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Abstract

Time-course gene expression datasets, which record continuous biological processes of genes, have recently been used to
predict gene function. However, only few positive genes can be obtained from annotation databases, such as gene
ontology (GO). To obtain more useful information and effectively predict gene function, gene annotations are clustered
together to form a learnable and effective learning system. In this paper, we propose a novel multi-instance hierarchical
clustering (MIHC) method to establish a learning system by clustering GO and compare this method with other learning
system establishment methods. Multi-label support vector machine classifier and multi-label K-nearest neighbor classifier
are used to verify these methods in four yeast time-course gene expression datasets. The MIHC method shows good
performance, which serves as a guide to annotators or refines the annotation in detail.
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Introduction

Genes are annotated in gene annotation databases [e.g., gene

ontology (GO), KEGG, and MIPS], but the rate of gene

identification is faster than gene annotation. Given that large

amounts of identified genes, predicting the functions for un-

annotated genes is a challenge. To date, many effective machine

learning techniques are proposed. However, function prediction is

different from the common machine learning tasks. A gene may

have multiple functions and the function belongs to a set of genes.

Function prediction belongs to the multi-label learning (MLL)

task, and the common machine learning task is a single-instance

single-label learning. Therefore, establishing an effective and

learnable learning system for learning machines is necessary.

In this study, different types of data have different learning

approaches. We choose yeast time-course gene expression datasets

because they record gene responses to various environments.

Therefore, when searching for functions of a gene according to

their involvement in biological processes, measurements of

changes in gene expression throughout the time course of a given

biological response are particularly interesting [1].

Gene function prediction method for different purposes can be

grouped into supervised and unsupervised methods. Unsupervised

methods (i.e., clustering) do not usually use existing biological

knowledge to find gene expression patterns. Eisen et al. [2]

discovered classes of expression patterns and identified groups of

genes that are regulated similarly. Ernst et al. [3,4] clustered short

time series gene expression data using a predefined expression

model. Ma et al. [5] used a data-driven method to cluster time-

course gene expression data. Other popular clustering algorithms

include hierarchical clustering (HC), K-means clustering, and self-

organizing maps [6]. Supervised methods (i.e., classification) use

existing biological knowledge, such as GO, to create classification

models. Lagreid et al. [1] applied the If-Then Rule Model to

recognize the biological process from gene expression patterns.

GENEFAS [7] predicted functions of un-annotated yeast genes

using a functional association network based on annotated genes.

Clare [8] presented a hierarchical multi-label classification (HMC)

decision tree method to predict Saccharomyces cerevisiae gene

functions. Schietgat et al. [9] presented an ensemble method

(i.e., CLUS-HMC-ENS), which learns multi-tree for predicting

gene functions of yeast. Kim et al. [10] combined the predictions

of functional networks with predictions from a Naive Bayes

classifier. Vazquez et al. [11] predicted global protein function

from protein–protein interaction networks. Deng et al. [12]

predicted gene functions with Markov random fields using protein

interaction data. Nabieva et al. [13] proposed the functional flow

method, which is a network-flow based algorithm, to predict

protein function with few annotated neighbors. Recently, Magi et

al. [14] annotated gene products using weighted functional

networks. Liang et al. [15] predicted protein function using

overlapping protein networks. Mitsakakis et al. [16] predicted

Drosophila melanogaster gene function using the support vector

machines (SVMs).

The present study predicts gene function based on the

assumption that genes participating in the same biological

processes have similar expression profiles. We initially produce a

non-noise system by selecting genes. Then, the multi-instance

hierarchical clustering (MIHC) method is proposed to establish a

learning system. Finally, multi-label support vector machine

(MLSVM) and multi-label K-nearest neighbor (MLKNN) classi-

fiers are used to predict the function of genes in time-course
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expression profile. The experiment proves the feasibility and

efficiency of the proposed method.

