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Abstract

Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various
types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal
prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we
hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal
transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells
(PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them
to attenuate albumin-induced IL-6, IL-8, TNF-a, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via
deactivation of tubular NF-kB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and a-SMA,
FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se
retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFa-stimulating
gene (TSG)-6 via P38 and NF-kB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-a overexpression were
suppressed by recombinant HGF treatment, while the upregulation of a-SMA, FN and collagen IV was attenuated by
recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture
in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly
reduced BUN, tubular CCL-2 and CCL-5 expression, a-SMA and collagen IV accumulation independent of changes in
proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein
overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.
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Introduction

Bone marrow-derived mesenchymal stem cells (BM-MSCs) with

multipotent differentiation capacity and immunomodulatory

properties are conceptualized as a potential therapy for tissue

regeneration and organ transplantation. A variety of animal

studies have shown that exogenously infused BM-MSCs can

ameliorate renal dysfunction in chronic kidney disease (CKD)

models. Semedo et al. reported an amelioration of functional

parameters in rodent remnant kidney models after intravenously

administered BM-MSCs, probably by modulating the inflamma-

tory response at sites of injury [1]. In collagen 4A3-deficient mice,

MSCs reduced interstitial fibrosis, though failing to delay disease

progression [2]. In the UUO model, BM-MSCs treatment was

conducive towards the recovery of renal function and interstitial

fibrosis [3]. In STZ-induced type 1 diabetes, BM-MSCs promoted

repair of injured glomeruli and prevented nephropathy [4,5].

These studies together hold promise for applying MSCs in clinical

trials in patients with CKD. However, the lack of understanding

on the mechanism of action of MSCs in CKD poses a great hurdle

for further development.

Most previous studies on potential mechanisms focused on the

regenerative capacity of MSCs in acute kidney injury (AKI). For

instance, silencing of IGF-1 in infused MSCs has been shown to

abolish the beneficial effect of these cells in kidney repair by

decreasing PTEC proliferation and increasing apoptosis [6].

Knockdown of VEGF reduced the effectiveness of MSCs in the

treatment of ischemic AKI by decreasing tubular survival [7].

Recently, microvesicles shed by BM-MSCs were shown to

completely reproduce the effect of MSCs by transferring

regenerative mRNA [8]. These studies might only explain the

effect of MSCs in AKI models in which renal cell death is a

common phenomenon. This regenerative mechanism, however,

may not adequately explain the beneficial effect of MSCs in CKD

because interstitial inflammation and fibrosis are the predominant
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cellular events leading to organ failure. A constant feature in most

forms of CKD is the presence of variable amounts of proteinuria.

We previously delineated that albumin and transferrin, the key

tubulotoxic components of urine proteins, induced oxidative stress

[9], C3 [10,11], CCL-2 [12], CCL-5 [13] and IL-8 [14] in PTECs

via an array of tightly regulated signaling pathway [14]. We

defined tubuloglomerular [12] and glomerulotubular crosstalk

pathways [15], and interaction between PTECs and infiltrating

monocytes/T cells via soluble factors and direct contact during co-

culture that together may amplify the tubulointerstitial inflamma-

tory cascade by overexpressing chemokine receptors in mono-

cytes/T cells [13]. In the diabetic milieu, exposure to high glucose,

glycated albumin, and AGE intermediates stimulated a proin-

flammatory and profibrotic phenotype in PTECs [16–19]. Given

the pivotal position of PTECs in the progression of CKD, we

hypothesize that BM-MSCs might play an active role in

modulating tubular inflammation and interstitial fibrosis under

an albumin-overloaded condition. This was investigated in vitro

using co-culture systems of PTECs and BM-MSCs, and in vivo in a

murine model of protein overload that resembles chronic

proteinuric CKD.

Materials and Methods

Reagents and antibodies
Renal Epithelial Cell Growth Medium (REGM) was obtained

from Lonza (Walkersville, MD, USA). BM-MSCs medium was

purchased from Invitrogen (Carlsbad, CA, USA). The enzyme

immunoassay kit detecting IL-6, IL-8, TNF-a, CCL-2 and CCL-5

were purchased from Peprotech (Rocky Hill, NH, USA) and HGF

ELISA kit, anti-HGF and anti-TSG-6 neutralizing antibodies were

from R&D Systems (Minneapolis, MN, USA). Anti-NF-kB

antibodies were acquired from Santa Cruz Biotechnology (Santa

Cruz, CA, USA). Antibodies to phospho-p42/p44 mitogen-

activated protein kinase (MAPK), phospho-IkBa (Ser32), and

phospho-p38 were obtained from Cell Signaling Technology

(Beverly, CA, USA). Antibodies to E-cadherin were purchased

form BD Biosciences (San Jose, CA, USA). Rabbit collagen IV

antibodies were obtained from Abcam (Cambridge, UK). Anti-

mouse and anti-rabbit secondary antibodies were from Dako

(Glostrup, Denmark).

