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Abstract

The Student’s-t mixture model, which is heavily tailed and more robust than the Gaussian mixture model, has recently
received great attention on image processing. In this paper, we propose a robust non-rigid point set registration algorithm
using the Student’s-t mixture model. Specifically, first, we consider the alignment of two point sets as a probability density
estimation problem and treat one point set as Student’s-t mixture model centroids. Then, we fit the Student’s-t mixture
model centroids to the other point set which is treated as data. Finally, we get the closed-form solutions of registration
parameters, leading to a computationally efficient registration algorithm. The proposed algorithm is especially effective for
addressing the non-rigid point set registration problem when significant amounts of noise and outliers are present.
Moreover, less registration parameters have to be set manually for our algorithm compared to the popular coherent points
drift (CPD) algorithm. We have compared our algorithm with other state-of-the-art registration algorithms on both 2D and
3D data with noise and outliers, where our non-rigid registration algorithm showed accurate results and outperformed the
other algorithms.
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Introduction

Point set registration is a key component in many tasks such as

medical image registration [1], image analysis, computer graphics

[2] and shape recognition [3]. Iterative closest point (ICP)

algorithm [4], which assigns correspondences with the closest

distance criterion, is a popular algorithm for point set registration

because of its low computation complexity. However, ICP requires

the initial positions of the two point sets to be adequately close.

Gold et al [5] proposed the robust point matching (RPM)

algorithm that performs soft-assignment of correspondences and

transformation alternately. Chui et al [6] pointed out that the

processing of alternating soft-assignment of correspondences and

transformation in the RPM algorithm is equivalent to the

Expectation Maximization (EM) algorithm with Gaussian mixture

model (GMM), where one point set is considered as GMM

centroids and the other one is considered as data. Then Chui et al

[7] re-parameterized the deformation field using Thin-Plate-Spline

(TPS) and resulted in the TPS-RPM algorithm. Revow et al [8]

represented the contour-like point sets using splines and modeled

them by the probabilistic GMM formulation, where GMM

centroids were uniformly positioned along the contour. This

algorithm allows non-rigid transformation between point sets. Tsin

and Kanade [9] proposed a correlation-based point set registration

approach, which was later improved by Jian and Vemuri [10]

(TPS-L2). This approach treats the non-rigid point set registration

as the minimization of the L2 distance between two Gaussian

mixture models, and then parameterizes the point sets using

explicit TPS parameterizations.

Recently, GMM is widely used to model the non-rigid point set

registration as it is a natural and simple way to represent the given

point sets. However, most of the GMM-based non-rigid registra-

tion algorithms ignore significant effect of the outliers and noise.

Myronenko and Song [11] introduced the coherent point drift

(CPD) algorithm, which enforces the points to drift coherently by

regularizing the deformation field based on the motion coherence

theory (MCT) [12,13]. The CPD algorithm models the noise and

outliers using a uniform distribution and uses a manually defined

parameter v to denote the amount of noise and outliers. However,

the non-rigid registration is significantly sensitive to v and it is an

arduous task to obtain the optimal value of v. Wang Peng [14]

introduced a hybrid optimization method to estimate the

parameter v. But, the hybrid optimization algorithm slows the

non-rigid registration. Christopher et al [15] introduced a

Student’s-t mixture model (SMM) that is a finite mixture model

based on the Student’s-t distribution. The SMM is heavily tailed

and more robust against noise and outliers than GMM.

Gerogiannis et al [16,17] proposed a SMM-based rigid registra-

tion algorithm. However, their algorithms (Christopher et al [15]

and Gerogiannis et al [16,17]) can only obtain parameters such as

data mean, covariance matrix and mixing proportion, which limits

the algorithm to rigid registration.

It’s indicated that, theoretically, GMM is a special case of the

SMM [15]. Peel and McLachlan [18] modeled point sets with

outliers and noise for cluster analysis by using SMM. They later

treated the SMM as a weighted GMM integral form in order to

obtain closed-form solutions. But unfortunately, they did not

extend their approach for non-rigid point set registration. To date,
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it is still a challenge to obtain closed-form solutions for the non-

rigid point set registration by using the SMM [18–20]. In this

paper, we propose a novel SMM-based non-rigid point set

registration algorithm. Specifically, we formulate most of the

registration parameters, such as the deformation field, the equal

isotropic covariance, and the degree of freedom of the Student’s-t

distribution, and find their closed-form solutions using the EM

algorithm. The proposed algorithm is computationally efficient

and more robust against significant amount of outliers and noise

than existing algorithms.