Materials and Methods

Gene function prediction
In the GO database, the GO terms are organized as a directed

acyclic graph (DAG). In the GO hierarchical structure, the genes

are annotated at various levels of abstraction. When genes are

annotated with the GO terms, the genes are annotated with the

highest possible level of details, which corresponds to the lowest

level of abstraction [17]. Therefore, the goal of gene function

prediction is for the annotators to annotate genes with the highest

level GO terms. However, we can only obtain extremely few

positive genes with similar GO terms, and little information is

available for a machine learning system. To obtain more positive

genes and efficiently predict gene function, many researchers up-

Figure 1. Three types of learning task. (a) A gene is treated as a sample and owns one GO term only, which is called the single instance single
label. (b) A gene is treated as a sample and annotated by multiple GO terms. This relationship between gene and GO terms is multi-label. (c) Multiple
genes are treated as samples and share the same GO term. The relationship between genes and GO term is called multi-instance.
doi:10.1371/journal.pone.0090962.g001

Figure 2. GO in the last level up-propagate along GO DAG. (a) The bold GO terms all own at least l genes. (b) The bold GO terms are in the ‘
level of GO DAG.
doi:10.1371/journal.pone.0090962.g002
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propagate gene annotation along a GO hierarchical structure and

establish a learning system. The up-propagation approach can

substantially group the following two methods: cluster genes to a

certain GO level [8,9] and to a certain number [18].

Multi-instance learning (MIL) and MLL
Zhou et al. [19] provided a detailed description on MIL and

MLL. MIL and MLL are used to learn the function of

fMIL : 2I? {1,z1f g from the datasets Xi,yið ÞDXi(f
I ,yi[ {1,z1f gg and I~ xi Di~1,:::,nf g, and fMLL : I?2L

from the datasets xi,Yið ÞDxi[I ,Yi(Lf g and L~ yi Di~1,:::,nf g,
respectively.

The relationships between genes and annotations are found in

the GO database (Figure 1). Figure 1(b) shows that a gene is

annotated by multiple GO terms, and Figure 1(c) shows that the

genes are treated as instances of the sample with the annotation of

GO. This GO term can be represented by those genes. Therefore,

the relationships between gene and GO shown in Figures 1(b) and

1(c) are called multi-label and multi-instance, respectively.

MLSVM
SVM is an effective machine learning method. For classification

problems, SVM implements a large margin classifier by solving a

quadratic optimization program on the basis of the principle of

structural risk minimization. Li et al. [20] adjusted the SVM to

multi-label classification by improving the quadratic optimization

program. Suppose xi,Yið Þ is a training sample, where xi is the

feature vector and Yi is the sample label. Let y xi,yð Þ~1 if y[Yi

and y xi,yð Þ~{1, otherwise the SVM classification problem

model is described by the following optimization problem:

min
wy,by,jiy

1

2
wy

�� ��2
zC

Xm

i~1
jiytiy

s:t: y xi,yð Þ wy
:Q xið Þ

� �
zby

� �
§1{jiy, i~1,:::,m

jiy§0,i~1,:::,m

ð1Þ

where wy
:Q xið Þ is the inner product, Q xið Þ is the function that

maps xi to a higher dimensional space H, wy and by are the

parameters for representing a linear discriminant function in H,

jiy is the non-negative slack variable introduced in the constraints

to permit some training samples to be misclassified, C is the

parameter to trade off the model complexity, and tiy is the

amplification coefficient of the loss jiy for handing the class

imbalance problem [20,21].

Figure 3. MIHC algorithm and flow chart of function prediction.
doi:10.1371/journal.pone.0090962.g003
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Table 1. Number of genes and classes in each learning system.

Gene Number Class Number

Method Parameters alpha cdc15 cdc28 elution alpha cdc15 cdc28 elution

GNC l= 10 1213 1284 224 2089 190 204 27 281

l= 20 1216 1294 221 2050 119 129 19 166

l= 30 1215 1297 236 2027 84 89 18 122

l= 40 1180 1267 204 2022 56 61 10 99

l= 50 1205 1207 183 2038 51 42 4 80

GOLC i= 1 1334 1417 261 2269 16 15 13 15

i= 2 1332 1417 261 2269 49 44 29 51

i= 3 1324 1407 261 2263 177 182 85 209

i= 4 1278 1341 241 2179 335 342 106 381

MIHC null 1334 1417 261 2269 74 61 24 29

doi:10.1371/journal.pone.0090962.t001

Figure 4. Average AUC obtained from each learning system by MLSVM in all datasets.
doi:10.1371/journal.pone.0090962.g004
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Compared with the model proposed by Vapnik [22], the

aforementioned model performs better in multi-label classification.

Generally, multi-label classification is transformed to multiple

binary classifications. Class imbalance problem is a considerable

barrier for each binary classification. The parameter jiy in Eq. (1)

addresses this problem with a good performance.

