54]. In our study, we found that Kif17 was

not expressed in NIH3T3 fibroblasts and expression of its motor

domain did not induce MT stability in starved fibroblasts. Since

the same construct induced MT stability in epithelial cells [54],

these results suggest that different kinesins may be used to regulate

MT stability in different cell types. It will be interesting to explore

other kinesin subfamilies to determine whether there are other

kinesins with the ability to generate long-lived, stable MTs.

Materials and Methods

Cell culture and chemicals
NIH3T3 cells (ATCC) were used throughout unless otherwise

noted and were cultured in 10% calf serum in DMEM (Gibco

BRL) as previously described [30,34]. TC-7 cells (ATCC) were

cultured as described previously [51]. MDCK cell lysate and Kif17

antibody (Sigma) were kind gifts from G. Kreitzer (Weill Cornell

Medical College, NY). All chemicals were from Sigma-Aldrich

unless otherwise noted.

Cell starvation and LPA and serum treatments
NIH3T3 cells were passaged onto glass coverslips and after

growing to confluency, were starved for two days in serum-free

DMEM plus 10+ mM Hepes, pH 7.4 [30,34,52]. After wounding

with a jeweler’s screwdriver, MT stabilization was induced by

adding 5 mM LPA for 2 hr. To examine Kif4 localization, starved

NIH3T3 cells were stimulated for various times with either 5 mM
LPA or 10% calf serum.

Microinjection
Serum-starved NIH3T3 fibroblasts at the edge of wounded

monolayers were pressure-microinjected with a micromanipulator

(Narshige International). DNA (50 mg/ml) was injected into nuclei

and recombinant protein (90 mM) was injected into the cytoplasm.

After microinjection, the injected plasmid was allowed to express

for 2 hr before fixation or further treatment with LPA.

cDNA Constructs
Human GFP-Kif4 motor (residues 1–356), GFP-Kif3A motor

(residues 1–354) and GFP-Kif17 motor (residues 1–335) were kind

gifts of G. Kreitzer (Weil Cornell Medical College, NY). Mouse

Kif4 full length was obtained from Open Biosystems and cloned

into the Clontech GFP-C1 vector to prepare mouse GFP-Kif4.

Human Kif4 fragments were subcloned into a maltose binding

protein (MBP) vector pMAL-c2E (New England Biolabs) from the

GFP-C1 vector after digesting with EcoRI and SalI and were

verified by sequencing.

Binding of purified proteins
Recombinant GST-EB1, GST-EB1-N and GST-EB1-C pro-

teins were previously described [42]. MBP-tagged Kif4 proteins

were expressed in Rosetta-2 bacteria (EMD Biosciences) and

purified according to manufacturer’s recommendations except

using a different buffer (20 mM Hepes buffer, 150 mM NaCl,

Figure 6. Kif4 interacts directly with EB1. A) Kif4 coimmunopre-
cipitates with EB1 from NIH3T3 fibroblast lysates. EB1 or control IgG
immunoprecipitates were western blotted for EB1 and Kif4. B) Diagram
of Kif4 protein fragments used for binding studies. C) Pull-down of
recombinant proteins. Equal amounts of GST or the indicated GST-EB1
proteins on glutathione-Sepharose were used to pull down MBP-
tagged Kif4 proteins. Bound proteins were analyzed by western blotting
as indicated.
doi:10.1371/journal.pone.0091568.g006
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pH 7.5). Binding studies were performed by incubating 0.3 mM
MBP-tagged Kif4 proteins in RIPA buffer (20 mM Tris pH 7.5,

150 mM NaCl, 1% Nonidet-P40, 1% sodium deoxycholate, 0.1%

SDS) with 0.3 mM GST-tagged EB1 proteins on glutathione-

agarose overnight at 4uC. After washing, bound proteins were

eluted with SDS sample buffer and western blotted.

Immunoprecipitation
Immunoprecipitation was performed overnight at 4uC using

pre-cleared NIH3T3 fibroblast lysates in 10% RIPA buffer plus

protease inhibitor cocktail (Sigma Aldrich) and MG132 (A.G.

Scientific) and 1 mg rabbit anti-EB1 antibody (Santa Cruz

Biotechnology) or non-immune rabbit IgG as a control. MG132

was critical to prevent degradation of Kif4 during the incubation.

Immunoprecipitates were recovered with Protein A/G beads (1:1

mix), washed, and the bound protein eluted with SDS sample

buffer and analyzed by western blotting.

siRNA transfection
Cells were transfected with siRNA (5 mM) using Lipofectamine

RNAiMax (Invitrogen) according to manufacturer’s instructions

and plating cells directly into the transfection media. After

overnight transfection, cells were serum-starved for 2 days.

siRNAs were designed using the BIOPREDsi website (www.

biopredsi.org/) and were obtained from Shanghai GenePharma.

siRNA sequences were as follows: GAPDH, 59-AAAGUUGU-

CAUGGAUGACCTT-39; Kif4#1, 59-GGAACUGGAGGGU-

CAAAUATT-39; Kif4#2, 59-GCAGAUUGAAAGCCUA-

GAGTT-39; KIF3a, 59-CAGGAAAUAACAUGAGGAATT-39;