The rest of this paper is organized as follows. We introduce the

main idea of the Student’s-t mixture model for non-rigid point set

registration and details of the proposed method in section 2.

Section 3 demonstrates experimental results on 2D contour-like

point sets, 3D surface-like point sets and 3D cloud-like point sets.

Finally, we present discussion and conclusions in section 4.

Methods

1 Student’s-t mixture model
The first point set XN6D = (x1,…xN)T is the D-dimension data

considered as a data point set. The other point set

YM6D = (y1,…yM)T is the D-dimension SMM centroid set. N and

M are the numbers of points in X and Y, respectively. The GMM

probability density function is defined as

f (xn; ym,wm,S)~
XM
m~1

wmfN (xn; ym,S) ð1Þ

where fN (xn; ym,S)~

exp {
1

2
xn{ymð ÞTS{1 xn{ymð Þ

� �

2pð Þ
D

2 DSD
1

2

, S is a

covariance matrix, and wm is a prior probability for ym. wm satisfies

the following constraint

0vwmv1,
XM
m~1

wm~1 ð2Þ

If the point sets contain outliers or noise, we model both the data

set and the outliers (or noise) set using two Gaussian mixture

models as follows

fN xn; ym,Sð Þ~ 1{eð ÞfN xn; ym,Sð ÞzefN xn; ym,cSð Þ ð3Þ

where e is a small value and c is a large value. efN xn; ym,cSð Þ
represents the outliers and noise in point sets. In brief, we model

the outliers and noise using the GMM with a different covariance

matrix.

A random variable u following the Gamma distribution is

defined if there are outliers and noise in point sets. Specifically, we

assume u,fC(a, b), where a and b are set as a = b = c/2.

Combining the definition to equation (3), equation (1) can be

rewritten as

f (xn; ym,wm,S)~

ð
wmfN (xn; ym,S=u)dH(u) ð4Þ

where H(u) is x2 distribution. The probability density function of

the Student’s-distribution mixture model is

ft(xn; ym,S,cm)~
C

cmzD

2

� �

DSD
1
2 cmC

1
2

� �� �D
2C

cm
2

� �
1z

d xn,ym,Sð Þ
cm

� �Dzcm
2

ð5Þ

where C(N) is a Gamma function, cm is the degree of freedom of

Student’s-distribution for ym, which can change its distribution

model to fit the data points, and d(x,y,S) = (x-y)TS21(x-y) is a

Mahalanobis square distance. We assume S=s2I, so as to simplify

the Student’s-t distribution for all SMM components. Then the

SMM takes the form

f (xn; ym,wm,s2,cm)~
XM
m~1

wmft(xn; ym,s2,cm) ð6Þ

Figure 1 shows the probability density of a univariate Student’s t-

distribution for various degrees of freedom.

Mathematically, the Student’s-t distribution is equivalent to the

Gaussian distribution when cR‘, and it is also equivalent to

standard Cauchy distribution when c = 1 [21]. The SMM is more

robust than the GMM due to its heavy tail for significant amount

of outliers and noise. According to equation(4), the SMM can be

represented as a weighted Gaussian mixture model with a Gamma

distribution and closed-form solutions can then be obtained by

using the EM algorithm.

2 Likelihood function for Student’s-t mixture model
We introduce the completion data Xc in EM framework to

obtain the closed-form solutions. Xc is defined as Xc = {X, z1, …,

zN, u1, …, uN}, where zmn = (zn)m. zmn = 1 if xn is corresponding to

ym, otherwise zmn = 0. ui (i = 1,2,…,N) is a random variable

following Gamma distribution to scale the Gaussian distribution.