MLKNN
The K-nearest neighbor is another stable popular machine

learning method. This method performs more rapid classification

than the SVM. Zhang et al. [23] improve KNN method for multi-

label classification, which served as our motivation in our proposed

model. In the MLKNN model, the candidate classes of a given test

sample ti are obtained by

Ytc~ yDy xi,yð Þ~1,xi[KNN tið Þ,y[Yf g ð2Þ

where KNN tið Þ is the k-nearest neighbor of ti among the training

set S. For each candidate class y[Ytc, the following likelihood

score is calculated

Score ti:yð Þ~
X

si[KNN tið Þ simScore ti,sið Þy si,yð Þ ð3Þ

where simScore ti,sið Þ is the similarity score of si to ti. The labels of

ti are calculated by

Yti~ yDScore ti,yð Þ§0f g ð4Þ

Gene selection
We are not interested in all genes in the gene expression profiles.

In gene function prediction, we assume that genes participating in

the same biological processes have similar expression profiles

[2,24]. For this proposal, we select genes that are significantly

correlated with each other in the same function. Let

G~ genei Di~1,:::,Nf g, L~ GOi Di~1,:::,Mf g, and G GOið Þ~
genej Dgenej[G and annotated by GOi

� �
, where N is the number

of genes, and M is the number of GO terms. For each GOi[L, we

draw a graph graphi~ vi,eið Þ for genes that significantly correlate

with each other. genei[G(GOi) represents the vi of graphi. An

Figure 5. Average AUC obtained from each learning system by MLKNN for each expression dataset.
doi:10.1371/journal.pone.0090962.g005
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edge exists between genei and genej if genei and genej are

significantly correlated. We define graphmax
i ~ vmax

i ,emax
i

� �
, which

is the maximum clique of graphi~ vi,eið Þ and Gi~ v’i Dv’i[vmax
i

� �
.

However, the maximum clique problem is complete NP-hard [25–

27]. In this paper, a greedy algorithm is used to deal with this

problem, and the non-noise system of expression data and

annotation are represented as S~ Gi,GOið ÞDi~1,:::,Mf g.

Learning system establishment method
Prior to the prediction of gene function, we establish a learning

system for classification. Learning system establishment is the

reconstitution of gene labels. GO DAG and MIPS are usually used

to aid the establishment of learning systems. Clare et al. [8] and

Schietgat et al. [9] established an MIPS-based learning system.

Based on GO DAG, we use the same approach as those in [8] and

[9]. We called this method GO level clustering (GOLC), which up-

propagates the gene annotations to a preset GO level ‘, such as the

first level (i.e., ‘~1) of the GO DAG, and cluster genes. In another

approach, Hvidsten et al. [18] used the method called gene

number clustering (GNC) to establish the learning system. The

GNC method let the annotations up-propagate along the GO

DAG until each annotation has at least l genes (l~10,20 in [18]).

Figure 2 shows the two aforementioned methods.

MIHC method
The HC method is a widely used machine learning technology

in the clustering algorithm. Johnson [28] proposed the extensively

studied hierarchical clustering scheme (HCS). The HCS initializes

all sample dissimilarities and then forms a cluster from the two

closest samples or clusters. These steps are repeated until all

samples are clustered to one group. Therefore, we can set a

terminal factor to stop the cluster rather than preset the number of

groups. Thus, HCS is suitable for all kinds of datasets.

To establish a more effective and efficient learning system, we

import HCS and propose the novel MIHC method to establish a

new learning system with the inherent characteristics of non-noise

system S by cluster GO terms. In this method, we treat the

relationship GOi between genei[Gi as multi-instance. Our samples

(i.e., GO) are different from the traditional HC [28–30] because

they are multi-instances not instances. Therefore, the distance of

each sample is redesigned. According to [31], we define the

distance as follows:

Table 2. Average AUC obtained from cdc28 dataset by MLSVM.

Parameter setting for n%

Method Parameters 10% 20% 30% 40% 50% 60% 70% 80% 90%

GNC l= 10 0.559 0.606 0.631 0.644 0.656 0.671 0.670 0.679 0.703

l= 20 0.569 0.603 0.607 0.625 0.638 0.646 0.650 0.650 0.661

l= 30 0.571 0.583 0.599 0.612 0.618 0.629 0.628 0.632 0.646

l= 40 0.529 0.543 0.552 0.567 0.577 0.574 0.578 0.589 0.602

l= 50 0.532 0.535 0.558 0.569 0.572 0.579 0.588 0.592 0.596

GOLC i= 1 0.594 0.617 0.634 0.635 0.648 0.643 0.641 0.651 0.653

i= 2 0.609 0.623 0.624 0.631 0.624 0.632 0.635 0.640 0.643

i= 3 0.601 0.644 0.657 0.658 0.654 0.661 0.656 0.643 0.668

i= 4 0.601 0.638 0.647 0.651 0.654 0.663 0.658 0.656 0.662

MIHC null 0.621 0.666 0.727 0.767 0.800 0.794 0.817 0.828 0.838

doi:10.1371/journal.pone.0090962.t002

Table 3. Average AUC obtained from cdc28 dataset by MLKNN.