EB1, 59-CUGCCAGACAAGGUCAAGAAA-39 Fixation. For

routine immunofluorescence and for staining Kif4 in NIH3T3

fibroblasts, cells on glass coverslips were fixed in methanol for

5 min at220uC. To detect Kif4 on the ends of MTs in TC-7 cells,

cells were cryofixed in isopentane cooled in a dry ice-liquid

nitrogen bath with constant stirring until it started to become gel-

like, which corresponds to approximately 2200uC [81]. After one

min in isopentane, the cells were freeze substituted in a 6:4

acetone:methanol on dry ice and then transferred to 280uC for

2 days. The cryofixed cells were gradually warmed by placing

them in an insulated container at 220uC container for 4 hr and

then transferred to TBS buffer (20 mM Tris pH 7.4, 150 mM

NaCl) and stained with antibodies.

Immunofluorescence staining
Rabbit anti-Glu-tubulin antibody (dilution 1:400) was described

previously [82]. Rat anti-Tyr tubulin (dilution 1:10 of culture

supernatant) was from European Collection of Animal Cell

Cultures. Kif4 monoclonal antibody (dilution 1:50) was described

previously [66] and was a gift from A. Caceres or was from Sigma-

Aldrich. Mouse anti-GFP antibody (dilution 1:200) was from

Sigma-Aldrich. Cyclin B antibody (dilution 1:100) was from Santa

Cruz. Secondary antibodies, absorbed to minimize interspecies

cross reactivity, were from Jackson ImmunoResearch and were

used as described previously [34]. Because most serum-starved

NIH3T3 fibroblasts have a small number of Glu MTs before LPA

stimulation, we scored cells as positive for Glu MTs if they had

more than five brightly and continuously labeled Glu MTs that

extended toward the cell periphery [30,52]. The stability of MTs

in cells expressing kinesin motors was tested by treating cells with

10 mM nocodazole for 30 min as described previously [30,83].

Western blotting
Samples were run on 4–15% polyacrylamide SDS gels and

transferred to nitrocellulose. Blots were incubated with the

following antibodies: anti-Kif4 mAb (1:500), anti-beta-catenin

(1;1000), anti-actin (Ab-5; 1:10,000), anti-Kif3A (1:100; BD

Transduction Laboratories), anti-EB1 (1:10,000), anti-Kif17

(1:1000) or anti-GAPDH (1;6000). After incubation with fluores-

cent IR680- or IR800-conjugated secondary antibodies (1:5,000,

Rockland Immunochemicals), reactivity was documented with an

Odyssey scanner (Li-Cor Biosciences).

Figure 7. Kif4 knockdown inhibits cell migration into wounded monolayers. A) Panels from phase movies of wounded monolayers of
NIH3T3 fibroblast treated with noncoding (NC) or Kif4 siRNAs. Bar, 15 mm. B) Quantification of the migration of NIH3T3 fibroblast monolayers after
treating with noncoding (NC) or Kif4 siRNAs. C) Quantification of the cellular aspect ratio of wound edge NIH3T3 fibroblast treated with noncoding
(NC) or Kif4 siRNAs and allowed to migrate for indicated times. Histograms in B, C are based on data from 3 experiments; error bars are SD.
doi:10.1371/journal.pone.0091568.g007
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Analysis of Kif4 localization at Glu MT ends
NIH3T3 fibroblasts or TC-7 cells immunofluorescently stained

for Glu tubulin, Tyr tubulin and Kif4 were mounted in TBS and

imaged by TIRF microscopy on a Nikon TE2000 microscope with

a 60X, 1.45 objective and an Orca II ER CCD (Hamamatsu)

controlled by MetaMorph software. To unambiguously identify

Glu MT ends, we overlaid Glu and Tyr MT images and

considered only ends of Glu MTs in which the Glu tubulin

staining abruptly stopped and was not ‘‘continued’’ with Tyr

tubulin staining. Circles (10 pixels in diameter) were then drawn

on the Glu MT ends and the overlaid on the corresponding image

of Kif4 staining. Kif4 puncta inside circles that also contacted Glu

MT ends were counted positive; those lacking Kif4 were counted

negative. To control for random overlap of Kif4 puncta with Glu

MTs, the circles were shifted 10 pixels in the x- and y-axes and the

number of Kif4 puncta appearing in the circles was determined.

Analysis of cell migration
Wounded monolayers of NIH3T3 fibroblasts treated with

noncoding or Kif4 siRNAs were imaged with a 20X ELWD Plan

Fluor objective (NA 0.45) at multiple positions every 10 min for

12 h on a Nikon TE300 microscope with a temperature controller

(37uC) and motorized xyz stage. The extent of cell migration was

measured as percentage of wound closure. The polarization of the

cells was measured by determining their aspect ratio (major axis/

minor axis) using Image J software.

Statistical anaylsis
Statistical significance was assessed by Chi square analysis for

non-parametric data and paired t-test for parametric data

(Fig. 7C). P values are indicated in the figures as: *, p,0.05; **,

p,0.01; ***, p,0.001.
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