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Abstract

Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two
decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In
addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the
significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all
TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new
high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields
with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of
exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately
calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account
for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a
function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with
utilizing a traditional linear elastic approach in the presence of large deformation gradients.
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Introduction

Traction Force Microscopy (TFM) is a powerful methodology of

quantifying cellular forces during cell-material interactions. From

the early work developed by Harris et al. in 1980 to the pioneering

work by Oliver et al. and Dembo et al. in the mid 1990s, TFM

studies have demonstrated the important role that mechanical cues

play in cell biology by providing rigorous means of quantifying

cellular traction forces [1–9]. Starting in 2009, Maskarinec et al.

and Hur et al. showed the importance of recording all three

traction components in gaining a deeper and fuller understanding

of how cells interact with their substrate materials during

locomotion and spreading [10–12]. Recent studies have under-

scored the importance of measuring the full three-dimensional

(3D)traction profiles during cell migration, locomotion and cell-cell

interactions [13–16].

TFM computes cell-generated surface tractions from a set of

measured cell-induced displacement fields that are typically

recorded by using either a single particle tracking or image

correlation approach, such as digital image (2D) or digital volume

(3D) correlation [2,6,9–13]. Image correlation techniques are

generally advantageous over single particle tracking algorithms if a

high enough fiducial tracker particle density can be achieved.

They are generally less prone to error in the presence of noise and

they can be readily computationally implemented. Once the cell-

generated displacement fields are computed, the surface tractions

can be calculated either through an inverse Boussinesq formula-

tion or in cases where 3D displacement data is available, in a

forward formulation as presented by Franck et al. [11,12].

Alternatively, one can utilize a finite element framework to

compute surface tractions from the measured displacement values

[10,17].

In almost all of the currently reported TFM methods, the

underlying assumption is that the cell-generated material strains

are small enough to be analyzed within a linear elastic continuum

framework [18,19]. This assumption seems justified for most

published work showing mostly small cellular strains.

Utilizing a recently developed advanced high resolution digital

volume correlation (DVC) technique [20], we show that cells exert

large, or finite, deformations with strain magnitudes of up to 40%.

Motivated by these observations, we present a new reformulated

approach to calculating cellular traction fields in 3D, using a large

deformation formulation. This new methodology is capable of

providing unprecedented spatial detail of 3D cellular traction
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forces with a four to five fold signal-to-noise improvement over our

previous small deformations 3D TFM approach [11,12]. At the

same time we reduce the overall computation times by one order

of magnitude by implementing our algorithm on a personal

computer’s graphics processing unit (GPU) [20]. Finally, we

quantitatively compare and contrast the differences in calculated

cell tractions between the traditional small deformation (SD)

(linear) TFM framework and our new large deformation (LD)

(non-linear) methodology. We show that for small strains, the LD

approach automatically simplifies to the commonly used linear

framework, thus providing the most general and robust overall

approach. Our entire 3D TFM large deformation algorithm is

freely available from our website (franck.engin.brown.edu).

Results

The large deformation 3D TFM (LD 3D TFM) methodology

presented in this paper consists of two basic components,

analogous to our previous small deformation 3D TFM (SD 3D

TFM) technique. First, a novel fast iterative digital volume

correlation algorithm (FIDVC) [20] is used to compute the 3D

cell-generated displacement fields from a series of laser scanning

confocal microscopy (LSCM) 3D images. Second, the measured

3D displacement fields are converted to cellular tractions using a

LD continuum mechanics formulation.

High Resolution Improvements in Measuring 3D Cellular
Displacement Fields

Our newly developed FIDVC algorithm is capable of producing

spatial resolutions and accuracies far beyond most current 3D

methods, and is a significant advancement over our previously

reported DVC displacement algorithm. Figure 1 depicts the cell-

induced 3D displacement fields of a Schwann cell during

locomotion. For comparison purposes, Fig. 1(A) presents the cell

displacement analyzed with our previous DVC algorithm [21],

whereas Fig. 1(B) shows the results analyzed with our high

resolution FIDVC technique [20]. As can be seen from Fig. 1, the

recovered displacement magnitudes as well as their spatial

gradients are significantly better resolved using the FIDVC,

providing higher overall signal-to-noise ratio and finer spatial

detail of the cell-induced material displacement fields than our

previous methodology.

Due to the improvement in spatial resolution, we found that

cells are indeed capable of producing large deformations. Figure 2

presents color contour plots of three different cells seeded on

polyacrylamide gels: (A) a Schwann cell, (B) a polymorphonuclear

neutrophil, and (C) an NIH 3T3 fibroblast all generating large

displacement gradients, or material strains. The choice of plotting

the magnitude of the displacement gradient rather than a

particular strain component is to show with specific numbers that

the non-linear component can no longer be neglected, and that the

finite deformation behavior of the material and its associated

Lagrangian strains (E ) need to be accounted for in Eq. 5. This is

further illustrated in Fig. 2(D) showing significant deviations in the

traction estimates between the small strain, linear and finite

deformation theory as the displacement gradient term increases.