As denoted in [22], we have

unDzmn~1*fC
1

2
cm,

1

2
cm

� �
ð7Þ

xnDun ,zmn~1*fN ym,
s2

un

� �
ð8Þ

The likelihood function L by parameterization is denoted as

follows

L xn; ym,wm,s2,cm

� �
~
XN

n~1

ln
XM
m~1

wmft xn; ym,s2,cm

� �
ð9Þ

The parameter set for non-rigid point set registration is defined

as Y= (w1, …, wM, c1,…, cM, y1,…, yM, s2). We separate

parameters from each other in the SMM likelihood function by

L Yð Þ~L ym,wmn,s2,cm

� �
~L wmð ÞzL cmð ÞzL ym,s2

� �
ð10Þ

and get the following formulas by combining equations(5), (7) and

(8)
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L wmð Þ~{
XN

n~1

XM
m~1

zmn ln wm ð11Þ

L cmð Þ~

{
XN

n~1

XM
m~1

zmn { lnC
1

2
cm

� �
z

1

2
cm ln

1

2
cm

� �
z

1

2
cm ln um{umð Þ{ ln um

� �ð12Þ

L ym,s2
� �

~

{
XN

n~1

XM
m~1

zmn {
1

2
D ln 2pð Þ{ ln s2{um

xn{ymk k2

2s2

 !
ð13Þ

3 Estimation of parameters
We maximize the conditional expectation of parameters in the

EM algorithm for estimation of parameters of non-rigid registra-

tion. The conditional expectation in the k+1 iteration is given by

Q Y kz1ð Þ;Y kð Þ
� �

~E L Y kz1ð Þ;Y kð Þ
� �� �

~{
XN

n~1

XM
m~1

p y kz1ð Þ
m ; xn

� �

ln w kz1ð Þ
m f xn; y kz1ð Þ

m , s2
� � kz1ð Þ

,c kz1ð Þ
m

� �� �
ð14Þ

where p y kz1ð Þ
m ; xn

� �
is a posterior probability density function that

is denoted as

p y kz1ð Þ
m ; xn

� �
~p kz1ð Þ

mn ~
w

kð Þ
m f xn; y

kð Þ
m , s2
� � kð Þ

,c
kð Þ

m

� �
PM

m~1

w
kð Þ

m f xn; y
kð Þ

m , s2ð Þ kð Þ
,c

kð Þ
m

� � ð15Þ

By maximizing equation (14), we can obtain the update equations

of w
kz1ð Þ

m ,c
kz1ð Þ

m ,y
kz1ð Þ

m and s2
� � kz1ð Þ

. In equation (14), Q Y kz1ð Þ;
�

Y kð ÞÞ is a function with respect to E
Y kz1ð Þ um; xn,zmn~1ð Þand

E
Y kz1ð Þ ln um; xn,zmn~1ð Þ. So we have to calculate

E
Y kz1ð Þ um; xn,zmn~1ð Þ and E

Y kz1ð Þ ln um; xn,zmn~1ð Þ for the

maximization ofQ Y kz1ð Þ;Y kð Þ
� �

. Because u is the conjugate prior

distribution with respect to fC, we can formulate E
Y kz1ð Þ

um; xn,zmn~1ð Þ as follows

E
Y kz1ð Þ um; xn,zmn~1ð Þ~u kz1ð Þ

mn ~
c

kð Þ
m zD

c
kð Þ

m zd xn,y
kð Þ

m , s2ð Þ kð Þ
� � ð16Þ

Using equation (16), EY kz1ð Þ ln um; xn,zmn~1ð Þ is denoted as

E
Y kz1ð Þ lg um; xn,zmn~1ð Þ~ ln u kz1ð Þ

mn zy
c

kð Þ
m zD

2

 !

{ ln
c

kð Þ
m zD

2

ð17Þ

where y(N) is a Digamma function and y
c

kð Þ
m zD

2

 !
{ ln

c
kð Þ

m zD

2

is a correction for lnum.