Cell culture
Human primary PTECs were obtained from Lonza. The cells

were cultured in REGM at 37uC in 5% CO2 and 95% air. In all

experiments, there was a ‘growth arrest’ period of 24 h in serum-

free medium prior to stimulation. BM-MSCs purchased from

Lonza were tested for purity by flow cytometry and for their ability

to differentiate into osteogenic, chondrogenic, and adipogenic

lineages by the manufacturer. Cells were positive for CD105,

CD166, CD29, and CD44 and negative for CD14, CD34, and

CD45. The cells were cultured according to the manufacturer’s

instructions. Cells within passage 3 were used for all the

experiments in this study.

BM-MSCs differentiation assay
Cells were incubated in the presence or absence of 2 mg/ml

HSA for 24 h, followed by osteogenic, adipogenic and chondro-

genic differentiation with StemPro differentiation kits (Invitrogen,

Carlsbad, CA, USA). Osteoblasts were identified by staining with

Alizarin Red S (Sigma, St Louis, MO, USA) after 21 days of

incubation. The presence of adipocytes was demonstrated by

staining the cytoplasmic inclusion of lipid droplet with Oil-Red-O

(Sigma, St Louis, MO, USA) at 14 days of induction. Toluidine

Blue Stain (Sigma, St Louis, MO, USA) was used to examine the

formation of chondrogenic pellets after 14 days under differenti-

ating condition.

Co-culture set up and experimental conditions
Two co-culture systems were used to delineate the effect of

paracrine factors secreted by BM-MSCs on tubular inflammation

and EMT. In system I, PTECs were seeded onto the Transwell

insert (of 0.4 mm pore size) (Corning, Cambridge, MA, USA). BM-

MSCs were cultured in the lower chamber of the 12-well

Transwell plate (at a MSC/PTEC ratio of 1:5) and then co-

cultured with or without 2 mg/ml human serum albumin (HSA)

(CSL Bioplasma, Victoria, Australia) in upper chamber or both

chambers. Basolateral side of PTECs was exposed to the paracrine

factors secreted from MSCs in this system. Following 6 hours’ co-

culture, PTECs in the upper chamber were lysed, counted, and

Table 1. Primers for quantitative real-time PCR.