Figure 2(D) quantifies the deviation in surface tractions and total

force between the LD and SD analyses as a function of the

displacement gradient magnitude. This is not to say that linear

theory is always inappropriate, but rather to point out that for high

cellular displacement gradients the use of small strain theory can

produce significant error in reporting accurate cell tractions. We

believe these observations are primarily the result of our improved

spatial accuracy in better resolving the cell displacement fields.

Many of the currently available 3D displacement motion

estimation algorithms intrinsically neglect to account for LD in

their formulations, and as a result underpredict both the

magnitude and gradients of the cell-induced displacement fields

[20].

This deviation is illustrated in more detail in Fig. 3. Contrary to

small deformation theory that intrinsically assumes that any

deformed configuration is the same as the undeformed reference

configuration, finite deformation theory features large topograph-

ical surface changes as those experimentally observed in Fig. 2(A)–

(C). Fig. 3(A) schematically illustrates how the local x1{x2{x3

coordinate system of the undeformed (reference) configuration

maps into a deformed configuration y1{y2{y3 under the

application of a large deformation. There are two important

conclusions to notice: First, the coordinate system in the deformed

state is no longer equal to the coordinate system in the undeformed

state, i.e., x=y. Second, whereas in the undeformed state the

x1{x2 traction components are planar (2D), in the deformed

configuration the y1{y2 traction components are fully 3D with

respect to the original x1{x2{x3 coordinate system. Another way

to visualize this is by looking at the angle change between the surface

normals of the deformed and reference configuration. This is

illustrated in Fig. 3(B). If the reference and deformed surfaces

remain the same, as assumed in linear elasticity, then the two

normal vectors are identical and their vector dot product, or cosine

between the normals, is equal to one. However, as shown in

Fig. 3(B), in the presence of a non-negligible displacement gradient,

the surface normals can deviate significantly, causing an initially

Figure 1. Top-view displacement contours of a migrating Schwann cell measured by DVC and FIDVC. Side by side comparison of the 3D
cell displacements measured with (A) our previous DVC [21] and (B) our new FIDVC algorithm [20]. Cell outlines are shown in white. Scale
bars = 40 mm.
doi:10.1371/journal.pone.0090976.g001

LD 3D TFM
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planar surface to deform out-of-plane. Most of the deviation in the

n:n̂ term in Fig. 3(B) is caused by significant material rotations at the

free surface. These large surface rotations are seen in Figs. 3(C)–(D)

which presents an experimental x1{x3 cross-sectional image

obtained via confocal microscopy before and after applied cell

deformation. The material shown is a polyacrylamide substrate with

embedded 0.5 mm fluorescent particles, and the green line

represents the free surface of the sample. As a result, even if only

a 2D representation of the cell-induced tractions is sought, the

occurrence of large deformations requires a 3D imaging modality,

e.g., confocal microscopy, to resolve those surface shear tractions

properly. If instead, only a 2D image is acquired of the embedded

fluorescent fiducial markers before and after finite deformation, the

recovered displacements can only provide optical projections of the

actual 3D material displacements, which can yield significant

measurement error.

Comparison between Large and Small Deformation
Traction Results (Analytical Example)

To provide the reader with a more comprehensive analysis of

using a small (SD) versus large (LD) deformation framework to

calculate tractions, we present two specific examples. In the first

example, an analytical, simulated displacement dipole is generated

with a displacement gradient magnitude, D+uD = 0.5, whereas in the

second example a displacement field is experimentally measured

from a locomoting Schwann cell. In both cases, the surface

tractions, forces, and corresponding strain energies are compared

using SD and LD frameworks.

To validate our LD 3D TFM methodology and to quantify the

differences between a SD (linear) and LD TFM approach, we

generate two analytical displacement dipoles applied along a free

surface of the x1{x2 plane, in the form of

u(x)~A exp {
(x1{b1)2z(x2{b2)2z(x3{b3)2

2s2

 !
ð1Þ

with A being the amplitude, s the spread, and b the position of the

center peak of the Gaussian function (Fig. 2(D) insert). Here, A

and s were chosen such that the displacement gradient magnitude,

D+uD, yields a value of *0:5, which is similar to the ones

experimentally observed (Fig. 2).

Figure 4(A) plots the magnitude of the 3D displacement vector,

DuD, along the x1{x2 free surface plane, whereas Fig. 4(B) depicts

the magnitude of the displacement gradient, D+uD of the

analytically applied displacement fields along the same plane.

Figs. 4(A)–(B) serve as the input parameters to calculate the surface

tractions shown in Figs. 4(C)–(F). For comparison, Fig. 4(C)

displays the maximum principal infinitesimal strain (SD), p,

whereas Fig. 4(D) displays the maximum principal Lagrangian

strains (LD), Ep . The difference between the two arises from the

non-linear displacement gradient term in Eq. 5. The final row in

Figs. 4(E)–(F) compares the resulting surface tractions between the

Figure 2. Displacement gradient comparison for large deformation. x1{x2 and x1{x3 cross-sections of the calculated 3D displacement
gradient for (A) a Schwann cell (scale bar = 40 mm), (B) a polymorphonuclear leukocyte (scale bar = 20 mm) and (C) a NIH 3T3 fibroblast (scale
bar = 20 mm). (D) Total force (F ), root mean squared tractions (Trms) and maximum traction (Tmax) ratios plotted against the displacement gradient,
under the application of a 3D Gaussian-shaped displacement field (inset). The numerator in the ratios is calculated using the new large deformation
approach, whereas the denominator features the results from the traditional linear elastic, small deformation material approximation.
doi:10.1371/journal.pone.0090976.g002

LD 3D TFM
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SD and LD approaches. Fig. 4(E) presents the surface tractions as

calculated by our previous SD 3D TFM methodology, which

assumes the material to be linearly elastic, whereas Fig. 4(F)

presents the tractions calculated using a finite LD Neo-Hookean

material behavior, which has been shown to adequately describe

the material behavior of polyacrylamide at large strains [22].