Parameter setting for n%

Method Parameters 10% 20% 30% 40% 50% 60% 70% 80% 90%

GNC l= 10 0.550 0.576 0.591 0.599 0.603 0.609 0.619 0.619 0.620

l= 20 0.556 0.571 0.581 0.585 0.586 0.589 0.591 0.591 0.595

l= 30 0.548 0.559 0.567 0.568 0.571 0.571 0.575 0.578 0.575

l= 40 0.548 0.557 0.563 0.565 0.569 0.569 0.571 0.567 0.571

l= 50 0.544 0.552 0.556 0.559 0.560 0.564 0.564 0.564 0.567

GOLC i= 1 0.541 0.547 0.540 0.546 0.547 0.547 0.547 0.547 0.554

i= 2 0.548 0.557 0.558 0.565 0.563 0.569 0.569 0.566 0.566

i= 3 0.544 0.573 0.584 0.588 0.585 0.589 0.589 0.585 0.582

i= 4 0.552 0.580 0.591 0.592 0.592 0.594 0.592 0.591 0.594

MIHC null 0.655 0.733 0.741 0.743 0.765 0.774 0.776 0.777 0.774

doi:10.1371/journal.pone.0090962.t003
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Corr(Gi)~
X

corr(genei,genej)
�� ��,where genei,genej[Gi ð5Þ

D(GOi,GOj)~Corr(Gi|Gj) ð6Þ

Where corr(genei,genej) is the Pearson correlation of genei and

genej . Figure 3 shows the MIHC algorithm and flow chart of

function prediction.

Results and Discussion

Data
The yeast time-course expression datasets used in this study are

obtained from [32] (downloaded from http://genome-www.

stanford.edu/cellcycle/data/rawdata/). The four datasets are

yeast cell cycle expression data with different time points and

circumstances. We use the method in [3], preprocess the raw data,

and make the first value always equal to zero. Then, the average

transformation ti~ tizti{1ð Þ=2 is used to smooth out the spikes.

Gene annotation data can be obtained from GO [33] (download-

Figure 6. The ROC of a class obtained from the MIHC learning system by MLSVM for the cdc28 dataset. The ROC curves of the 20
repetitions of the experiment as well as the four subplots (a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and 80%, respectively, are shown.
doi:10.1371/journal.pone.0090962.g006
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ed from http://www.geneontology.org/GO.downloads.

annotations.shtml). GO terms are composed of three disjointed

DAGs, namely, biological process (BP), molecular function, and

cellular component. We only use BP for this study because it is

more complete than the two other disjointed DAGS.

Performance evaluation
Leave-one-out and leave-a-percent-out cross validation [14]

approaches are two of the most extensively used methods for

evaluating the performance of a function prediction algorithm.

The former is usually used in a small dataset, whereas the latter is

more suitable to a large dataset. The former method randomly

leaves one sample of the experiment dataset for testing and assigns

all of the other samples for training. This process is repeated many

times. Meanwhile, the latter method splits the experiment dataset

into two sets, namely, the training and testing sets. The training set

is composed of a specified proportion of positive and negative

samples, whose labels are known. Conversely, the labels of the

testing set are concealed from the classifiers. The proportion of the

training dataset is gradually increased to test the performance of

the learning system. The true labels of the testing set are compared

with the prediction labels to evaluate the performance of the

system. We select the latter method to evaluate the MIHC

method. To accurately measure the performance, the receiver

operating characteristic (ROC) curve and area under the ROC

curve (AUC) are introduced to quantify the results. The

classifications are often based on continuous random variables.

The probability of belonging in a class varies with different

threshold parameters. That is, the values of true and false positive

rates (TPR and FPR, respectively) vary with different threshold

parameters. The ROC curve parametrically plots the TPR versus

the FPR with varying parameters. The TPR and FPR are

calculated by Equations (7) and (8).