We separate w, c, and s2 from each other for equation (14),

which can then be rewritten as

Figure 1. A univariate Student’s-t distribution (m = 0, s = 1) for various degrees of freedom. The Student’s-t distribution corresponds to a
Gaussian distribution when cR‘.
doi:10.1371/journal.pone.0091381.g001
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Q Y kz1ð Þ;Y kð Þ
� �

~Q1 w kz1ð Þ;Y kð Þ
� �

zQ2 c kz1ð Þ;Y kð Þ
� �

zQ3 y kz1ð Þ, s2
� � kz1ð Þ

;Y kð Þ
� � ð18Þ

where Q1, Q2, and Q3 are respectively

Q1 w(kz1)
m ;Y kð Þ

� �
~{

XN

n~1

XM
m~1

p kz1ð Þ
mn ln w kð Þ

m ð19Þ

Q2 c kz1ð Þ;Y kð Þ
� �

~

{
XN

n~1

XM
m~1

p kz1ð Þ
mn { lnC

c
kð Þ

m

2

 !
z

c
kð Þ

m

2
ln

c
kð Þ

m

2
{ ln

c
kð Þ

m zD

2

 !

{
XN

n~1

XM
m~1

p
kz1ð Þ

mn c
kð Þ

m

2

XN

n~1

ln u kz1ð Þ
mn {u kz1ð Þ

mn

� �
zQ

c
kð Þ

m zD

2

 ! !ð20Þ

Q3 y kz1ð Þ, s2
� � kz1ð Þ

;Y kð Þ
� �

~{
XN

n~1

XM
m~1

p
kz1ð Þ

mn

2

{D ln 2pð Þ{ ln s2D
� � kð Þ

zD ln u kz1ð Þ
mn z

u
kz1ð Þ

mn xn{ymk k2

s2ð Þ kð Þ

 !ð21Þ

In equation (19), the update equation of w
kz1ð Þ

m is

w kz1ð Þ
m ~

PN
n~1

p
kz1ð Þ

mn

N
ð22Þ

In equation (20), c
kz1ð Þ

m is a solution to

1{y
c

kð Þ
m

2

 !
z ln

c
kð Þ

m

2
z

PN
n~1

p
kz1ð Þ

mn ln u
kz1ð Þ

mn {u
kz1ð Þ

mn

� �
PN

n~1

p
kz1ð Þ

mn

zy
c

kð Þ
m zD

2

 !
{ ln

c
kð Þ

m zD

2
~0

ð23Þ

Implementation details of equation (21) and how to force the

SMM centroids move coherently as a group are described in the

following subsection.

4 Non-rigid registration with SMM
The deformation field T of the non-rigid point set registration is

assumed as T(Y+v) = Y+v(Y), where v is the deformation vector

set. The regularization Q(Y) regularizes the norm of v, leading to a

smoothness deformation field that enforces the SMM centroids to

move coherently as a group to preserve the topological structure of

the point set [23,24]. Adding the regularization Q(Y)

toQ3 y kz1ð Þ, s2
� � kz1ð Þ

;Y kð Þ
� �

, equation (21) can be rewritten as

Q̂Q3~Q3 y,s2;Y
� �

z
l

2
w vð Þ ð24Þ

where l is the weight of the regularization representing the trade-

off between the goodness of non-rigid registration and regulari-

zation. After some manipulations similar to [11], Q̂Q3can be

rewritten as

Q̂Q3

kz1ð Þ
~{

XN

n~1

XM
m~1

p
kz1ð Þ

mn

2
{D ln 2pð Þ{ ln s2D

� � kð Þ� �

{
XN

n~1

XM
m~1

p
kz1ð Þ

mn

2
D ln u kz1ð Þ

mn {
u

kz1ð Þ
mn xn{y

kð Þ
m {G m,.ð ÞW kð Þ

��� ���2

s2ð Þ kð Þ

0
B@

1
CA

z
l

2
tr WT
� � kð Þ

GW kð Þ
� �

ð25Þ

where GM6M is a Gaussian kernel matrix with elements

gij~ exp { 1
2

yi{yj
b

��� ���2
� �

, which reduces the oscillating energy

at high frequency [24]. G(m,N) is a column vector in the kernel

GM6M. The parameter b defines the width of smoothing

Gaussian filter in [25]. WM6D is the weight matrix of GM6M.