Comparison between Figs. 4(E)–(F) shows that both the

magnitude as well as the spatial distribution of the calculated

surface tractions are different (see Figure S1). The *25%

difference in the recovered traction magnitude is a strong function

of the local displacement gradient, as illustrated in Fig. 2(D). The

larger the displacement gradient, the stronger the deviation

between the two traction fields. The spatial differences in the

traction fields are primarily attributed to the underlying topo-

graphical change of the substrate surface, which as shown in Fig. 3,

changes the spatial distribution of the in-plane and out-of-plane

tractions.

To conclude our validation, we compare the total applied

surface forces for both the SD and LD 3D TFM approaches to the

analytically computed force. This result is shown in Fig. 5(A),

which plots the ratios between the total force magnitudes of the

SD and LD 3D TFM approaches to the exact analytical value. As

expected, in the presence of high displacement gradients, the

linear, small strain (SD) approach underestimates the total force by

*15%, whereas our large deformation formulation (LD) predicts

it more accurately. The corresponding root mean squared and

maximum traction values are compared with the exact solution

and presented in Fig. 5(B). Figure 5(C) depicts the ratio in the

elastic strain energy ratios between the calculated values and the

exact solution. The deviation between the exact solution and the

large deformation formulation (LD) is mostly due to numerical

errors associated with calculating the material strains from the

imposed displacements (see Figure S2).

Figure 3. Undeformed and deformed surfaces due to a large deformation. (A) Schematic of how a material deforms from a reference
configuration, x, at time t0, into a deformed configuration, y, at time t1. (B) Angle change between the undeformed and deformed surface normals in
(A) n and n̂, under the application of a cell-simulated Gaussian displacement field profile. The x-axis denotes the maximum value of the full-field 3D
displacement gradient magnitude. The dot product represents the cosine of the angle between the two surface vectors. LSCM x1{x3 cross-sectional
images (C) in the absence of a cell, and (D) directly underneath a locomoting Schwann cell. Scale bars = 5 mm.
doi:10.1371/journal.pone.0090976.g003

Figure 4. Analytical example of prescribed Gaussian displace-
ment dipoles on the surface of a 3D LSCM imaging volume. The
(A) 3D surface displacement magnitude, uj j, and (B) displacement
gradient magnitude, +uj j. Profiles of calculated maximum 3D principal
strains calculated from the (C) infinitesimal ( p) and (D) Lagrangian (Ep)
strains. The corresponding traction magnitudes calculated on the (E)
undeformed surface, x, using a linear elastic constitutive model, tEj j, and
on (F) the deformed surface, y using a large deformation (LD)
constitutive model tEj j. Scale bars = 40 mm.
doi:10.1371/journal.pone.0090976.g004

LD 3D TFM
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Comparison between Large and Small Deformation
Traction Results (Experimental Cell Example)

In the experimental cell example, Schwann cells are seeded on

laminin-conjugated polyacrylamide substrates as detailed in the

Materials and Methods section. To highlight the differences in

calculated cellular strain and traction fields, we applied the same

comparative approach from the previous section to analyzing the

experimental cell displacement data. Figure 6(A) is a plot of the 3D

displacement vector field magnitude, DuD, directly underneath a

migrating Schwann cell. Fig. 6(B) plots the corresponding

displacement gradient magnitude, D+uD, of the measured displace-

ments in Fig. 6(A). Analogous to Fig. 4, Figs. 6(A)–(B) serve as the

input data to calculate the cell surface strains and tractions shown

in Figs. 6(C)–(F). Figure 6(C) depicts the maximum principal

infinitesimal strain, p, whereas Fig. 6(D) displays the maximum

principal Lagrangian strain, Ep . As before, the difference in the

strains arises from neglecting the squared gradient term in Eq. 5.

Figures 6(E)–(F) plot the respective surface traction magnitudes for

the linear elastic method (SD 3D TFM), DtED, and the finite

deformation method (LD 3D TFM), DtED. As in Fig. 6(E), the

surface tractions are calculated based on our previous SD 3D

TFM technique, whereas in Fig. 6(F), the tractions are calculated

using our new LD 3D TFM methodology. Similar to our

analytical example, the traction magnitude is underpredicted in

the linear case. More importantly, the spatial distribution and

features of the traction patterns are significantly different between

the SD and LD formulations due to differences in the surface

topography (illustrated in Fig. 3), and in the constitutive material

models (Eq. 9).