TPR~TP=(TPzFN), ð7Þ

FPR~FP=(FPzTN), ð8Þ

Where TP, FP, TN, FN represent the number of true positive

(TP), false positive (FP), true negative (TN), and false negative (FN)

predictions, respectively. Therefore, the TPR and FPR can reflect

the sensitivity and specificity of prediction. AUC is calculated to

quantify the content of the ROC curves. A reliable and valid AUC

estimate can be interpreted as the probability that the classifier will

assign a higher score to a randomly chosen positive sample rather

than to a randomly chosen negative sample.

Table 4. Results of the TP, FP, TN, and FN in MIHC by MLSVM.

First experiment results Second experiment results

n% Train/Test + 2 TP FP TN FN TP FP TN FN

10% Train 5 5

Test 44 207 19 45 162 25 22 30 177 22

20% Train 10 10

Test 39 202 25 31 171 14 29 38 164 10

30% Train 15 15

Test 34 197 24 40 157 10 26 44 153 8

40% Train 20 20

Test 29 192 23 51 141 6 21 68 124 8

50% Train 25 25

Test 24 187 17 54 133 7 20 55 132 4

60% Train 29 29

Test 20 183 17 44 139 3 15 44 139 5

70% Train 34 34

Test 15 178 11 41 137 4 12 50 128 3

80% Train 39 39

Test 10 173 7 37 136 3 8 36 137 2

90% Train 44 44

Test 5 168 4 40 128 1 5 36 132 0

1. ‘+’ means positive sample number; ‘2’ means negative sample number.
doi:10.1371/journal.pone.0090962.t004

Table 5. Average TPR and FPR in MIHC by MLSVM.

n% TPR FPR

10% 0.713 0.286

20% 0.733 0.255

30% 0.760 0.250

40% 0.757 0.264

50% 0.783 0.257

60% 0.808 0.272

70% 0.783 0.241

80% 0.745 0.234

90% 0.810 0.243

doi:10.1371/journal.pone.0090962.t005
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Experiment analysis
The four yeast time-course expression datasets are as follows:

alpha, cdc15, cdc28, and elution, which record the mRNA levels

of 18, 24, 17, and 14 time points in the whole cell cycle under

different circumstances, respectively. For each expression dataset,

GNC (l~10,20,30,40,50), GOLC (‘~1,2,3,4), and MIHC

methods are used to establish the learning system and compare

their performances. The rationale for setting the value of the

previously mentioned parameter is as follows. First, we want to

determine whether different numbers and different levels of gene

group remarkably change function prediction. Second, for the

GOLC method, the error rate of a given level is accumulated if a

deeper level gene function is required.

The number of genes in the MIHC learning system is consistent

with the non-noise system, but other learning systems cannot

maintain this feature. Table 1 shows the number of genes and

classes for each learning system. The MIHC learning system also

has better class features than other learning systems.

The MIHC learning system is tested on MLSVM and MLKNN

classifiers. In the classification task, the MLL task is decomposed

into a series of binary classification tasks. However, the negative

samples are far more than the positive samples for each class.

Therefore, class imbalance problem should be considered. Further

information about the number of positive and negative samples in

the cdc28 and elution experiment datasets are shown in Table S1

and Table S2 in the Supporting Information section. The training

samples have to be balanced, that is, the same numbers of negative

and positive samples are used for the training and testing sets. For

each class, we randomly select n% of positive samples and the

same number of negative samples as the training set, and the rest

are for the testing set. The value of n% increased from 10% to

90%. If the number of positive samples in one class is very low (less

than 10), the number of positive samples in the training set is

increased gradually. The experiment is repeated 20 times (or

more, and the mean value shows minimal changes) for each n, and

the mean value is calculated. Given the class imbalance, a high

accuracy can still be obtained when the classifier divides all the

samples into negative. In this study, AUC is used to evaluate the

performance of MIHC. We compare MIHC with GOLC and

GNC. For each expression dataset, the average results obtained

from each learning system by SVM and KNN classifiers are shown

in Figures 4 and 5. Tables 2 and 3 show the results from cdc28

dataset. As the n% increased, the AUC value of MIHC increased

drastically whereas those of GOLC and GNC increased slowly.

These results prove that generally, the classes in the MIHC

learning system are more interesting and the genes therein have

more correlation power compared with those in the classes in the

two other learning systems. This result can be explained as follows.