Using
LQ̂Q

kð Þ
3

LW kð Þ~0, W (k) can be given by

W kð Þ~ diag P̂P kz1ð Þ1
� �

Gzl s2
� � kð Þ

I
� �{1

P̂P kz1ð ÞX{diag P̂P kz1ð Þ1
� �

Y kð Þ
� � ð26Þ

where P̂P kz1ð Þ is a M6N matrix with elements p̂p
kz1ð Þ

mn

~p
kz1ð Þ

mn u
kz1ð Þ

mn , representing the posterior probability density

correction by u
kð Þ

mn . 1 is a column vector of all ones. I is an identity

matrix. diag(?) represents a diagonal matrix. Using
LQ̂Q

kð Þ
3

L s2ð Þ kð Þ~0,

s2
� � kz1ð Þ

is denoted as

s2
� � kz1ð Þ

~

PN
n~1

PM
m~1

p
kz1ð Þ

mn u
kz1ð Þ

mn xn{y
kð Þ

m {G m,.ð ÞW kð Þ
��� ���2

D
PN

n~1

PM
m~1

p
kz1ð Þ

mn

ð27Þ

Theoretically, xn is considered as an observation in Bayesian

approach. The discrete latent variable zmn specifies which

component of the Student’s-t mixture model generates xn, and

the continuous latent variable umn specifying the scaling for the

corresponding equivalent Gaussian [15]. Consequently, W and s2

in our algorithm respectively correspond to the ones of the CPD

algorithm if zmn = 1 and umn = 1.

Hence, the main steps in this proposed algorithm are

summarized as follows.

Step 1:

Robust Non-Rigid Point Set Registration
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Initialize the parameter set Y= (cm, wm, s2,v), b, l and the

convergence threshold t. The initial values of w
0ð Þ

m and s2
� � 0ð Þ

are

w
0ð Þ

m ~1=M and s2
� � 0ð Þ

~

PN
n~1

PM
m~1

xn{y
0ð Þ

mk k2

D|M|N
, respectively.

Step 2:

Construct G: gij~ exp {
y

0ð Þ
i

{y
0ð Þ

j

2b

����
����

2
 !

:

Step 3:

Calculate the probability density for point sets using equation

(5).

Step 3: E-Step.

Calculate posterior probability density p
kz1ð Þ

mn using equation

(15) and u
kz1ð Þ

mn using equation (16), respectively.

Step 4: M-Step.

Estimate w
kz1ð Þ

m using equation (22), c
kz1ð Þ

m using equation (23),

W (k+1) using equation (26), and (s2)(k+1) using equation (27),

respectively.

Step 5:

Calculate the new positions of the SMM centroids using

Y (k+1) = Y (k)+G (k+1)W (k+1).

Step 6:

Return to step 3 if the registration error e.t.

Results

To compare our SMM-based algorithm with CPD and TPS-

RPM for non-rigid point set registration, we performed experi-

ments on 2D contour-like point sets with outliers and 3D surface

point sets with noise.

1 Qualitative evaluation
Here we present qualitative comparisons of the non-rigid

registration algorithms. The experiments were conducted on 2D

contour-like point sets, which were from the boundary of

cerebrospinal fluid (CSF) segmented from CT images.

In the first experiment, we segmented CSFs very carefully and

got a quite ideal segmentation result. The corresponding point sets

are shown in Figure 2(a). The black point set had 488 points and

the red one had 398 points. The two point sets were considered as

the ideal boundary of CSF without any outliers or noise. However,

the boundary in the central region (as indicated by the arrow in

Figure 2(a)) was tortuous, which caused the CPD algorithm to fail

to align correspondences between two point sets. Consequently,

the deformation field obtained by the CPD algorithm was aliasing

and the topological structure was changed. In Figure 2(d), several

correspondences in the margin are improperly aligned by using

TPS-L2. Most of red points were aligned accurately by the TPS-

RPM algorithm due to its TPS regularization. But because of its

explicit TPS regularization, the boundary of the central region is

too smooth to fit data points. Our SMM-based algorithm aligned

the central points more accurately than TPS-RPM and the

deformation field produced by our algorithm was smoother than

the one produced by the CPD algorithm. We set b = 2.2 and l = 2

in the qualitative experiments. The deformation vectors (as

indicated by the green vectors) are also displayed in Figure 2(b)

, Figure 2(e).