While total force and strain energy are convenient scalar

quantities to classify cellular contractility, root-mean-squared and

maximum traction measures present other useful metrics that are

not dependent on the actual projected cell surface area.

Figures 7(A)–(C) highlight the differences in total force, surface

tractions, and strain energy between the linear elastic and finite

deformation methodologies. When comparing Figs. 7(A)–(C), the

deviations between the tractions, in particular between the

maximum tractions are much higher than for the forces or strain

energies. This is not surprising since the average cell-applied

surface tractions generally feature small displacement gradients, as

to not produce significant differences between the two models.

The maximum tractions, on the other hand, will almost always

feature very steep underlying displacement gradients, +u, making

the calculation extremely sensitive to the deviation in the non-

linearity of the particular model used (for more examples, see

Figures S3, S4, S5, S6).

Discussion

This paper presents an advanced high resolution 3D TFM

technique capable of calculating fully non-linear cell-induced

material stresses and traction fields. By utilizing a recently

developed FIDVC technique, cellular displacement fields can be

measured with unprecedented resolution and at computation

times an order of magnitude faster than our previous 3D DVC

algorithm. The increase in computational speed and accuracy is

achieved through the extension of the well-known iterative

deformation method (IDM) [23–25] into three dimensions, and

the implementation of the algorithm on the GPU. GPU

implementation on a personal computer’s graphics card allows a

widespread user base to utilize our new LD 3D TFM code without

the need to resort to powerful computational cores. The

motivation of applying finite or LD continuum mechanics theory

in analyzing cellular traction fields was warranted through the

experimental observation of existing significant displacement

gradient profiles.

To illustrate the significance of the displacement gradient and its

role in determining the most appropriate theoretical TFM

framework, we provide a quantitative side-by-side comparison of

the traditionally SD 3D TFM framework to our LD 3D TFM

approach. As shown in Figs. 2–7, the deviation in the recovered

surface traction is significant at values of D+uD§0.5, exceeding 30%

error in the determined maximum traction values. Therefore we

recommend to always compute the displacement gradient at every

time point, to assess the appropriateness of a SD 3D TFM versus a

LD 3D TFM mathematical framework. We also show that for

quantities such as the total cell force and the strain energy, the

deviation errors between the two approaches are small, and a

linear framework might provide adequate results. Lastly, we

present a simple forward formulation of calculating LD 3D cell

surface tractions. Our entire LD 3D TFM algorithm is freely

accessible via download from our website (http://franck.engin.

brown.edu).

In conclusion, our new LD 3D TFM algorithm presented here

provides unprecedented spatial detail of 3D cellular traction fields

at computation times of a few minutes on an average personal

computer equipped with a GPU graphics card. We show that,

depending on the cell-induced displacement gradient magnitude,

the traditional linear TFM frameworks such as the Boussinesq

theory can introduce significant error (Figs. 2–7) in estimating

cellular tractions, and a large deformation formulation should be

used instead. To this end, we provide a straightforward method to

account for finite deformations, and thereby to accurately

Figure 5. Comparison of commonly reported metrics in TFM for the analytical example. Side by side comparison of the (A) total force, (B)
root mean squared (RMS) tractions and maximum tractions, and (C) strain energy for both the linear elastic, small deformation (SD) and non-linear,
large deformation (LD) models. All of the values are normalized by the exact analytical solution.
doi:10.1371/journal.pone.0090976.g005

LD 3D TFM
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Figure 6. Experimental example of a migrating Schwann cell on the surface of a 3D LSCM imaging volume. (A) Magnitude of the 3D
Schwann cell surface displacement field, uj j, and its (B) resulting displacement gradient magnitude, ( +uj j). Calculated maximum principal strains from
the (C) infinitesimal ( p), and (D) Lagrangian (Ep) strains. The corresponding traction magnitudes calculated on the (E) undeformed surface, x, using a
linear elastic constitutive model, tEj j, and on the (F) deformed surface, y using a large deformation (LD) constitutive model tEj j. Cell outlines are
shown in white. Scale bars = 40 mm.
doi:10.1371/journal.pone.0090976.g006

Figure 7. Comparison of commonly reported metrics in TFM for the experimental example. Side by side comparison of the (A) total force,
(B) root mean squared (RMS) and maximum tractions, and (C) strain energy for both the linear elastic, small deformation (SD) and non-linear, large
deformation (LD) models.
doi:10.1371/journal.pone.0090976.g007

LD 3D TFM
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calculate cell tractions in any material for which the constitutive

material behavior is known.

Materials and Methods

Large versus Small Material Deformations
In continuum mechanics, a material point undergoing a

deformation from location x to location y can be represented by

its material displacement, u(x) by

y~xzu(x): ð2Þ

Differentiating both sides with respect to x yields

+y~+(xzu(x))~Iz+u(x)~F, ð3Þ

where I is the identity matrix and F is the material deformation

gradient tensor. The gradient tensor physically describes the

shearing and stretching motion that a small line segment dx
undergoes as it moves from configuration x to configuration y. To

calculate the material strains associated with that deformation, we

compute the Lagrangian strain tensor as

E~
1

2
FT :F{I
� �

: ð4Þ

Equation 4 can be rewritten in terms of the material displacement

as

E~
1

2
+uz(+u)T z+u:(+u)T
� �

, ð5Þ

where the term +u is known as the displacement gradient.