Genes are transcribed into mRNA and then into proteins. To a

certain extent, the level of mRNA can reflect the amount of

protein being generated. However, this amount may be influenced

by several factors, such as the decomposition of the speed of

mRNA and the switching off of proteins. Cells are so efficient that

only the necessary proteins are composed. Therefore, variances in

gene expression match the active level of biological process. GNC

and GOLC cluster GO by up-propagating it along with the GO

DAG. Meanwhile, the MIHC method treats the gene expression

profile as the feature of GO and clusters GO to ensure superior

performance. Moreover, when GO is further up-propagated, the

information that reflects the correlation between genes may be

lost. Only the GO dataset determines which genes own which GO

and whether or not the gene exerts a certain function of the GO in

the experiment dataset. However, we assume that genes exert all

their GO because the datasets in our study consist of cell cycle

expression data. Compared to GNC and GOLC, MIHC relies on

statistical correlation. Consequently, MIHC is less concerned

about whether or not the gene exerts the function. This problem

will be certainly considered in the future study.

Lastly, to obtain a satisfactory explanation in a real-world

problem, the ROC curve of a class obtained from the MIHC

learning system for the cdc28 dataset is shown in Figure 6. The

results for the TP, FP, TN, and FN are shown in Table 4 (given

that the experiment is repeated 20 times, only the middle-level

results for the 2 repetitions are shown in Table 4; the average TPR

and FPR in the 20 repetitions of the experiment are shown in

Table 5). In Figure 6, the ROC curves of the 20 repetitions of the

experiment as well as the four subplots (a), (b), (c), and (d) with

parameter n% = 20%, 40%, 60%, and 80%, respectively, are

displayed. As n increases, the number of positive samples in the

testing set decreases. The classifier sometimes pays a greater price

to identify as many positive samples in the testing set as possible.

The sample distribution in training set may also influence the

prediction result. The ROC curve in subplot (d) occasionally

exhibits unsatisfactory performance. The ROC curves of all the

datasets are presented in Figures S1 to S8, and the average TPR

and FPR of all the datasets are shown in Tables S3 to S10 in the

Supporting Information section.

Conclusion

In this paper, we propose the MIHC method to establish a

learning system, which is verified by SVM and KNN using four

yeast gene expression datasets. In the MIHC method, Pearson

correlation is the distance between multi-instance samples, and

HC is used to cluster the samples. Compared with other learning

system establishment methods, the MIHC learning system exhibits

better performance because the samples are more easily recog-

nized. This method also maintains data integrity with non-noise

system. To our knowledge, this study is the first to use HC

algorithm to cluster multi-instance samples.

Supporting Information

Figure S1 ROC curves are obtained from cdc28 dataset
by MLSVM. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are shown.

(TIF)

Figure S2 ROC curves are obtained from cdc28 dataset
by MLKNN. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are presented.

(TIF)

Figure S3 ROC curves are obtained from cdc15 dataset
by MLSVM. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are shown.

(TIF)

Figure S4 ROC curves are obtained from cdc15 dataset
by MLKNN. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are displayed.

(TIF)
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Figure S5 ROC curves are obtained from alpha dataset
by MLSVM. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are displayed.

(TIF)

Figure S6 ROC curves are obtained from alpha dataset
by MLKNN. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are presented.

(TIF)

Figure S7 ROC curves are obtained from elution
dataset by MLSVM. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are shown.

(TIF)

Figure S8 ROC curves are obtained from elution
dataset by MLKNN. The ROC curves of each learning system,

generated by average TPR and FPR, as well as the four subplots

(a), (b), (c), and (d) with parameter n% = 20%, 40%, 60%, and

80%, respectively, are displayed.

(TIF)

Table S1 Number of positive and negative samples in
MIHC from the cdc28 dataset.
(XLS)

Table S2 Number of positive and negative samples in
MIHC from the elution dataset.
(XLS)

Table S3 Average TPR and FPR obtained from the
cdc28 dataset by MLKNN.
(XLS)

Table S4 Average TPR and FPR obtained from the
cdc28 dataset by MLSVM.
(XLS)

Table S5 Average TPR and FPR obtained from the
cdc15 dataset by MLKNN.
(XLS)

Table S6 Average TPR and FPR obtained from the
cdc15 dataset by MLSVM.
(XLS)

Table S7 Average TPR and FPR obtained from the
alpha dataset by MLKNN.
(XLS)

Table S8 Average TPR and FPR obtained from the
alpha dataset by MLSVM.
(XLS)

Table S9 Average TPR and FPR obtained from the
elution dataset by MLKNN.
(XLS)

Table S10 Average TPR and FPR obtained from the
elution dataset by MLSVM.
(XLS)
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