The deformation vectors produced by the four algorithms are

zoomed in for the central points in Figure 3. All points were

aligned properly by our algorithm (see Figure 3(a)). However,

some points were aligned improperly (as indicated by the arrows a

and b in Figure 3(b)) by the CPD algorithm, and several vectors

were crossed (as indicated by the arrows c and d in Figure 3(b)),

which broke the topological structure of the aligned point set. The

deformation vectors produced by TPS-L2 are more regularized

Figure 2. Registration of 2D CSF boundary points without outliers or noise. The 2D CSF points are segmented on the images from http://
www.insight-journal.org/rire/download.php. (a) Ideal CSF boundary points, the black point set contains 488 points and the red one contains 398
points. (b) The registration of our SMM-based algorithm (b = 2.2, l = 2), (c) CPD, (d) the Jian and Verimu’s algorithm [10] (TPS-L2), (e) TPS-RPM. The
green vectors denote the deformation vectors produced by non-rigid registration algorithms.
doi:10.1371/journal.pone.0091381.g002
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than the ones produced by our SMM-based algorithm and the

CPD algorithm. However, the TPS-L2 algorithm failed to align a

few correspondences in the central region (as indicated by the

arrow in Figure 3(c)). Similar to TPS-L2, the deformation vectors

produced by the TPS-RMP algorithm are regularized, but TPS-

RMP also failed to align the central points (as indicated by the

arrow in Figure 3(d)). Obviously, our SMM-based registration

algorithm is the most accurate one of the four algorithms.

Generally, segmentation results are sensitive to image quality

and the selection of parameters of segmentation algorithms.

Consequently, we may not segment targets very accurately and

obtain ideal point sets without outliers and noise. In the second

experiment, the comparison of the registration algorithms was

performed on the point sets of CSF boundary containing outliers

(see Figure 4(a)). There were 184 outliers clustered into 11 outlier

sets in the red point set and 54 outliers clustered into 4 outlier sets

in the black point set. The registration result by our algorithm is

shown in Figure 4(b). Figure 4(c) (the registration result by the

CPD algorithm) shows that one outlier set (as indicated by the

arrow) are shifted towards the CSF boundary, which implies the

CPD algorithm cannot align the correspondences between the

point sets when the counter-like point sets contain outliers.

Figure 4(d) shows the registration result (which is the worst) by the

TPS-L2 algorithm, indicating that outliers could seriously affect

the TPS-L2 algorithm. Similar to Figure 4(d), Figure 4(e) also

shows a bad registration result by the TPS-RPM algorithm,

indicating that the TPS-RPM algorithm failed to parameterize the

deformation field of CSF boundary exactly.

Figure 5 shows the iterations of the four non-rigid registration

algorithms. The first, second, third and fourth rows demonstrate

the iterations of our SMM-based algorithm, the CPD algorithm,

the TPS-L2 algorithm and the TPS-RPM algorithm, respectively.

Figure 3. Deformation vectors of central points. (a) Our
algorithm, (b) CPD, (c) TPS-L2, (d) TPS-RPM. The deformation vectors
produced by our algorithm are more regularized than the ones
produced by CPD, and the registration result of our algorithm is more
accurate than TPS-L2 and TPS-RPM. Some deformation vectors
produced by CPD were crossed, which broke the topological structure
of the point sets. The aligned point set was too smooth to fit the CSF
boundary points by using TPS-RPM.
doi:10.1371/journal.pone.0091381.g003

Figure 4. Registration of CSF boundary point sets with outliers. (a) CSF boundary point sets with outliers, 184 red outliers clustered into 11
outlier sets, and 54 black points clustered into 4 outlier sets. (b) Our algorithm, (c) CPD, (d) Jian and Verimu’s algorithm [7] (TPS-L2), (e) TPS-RPM. One
outlier set was aligned to the CSF boundary points by CPD, and two outlier sets are aligned to the boundary points by TPS-L2 and TPS-RPM.
doi:10.1371/journal.pone.0091381.g004
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The degree of the freedom c can change the Student’s-t

distribution model to fit the data points [26], making the

convergence of our algorithm only took 40 iterations, less than

the CPD algorithm, and significantly less than the TPS-L2

algorithm and TPS-RPM algorithm.