Equations 2–5 are valid for any non-linear finite (large)

homogeneous deformation. In small strain and linear elasticity,

which is the fundamental framework of almost all TFM

methodologies, the displacement gradient term is assumed to be

small, i.e., +u%1, which simplifies Eq. 4 to

~
1

2
+uz(+u)T
� �

: ð6Þ

The quantity is known as the infinitesimal strain tensor. Most of

the previous TFM studies justified this assumption by showing that

the measured cellular strains were within 10% of their nominal or

principal values [26–28]. While several numerical papers have

suggested accuracy improvements in calculating cell tractions by

using a finite deformation formulation, no prior experimental

observation had been made to corroborate the necessity of such

approaches.

The observation presented in this paper, that cells can indeed

generate non-linear material strains, should not only have

implication for traditional TFM methodologies, but also for cell

traction assays that utilize very compliant micropillars [29–31].

Most micropillar systems calculate the applied post tractions

according to the Euler-Bernoulli beam theory, which applies only

to small deformations (SD) and strains. This may be entirely

adequate if the strains are indeed small, however in the presence of

large strains may warrant additional large deformation (LD)

analysis.

LD 3D TFM
The two significant advances in improving our traction

resolution capability are: (a) a completely new approach to

measuring the cell-imposed displacement fields, via our recently

developed Fast Iterative Digital Volume Correlation (FIDVC)

algorithm [20], and (b) a LD continuum mechanics formulation to

determine more accurate cell surface tractions. Figure 8 illustrates

the flow of our new LD 3D TFM technique. We will address each

part of Fig. 8 in detail below.

Analogous to our previous 3D TFM technique, 3D volumetric

image stacks are acquired using laser scanning confocal micros-

copy (LSCM). The overall dimensions of each stack are user-

dependent, but are generally within the range of 512|512|P

voxels (x1|x2|x3), where P ranges from 64 to 256 pixels. Using

a resonant Galvano mirror and Piezo objective nosepiece, 3D

volumes can be acquired within time lapse intervals as small as ten

seconds. To estimate the cell-generated displacements, the motions

of embedded submicron-diameter fluorescent particles are esti-

Figure 8. Flowchart of the large deformation high-resolution
3D TFM technique illustrating how cell surface tractions are
being calculated.
doi:10.1371/journal.pone.0090976.g008

LD 3D TFM
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mated using our FIDVC algorithm [20]. The top image in Fig. 8

shows an example of a three-dimensional volumetric image

recorded using LSCM, denoting the starting point for our

calculations. The submicron particles are shown in green and

the cell is superimposed in red.

Estimating 3D LD Cellular Displacements. Motivated by

the Gaussian-like material displacement field signature that cells

generate [6,10,12,13,32], we developed a new volumetric

displacement finding scheme, particularly suited to handle cellular

deformation fields. While our previous DVC approach provided a

robust approach in estimating cellular displacement fields, it

suffered from both slow computation times and lack of high spatial

resolution close to the origin of traction application. Capturing

highly localized displacement gradients such as those found near

the peak traction locust is challenging with any cross-correlation

metric, due to the intrinsic low-pass filtering characteristics of such

a technique. However, their numerical robustness, high precision

and easy implementability makes them the preferred choice over

single particle tracking algorithms. To address the challenges of

achieving high spatial resolution at low computational costs, we

recently developed a new technique called the FIDVC approach

[20].

While the mathematical and implementation details of this new

FIDVC algorithm can be found elsewhere [20], we provide a brief

summary of its key technical points. LD motion estimates are

generally captured by a 12 degree of freedom minimization

formulation, that accounts for rigid body as well as affine

transformation between small regions, or subsets, within an image

pair [33]. Such approaches have been well-documented in the

DIC communities, but they generally perform poorly in DVC

measurements, due to the large computational cost associated with

the third dimension [34]. To solve the issue of remaining

computationally efficient while computing large deformations in

3D volumetric data sets, we extended the well-known iterative

deformation method (IDM) into three dimensions and applied it to

calculating volumetric displacement fields. The working principle

of the IDM is schematically shown in the second step in Fig. 8,

where the deformation field between two volumetric images, I0

and ÎI0, is linearized into k-increments by means of incrementally

warping both image pairs by estimates of the cumulative

displacement field, uk. As Fig. 8 shows, the iterative process starts

by estimating the displacement field, u0, between the two

volumetric images, using our previously published DVC cross-

correlation formulation [12]. During the next step (k = 1), the

cumulative displacement field estimate,

uk~
X

k

uk{1zdu, ð7Þ

is used to symmetrically warp both the undeformed and deformed

images, I0 and ÎI0, into a new configuration, I1 and ÎI1, by

Ik(x)~I0(x{uk=2)

ÎIk(x)~ÎI0(xzuk=2):
ð8Þ

For the first warping operation, i.e., k~1, du = 0. For each

linearized k-increment, the DVC cross-correlation algorithm from

our previous 3D TFM method is used to calculate the material

displacement fields, uk, with high accuracy. This process is

repeated until both the reference and deformed image have

converged to the same intensity pattern, producing the cumulative

displacement field measure, uk. Convergence is generally achieved

within less than seven iterations, i.e., kv7.

One of the key benefits of the IDM method is the spatial

refinement of the local interrogation window size. In our previous

SD 3D TFM method we used a fixed interrogation, or subset, size

of 64 voxels, similar to many correlation-based algorithms. This

particular choice in subset size is typically governed by the

maximum intensity information that can be obtained within the

subset, such as the fiducial marker size, density and distribution.

Higher particle densities allow for smaller interrogation windows

to be used. To provide maximum spatial resolution, the smallest

possible subset size is sought while still maintaining high cross-

correlation robustness, which is often found at a window size of 64

voxels. However, by employing an interrogation window refine-

ment during the iterative IDM process, our FIDVC technique is

capable of reducing its subset size to 32 voxels and in some

instances even lower, without introducing significant correlation

error. The result provides higher overall spatial resolution than

previously possible, which is exemplified in Fig. 1.

Estimating 3D LD Cellular Tractions. After the cellular

displacements, u, are determined, the deformation gradient tensor,

F, is calculated via finite differences. As shown in Eq. 3, the

displacement gradient, +u, and the deformation gradient tensor,

F, are directly related to the gradients of the measured

displacement field. In order to provide the most robust measure

of the displacement gradient, we evaluated several differentiation

kernels specifically designed to mitigate sampling de-aliasing

errors. The current differentiation kernel featured in the here-

presented LD 3D TFM technique employs an optimal-11 tab

filter, which is described in detail by Farid et al. [35].

Similar to our SD 3D TFM approach, calculating cellular

surface tractions first requires determination of the material’s true

stress tensor, or Cauchy stress s. Given that for the LD, the

reference and deformed configuration are no longer identical,

computation of the Cauchy stress tensor involves the deformation

gradient tensor. While our technique is general enough to allow

numerical implementation of any constitutive material law, here

we present the formulation of the stresses in polyacrylamide (PA),

which can be well approximated by a Neo-Hookean material

model [22]. Thus its Cauchy stress, s, can be expressed [5] as

s~
m

J5=3
B{

1

3
trace(B):I

� �
zK(J{1)I ð9Þ

where the parameters m, and K are the material’s shear and bulk

modulus. Both of these quantities can be related to the Young’s

modulus of a material by

K~
E

3(1{2n)
, m~

E

2(1zn)
: ð10Þ

The quantities, J , and B are the Jacobian of F, and the left

Cauchy Green’s tensor, respectively. They are mathematically

defined as

J~det(F) ð11Þ

and

B~F:FT: ð12Þ

Finally, the surface tractions are calculated via the Cauchy

relations, i.e.,
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t~n:s: ð13Þ

Before Eq. 13 can be evaluated, the surface normals, n, need to be

determined. Although it is theoretically possible to estimate the

surface normals in the deformed state, via the deformation

gradient tensor and the reference surface normals, this procedure

is practically challenging, since the reference normals are often not

known. To address this issue, we developed a surface finding

algorithm that uses the LSCM images to determine the true

surface plane, i.e., n(x). Here, each deformed surface is

determined by utilizing the spatial locations of the fluorescent

beads in the raw LSCM images. A surface is built from scattered

grid data that is calculated using the local maxima of sliding

windows along the x1{x2 plane. The final surface is generated by

a least-squares fitting procedure of the scattered data, ensuring the

surface gradient is as smooth as possible [8]. The surface normals,

n(x), are calculated using the Delauney triangulation representa-

tion of the surface. Figure 9 shows two validation test cases of the

surface finding algorithm for two surfaces that are numerically

simulated from experimentally acquired volumes. In the first

example, Fig. 9(A) shows the angle deviation between the

calculated surface normal and the analytically imposed surface

normal, n~(0,0,1). The corresponding cross section of the

volumetric image is shown in Fig. 9(C) with the superimposed

outline (green) that is found by the surface finding algorithm.

Similar validation was performed on a surface that is defined by

f (x1,x2)~A sin
2p

l
x1

� �
zcos

2p

l
x2

� �� �
, ð14Þ

where A is the amplitude and l is the wavelength of the surface

profile, which were set to 3.6 mm and 13 mm. The root mean

squared difference between the calculated and analytically exact

values of the surface wave is within 1%. Using this procedure, the

full-field surface normals for each volumetric image are calculated,

and the surface tractions along that particular plane are computed

according to Eq. 13.

Resolution and Measurement Sensitivity. Since the

determination of the surface tractions involves calculations of

strains and experimental determination of material constants, the

sensitivity of our LD 3D TFM technique in terms of traction forces

needed to be assessed. This was accomplished by converting the

measured displacement and strain fields of control samples

(without cells) into surface tractions. Using standard statistical

error analysis, we determined the noise floor to be similar to that

for our SD 3D TFM technique. Specifically, we can accurately

resolve any displacements and strains greater than 0.5 mm and

1.0%, respectively, and hence by means of Eqs. 9–13, any stresses

and traction forces that are greater than 50 Pa or 50 pN/mm2 for

all samples with a Young’s modulus of 1.70 kPa. A similar analysis

of the maximum resolution sensitivity for 2D and 3D TFM

methodologies can be found elsewhere [12,32,38].