2 Quantitative evaluation
2.1 3D face point set registration. In this experiment, we

demonstrate the quantitative performance of the algorithms on 3D

face data with 392 points (which are from http://www.csee.ogi.

edu/myron/matlab/cpd/). We define the registration error as

er~

PN
n~1

xn{ynk kafter

PN
n~1

xn{ynk kbefore

|100% ð28Þ

where xn{ynk kafter denotes the Euclidean distance of the

correspondences in X and Y after registration, xn{ynk kbefore

denotes the Euclidean distance of the correspondences before

registration, and N is the amount of points in each point set.

Figure 6 shows the non-rigid registration results produced by

our SMM-based algorithm, CPD, TPS-L2 and TPS-RPM on the

3D face data, respectively. In the experiment, we set b = 2.2 and

l = 3, respectively. The registration error is 1.27% by using our

SMM-based algorithm, and the errors are 2.53%, 3.11% and

3.54% by using CPD, TPS-L2 and TPS-RPM respectively.

Figure 7 shows the registration results on the 3D face data

containing 40% artificially added Gaussian noise with s = 5. It is

challenging for non-rigid registration algorithms to align 3D points

with such noise. Figure 8 shows the registration results on the 3D

face data, hiding the artificially added noise. Figure 8(a) demon-

strates that our SMM-based algorithm can align the correspon-

dences precisely. Figure 8(b) and Figure 8(c) show that CPD and

TPS-L2 are able to align the point sets accurately except few

points in the margin (as indicated by the arrow in Figure 8(b) and

Figure 8(c)). Figure 8(d) shows a registration with serious error by

TPS-RPM, indicating a failure of TPS-RPM for handling the

marginal points with so much noise. In Figure 7 and Figure 8, the

registration error is 3.36% by using our algorithm, and the errors

are 10.7%, 15.4% and 21.1% by using CPD, TPS-L2 and TPS-

RPM respectively.

A series of experiments demonstrate that the registration of the

CPD algorithm is sensitive to the parameter v which indicates the

amount of noise in the point sets. However, this parameter had to

be set manually. We tested the impacts of v on 3D face data with

40% Gaussian noise and 40% uniform noise, respectively. Figure 9

shows the great impacts of v on registration. In practice, the

relationship between the optimal value of v and the amount of

Figure 5. Iterations of the four non-rigid registration algorithms. The convergence of our algorithm takes 40 iterations, while the CPD
algorithm takes about 50 iterations and the TPS-L2 algorithm and the TPS-RPM algorithm takes more than 50 iterations.
doi:10.1371/journal.pone.0091381.g005
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noise is nonlinear. It’s thus a challenge to get an optimal value of

v. Figure 10 shows the registration errors of the four algorithms on

the 3D face point sets with Gaussian noise and uniform noise,

respectively. The results demonstrate that our algorithm is more

accurate and robust than the other algorithms, especially in

presence of significant amount of noise.

Figure 6. Registration of 3D face data sets with 392 data points. (a) 3D face data set, (b) our algorithm (b = 2.2, l = 3, er = 1.27%), (c)
CPD(er = 2.53%), (d) TPS-L2(er = 3.11%), (d) TPS-RPM(er = 3.54%).
doi:10.1371/journal.pone.0091381.g006

Figure 7. Registration results on 3D face data containing 40% artificially added Gaussian noise with ó = 5. (a) 3D face data sets with
Gaussian noise (s = 5), (b) our SMM-based algorithm(er = 3.36%), (c) CPD(er = 10.7%), (d) TPS-L2(er = 15.4%), (e) TPS-RPM(er = 21.1%).
doi:10.1371/journal.pone.0091381.g007
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2.2 3D lung point set registration. In this experiment, we