Global Force and Moment Balance. Analogous to our SD

3D TFM methodology, we compute the sum of all forces and

moments acting on any given control volume inside each PA gel,

to verify that static force and moment equilibrium are satisfied.

The overall procedure is identical to our previous methodology

[12]. Under all experimental conditions and imaging time points,

we found static equilibrium satisfied with force and moment

magnitudes on the order of 10{10{10{9 N, and 10{15{10{14

N:m, respectively, which is consistent with our determined

experimental noise floor, and similar to our previously reported

values [12].

Materials Preparation
The remainder of the Materials and Methods section is

dedicated to briefly describing the experimental conditions under

which cell-displacement data was acquired. Most of the described

Figure 9. Analytical benchmark validation examples of the free surface finder algorithm. (A) shows the results of the surface finder given
a perfectly flat surface, whereas in (B) the surface has regular imposed sinusoidal surface undulations. Scale bars = 20 mm.
doi:10.1371/journal.pone.0090976.g009
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materials procedures are based on our previously described

methods and protocols [11,12,39,40].

Glass Coverslips and Microscope Slides Surface
Modification

Circular coverslips (25 mm, Thermo Fisher Scientific, MA) are

chemically modified to allow covalent attachment of polyacryl-

amide substrates, using previously described protocols [2,11,41].

Briefly, glass coverslips are rinsed with ethanol and placed in a

petri dish containing a solution of 0.5% (v/v) 3-aminopropyl-

trimethoxysilane (Sigma-Aldrich, MO) in ethanol for 5 minutes.

Next, coverslips are washed with ethanol, and submersed in a

solution of 0.5% glutaraldehyde (Polysciences, Inc., PA) in

deionized (DI) water for 30 minutes. Activated coverslips are

washed with DI water and left to dry. Rectangular coverslides

(75|25 mm, Fisher Scientific) are chemically modified to create

hydrophobic surfaces, to facilitate gel detachment. Coverslides are

placed in a petri dish containing 97% (v/v) hexane (Thermo Fisher

Scientific, MA), 2.5% (v/v) (tridecafluoro-1,1,2,2-tetrahydrooctyl)-

triethoxysilane (SIT) (Gelest Inc., PA), and 0.5% (v/v) acetic acid

(Sigma-Aldrich, MO) for approximately 1 minute. Coverslides are

removed and left to dry.

Preparation and Mechanical Characterization of PA
Substrates

Thin films of different PA gels are prepared from 40% w/v

acrylamide (Bio-Rad, CA) and 2% w/v N,N-methylene-bis-

acrylamide (BIS) (Bio-Rad, CA) stock solutions as described

previously [2,11,41]. The final acrylamide-BIS concentration

ratios yield Young’s moduli of *238 Pa for Schwann cells,

*1500 Pa for neutrophils, and *820 Pa for 3T3 fibroblasts. All

substrates contain 14% (w/v) of fluorescent microspheres (0.5 mm

in diameter, carboxylate-modified, Life Technologies, NY). Cross-

linking is initiated through the addition of ammonium persulfate

(Sigma-Aldrich, MO) and N,N,N,N-tetramethylethylenediamine

(Invitrogen, CA). The PA gel solution is vortexed for about

30 seconds, and 35 ml of PA solution is pipetted on the surface of

the microscope slide and sandwiched with an activated glass

coverslip (25 mm in diameter), yielding a final thickness of around

60 mm.

Mechanical Characterization of PA Substrates
Mechanical characterization of all PA substrates is based on

previously established testing protocols on a custom-built uniaxial

compression apparatus. Briefly, gel samples are cast in circular

nylon molds (16 mm in diameter and 10 mm in height). Following

polymerization, the molds are removed and the samples are

submersed in DI water. The custom-built compression device

consists of a centrally positioned linear actuator (Series A,

Ultramotion, NY) and a built-in linear encoder, that provides

displacement information with a displacement resolution of 1 mm.

To measure the compressive forces acting on each sample, a 50-

gram linear force transducer (LCFA-50F, Omega Engineering

Inc., CT) is attached to the end of the linear actuator. To ensure

uniaxial compression conditions, a ball point tip-platten top is

placed on each gel sample, and all samples are carefully aligned

along the central compression axis of the linear actuator [11,21].

Nominal stress (s) is computed by dividing the measured applied

force by the circular contact area. Nominal strain (E) is calculated

by measuring the height change of each sample divided by the

sample’s original height. Each sample is compressed at three

different strain rates (10{2, 10{1, and 100) to capture any time-

dependence in the material behavior. Young’s modulus is

calculated from the slope of each linear stress-strain curve. As

shown previously, PA can be described as Neo-Hookean solid that

has the same Young’s modulus as the linear stress-strain

relationship in the limit of small strains [22]. The Poisson’s ratio

is taken to be 0.45, which is within the range of the typical values

chosen for TFM studies [26,42].