demonstrate the quantitative performance of the four algorithms

on 5 different 3D lung datasets from 5 different subjects (which are

from http://www.dir-lab.com/index.html). Each dataset has a

pair of 3D lung point sets, one set was extracted from the

maximum inhalation phase image and the other set was extracted

from the maximum exhalation phase image. Each 3D lung point

set has 300 cloud-like points, which were selected by experts to

make the two point sets correspond to each other. It is a herculean

task for non-rigid registration algorithms to match cloud-like point

sets accurately due to lack of the topological structure or the

geometry structure in such sets. For the above reason, we did not

add any noise or outliers in these cloud-like point sets. The average

registration errors are 0.26 mm, 1.05 mm, 0.66 mm and 2.97 mm

by using our SMM-based algorithm, CPD, TPS-L2 and TPS-

RPM respectively. Figure 11 shows the non-rigid registration

results produced by our SMM-based algorithm and the other

three algorithms. Figure 11(b) shows that our algorithm aligned all

correspondences accurately. Figure 11(c) and Figure 11(d) show

that CPD and TPS-L2 are able to align most correspondences

except few points in the bottom of the lung. Figure 11(e) shows a

bad registration result by using TPS-RPM, indicating a failure of

TPS-RPM for handling these cloud-like points. Figure 12 shows

the registration errors of the four algorithms on the five subjects.

Discussion

The Student’s-t mixture model is heavily tailed and more robust

than the Gaussian model, and has recently received great attention

on image processing. We have proposed a probabilistic method for

non-rigid point set registration based on the Student’s-t mixture

model. We considered the alignment of two point sets as

probability density estimation, where one point set was represent-

ed as the Students’-t mixture model centroids, and the other one

was represented as the data points. We iteratively aligned the

SMM centroids by the EM algorithm and estimated the posterior

probabilities of centroids, which provided the correspondence

probability. Finally we estimated all registration parameters and

obtained closed-form solutions. It’s worth noting that, in the

Student’s-t mixture model, we formulate all registration param-

eters of each point using the expectation maximization (EM)

algorithm, making the coherent point drift algorithm modeled by

Figure 8. Registration results on 3D face data without the
display of artificially added noise. (a) Our SMM-based algorithm (b)
CPD, (c) TPS-L2, (d) TPS-RPM. The correspondences are aligned
accurately by our algorithm, which demonstrates that our SMM-based
algorithm is robust against the significant amount of noise. The CPD
algorithm and the TPS-L2 algorithm failed to align some correspon-
dences in the margin, and the TPS-RPM algorithm absolutely failed to
align the marginal face points.
doi:10.1371/journal.pone.0091381.g008

Figure 9. Impacts of v on registration of CPD. The registration results of CPD are sensitive to the parameter v.
doi:10.1371/journal.pone.0091381.g009
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the Gaussian mixture model be a special case of our algorithm.

Our algorithm is superior to the other algorithms for addressing

the non-rigid point set registration problem, especially when

significant amounts of noise and outliers are present.

Our contribution includes the following aspects. Firstly, we

modeled the non-rigid point set registration using the Student’s-t

mixture model (SMM). Our SMM-based algorithm is more robust

than CPD, TPS-L2 and TPS-RPM when the point sets contain

significant amounts of noise and outliers. Secondly, we formulated

all registration parameters of each point using the EM algorithm,

making the CPD algorithm to be a special case of our algorithm.

Thirdly, we estimated the prior probability wm in the EM

algorithm while it was assumed as a constant in the CPD

algorithm, which makes our algorithm robust against outliers and

noise. Finally, we used the EM algorithm to estimate all

parameters and obtained closed-form solutions except c, making

our registration algorithm computationally efficient.

The data used in preparation of this article are available to the

public. The 2D CSFs point sets are segmented from the images

from the Retrospective Image Registration Evaluation Project

(http://www.insight-journal.org/rire/index.php). The 3D face

data can be loaded from http://www.csee.ogi.edu/myron/

matlab/cpd/. The 3D lung point sets can be obtained from the

Deformable Image Registration Laboratory (http://www.dir-lab.

com/index.html.).

Figure 10. Registration errors on the face data with noise. (a) Registration errors on face data with Gaussian noise, (b) registration errors on
face data with uniform noise. Our algorithm is robust against uniform noise and Gaussian noise, and outperformed CPD and TPS-RPM.
doi:10.1371/journal.pone.0091381.g010

Figure 11. 3D lung point set registration on a subject. (a) 3D lung point sets before registration, (b) SMM-based algorithm, (c) CPD, (d) TPS-L2,
(e) TPS-RPM. Our algorithm performs the best.
doi:10.1371/journal.pone.0091381.g011
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