Functionalization of PA Substrates
To promote cell attachment to polyacrylamide films, substrates

are functionalized with laminin (Schwann cells) or fibronectin

(neutrophils and fibroblasts) using the bifunctional crosslinker,

sulfo-SANPAH (Pierce Chemicals, TX) [2,11,39–41]. Excess

water is removed prior to deposition of 100 ml of sulfo-SANPAH

(1 mg/ml) onto the surface of each film, following a 15-minute

exposure to UV light. The darkened sulfo-SANPAH solution is

aspirated and the procedure is repeated. The samples are

thoroughly washed with DI water and are covered with a solution

of 0.2 mg/ml laminin (Thermo Fisher Scientific, MA) or 0.2 mg/

ml fibronectin (Life Technologies, NY) diluted in 50 mM HEPES

(pH 8, Sigma Aldrich, MO). Samples are then left undisturbed at

40C overnight. Following overnight incubation, the substrates are

rinsed three times with 1| phosphate buffered saline and

sterilized with UV irradiation before depositing cells.

Cell Culture
Schwann cells were cultured as previously described by Mitchel

et al. [39]. Fibroblasts and neutrophils were cultured according to

protocols published by Franck et al. and Oakes et al. [11,12,40].

Schwann cells, fibroblasts and neutrophils were seeded at a density

of 1,000, 80,000, and 50,000 cells/cm2 on PA gels. Cells were

allowed to attach for 4 hours before initiation of the time-lapse

microscopy.

Live Cell Imaging
After an initial seeding period, three-dimensional image stacks

of individual cells on PA gels are acquired using a Nikon A-1

confocal system mounted on a TI Eclipse inverted optical

microscope, controlled by NI-Elements Nikon Software. Red

fluorescent microspheres are used as fiducial markers and excited

with a Diode (561 nm) laser. 512|512|P voxels (209|

209|P mm) confocal volume stacks are recorded at user specific

time intervals (e.g., 10 seconds to 30 minutes) with P ranging from

64–256 voxels (*20–77 mm). To ensure physiological imaging

conditions within the imaging chamber, temperature and pH are

controlled at 37uC and 7.4 during time-lapse recording, as

previously described [11,12]. Cellular surface outlines are deter-

mined either from phase images or from fluorescent membrane

labels.

Supporting Information

Figure S1 Analytically calculated Gaussian traction
dipoles on the substrate surface. Contour plot of the

analytically calculated traction vector magnitude due to the

prescribed Gaussian displacement dipoles presented in Fig. 4.

(TIF)

Figure S2 Measurement sensitivity thresholds in terms
of Cauchy stresses and surface tractions as a function of
substrate stiffness. A plot showing the noise floor of (A) the

Cauchy stress ( ) calculated from the deformation gradient that

was corrupted with Gaussian white noise with standard deviations

of (red) 0.1%, (green) 1%, and (blue) 10%; and (B) the tractions are

calculated from the Cauchy stress via the Cauchy relation. The
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[0,0,1] normal vector was additionally corrupted with an

appropriate level of Gaussian white noise. To compute the final

traction noise floor, the largest standard deviation for each Cauchy

stress component was chosen, thus representing the most

conservative traction noise floor estimate.

(TIF)

Figure S3 Experimental example of a migrating
Schwann cell on the surface of a 3D LSCM imaging
volume (Cell Example 2). (A) Magnitude of the 3D Schwann

cell surface displacement field, uj j, and its (B) resulting displace-

ment gradient magnitude ( +uj j). Calculated maximum principal

strains from the infinitesimal ( p) (C), and Lagrangian (Ep) strains

(D). The corresponding traction magnitudes calculated on the (E)

undeformed surface, x, using a linear elastic constitutive model,

tEj j, and on the (F) actual deformed surface, y using a large

deformation (LD) constitutive model tEj j. Cell outlines are shown

in white. Scale bars = 40 mm.

(TIF)

Figure S4 Comparison of commonly reported metrics
in TFM for cell example 2. Side by side comparison of the (A)

total force, (B) root mean squared (RMS) tractions and maximum

tractions, and (C) strain energy for both the linear elastic, small

deformation (SD) and non-linear, large deformation (LD) models.

(TIF)

Figure S5 Experimental example of a migrating
Schwann cell on the surface of a 3D LSCM imaging

volume (Cell Example 3). (A) Magnitude of the 3D Schwann

cell surface displacement field, uj j, and its (B) resulting displace-

ment gradient magnitude ( +uj j). Calculated maximum principal

strains from the infinitesimal ( p) (C), and Lagrangian (Ep) strains

(D). The corresponding traction magnitudes calculated on the (E)

undeformed surface, x, using a linear elastic constitutive model,

tEj j, and on the (F) actual deformed surface, y using a large

deformation (LD) constitutive model tEj j. Cell outlines are shown

in white. Scale bars = 40 mm.

(TIF)

Figure S6 Comparison of commonly reported metrics
in TFM for cell example 3. Side by side comparison of the (A)

total force, (B) root mean squared (RMS) tractions and maximum

tractions, and (C) strain energy for both the linear elastic, small

deformation (SD) and non-linear, large deformation (LD) models.

(TIF)
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