Gene Primers

Human IL-8 Forward-59- GTG CAG TTT TGC CAA GGA GT-39

Reverse-59- TAA TTT CTG TGT TGG CGC AG-39

Human CCL-2 Forward-59- GAT CTC AGT GCA GAG GCT CG-39

Reverse-59- TGC TTG TCC AGG TGG TCC AT-39

Human CCL-5 Forward-59- AGA GTC CTT GAA CCT GAA C-39

Reverse-59-TTG TAA CTG CTG CTG TGT-39

Human TNF-a Forward-59-CTG ACA TCT GGA ATC TGG A-39

Reverse-59-GTC TCA AGG AAG TCT GGA A-39

Human IL-6 Forward-59-TGA GAG TAG TGA GGA ACA AG-39

Reverse-59-CGC AGA ATG AGA TGA GTT G-39

Human E-cadherin Forward-59- GAA CGC ATT GCC ACA TAC AC-39

Reverse-59- ATT CGG GCT TGT TGT CAT TC-39

Human a-SMA Forward-59- ACC CAC AAT GTC CCC TCT A-39

Reverse-59- GAA GGA ATA GCC ACG CTC AG-39

Human FN Forward-59-CCC AAC TGG CAT TGA CTT TT-39

Reverse-59- CTC GAG GTC TCC CAC TGA AG-39

Human collagen IV Forward-59-CCA AGG AAG AGG TGG TGT GT-39

Reverse-59-GTG CTT CAC CAG GAG GTA GC-39

Human HGF Forward-59-TAC GCT ACG AAG TCT GTG-39

Reverse-59-TCT TGC CTG ATT CTG TAT GA-39

Human TSG-6 Forward-59-GGT TGC TTG GCT GAT TAT G-39

Reverse-59- GCT CAT CTC CAC AGT ATC TT-39

Human b-actin Forward-59-TCC ATC ATG AAG TGT GAC GT-39

Reverse-59-GAG CAA TGA TCT TGA TCT TCA T-39

Mouse CCL-2 Forward-59-CTC TTC CTC CAC CAC CAT-39

Reverse-59- CTC TCC AGC CTA CTC ATT G-39

Mouse CCL-5 Forward-59-TCT ACA CCA GCA GCA AGT-39

Reverse-59- TAG GAC TAG AGC AAG CAA TG-39

Mouse collagen IV Forward-59-GGT CCT GTC TGG AAG AGT TT-39

Reverse-59-AAA TAC AAT GGG AGG GAG AA-39

Mouse a-SMA Forward-59-CTC CTC AGG ACG ACA ATC GAC A-39

Reverse-59-CCT TTC CAC AGG GCT TTG TTT G-39

Mouse b-actin Forward-59-TCC ATC ATG AAG TGT GAC GT-39

Reverse-59-GAG CAA TGA TCT TGA TCT TCA T-39

doi:10.1371/journal.pone.0090883.t001
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subjected to real-time PCR to determine gene expression (at 6 h).

In system II, BM-MSCs were seeded onto the transwell insert

while PTECs were cultured at the bottom of the plate at the same

MSC/PTEC ratio. This system allows the apical surface of PTECs

to be exposed to the soluble factors secreted by BM-MSCs. To

study tubular inflammatory responses, PTEC RNA extracts and

culture supernatants from the lower chamber were assayed for

genes and proteins (at 6 h and 24 h, respectively) expression by

real-time PCR and ELISA. For tubular EMT study, PTECs were

exposed to 5 mg/ml HSA and examined for gene and protein (at 3

days and 6 days, respectively) expression by real-time PCR and

Western blot in the setting of co-culture system II.

Total RNA extraction and real-time PCR
Total RNA was extracted using Trizol reagent (Invitrogen).

One microgram of total RNA was reverse transcribed to cDNA

with High Capacity cDNA Reverse Transcription Kits (Applied

Biosystems, Foster City, USA). Gene transcription was detected by

real-time PCR in an ABI Prism 7500 sequence detection system

(Applied Biosystems) using specific primers designed from known

sequences in the GenBank. The primer sequences were listed in

Table 1. Amplified cDNAs were analyzed by the SDS software

(Applied Biosystems) and target values were normalized to b-actin

mRNA using relative quantification method.

Antibody-based cytokine array of BM-MSCs conditioned
medium

Antibody-based cytokine array (RayBiotech, Norcross, GA,

USA) was performed on 50-fold concentrated supernatants from

BM-MSCs incubated with or without HSA for 24 h as previously

described [20]. Quantitative human cytokines were measured

using Phoretix Array (Totallab, Newcastle upon Tyne, UK)

according to the manufacturer’s instruction. Part of the results was

confirmed by real-time PCR and ELISA.

ELISA of proinflammatory cytokine synthesis
Growth-arrested PTECs were exposed to HSA for 24 h with or

without BM-MSC co-culture. Cells culture supernatants were

collected and stored at 270uC until protein assay. The IL-6, IL-8,

TNF-a, CCL-2, and CCL-5 protein level in culture supernatants

was determined by a commercial assay kit (Peprotech).

Western blot analysis
Total protein was harvested with lysis buffer that contained

protease inhibitor cocktails (Sigma, St Louis, MO, USA). The

protein concentrations were determined by Pierce BCA method

(Thermo Scientific, Rockford, IL, USA). Twenty micrograms of

total protein were electrophoresed through a 12% SDS–PAGE gel

before transferring to a PVDF membrane. After blocking for 1 h

at RT in blocking buffer (5% BSA in TBS with 0.05% Tween-20),

the membrane was incubated for 16 h with primary antibody in

TBS-Tween-20. The membrane was incubated with a peroxidase-

labeled secondary antibody and the antigen–antibody reaction was

detected with ECL plus chemiluminescence (Amersham Pharma-

cia Biotech, Arlington, TX, USA).

Immunofluorescence to detect NF-kB translocation
Nuclear translocation of NF-kB was evaluated by immunoflu-

orescence using rabbit anti-NF-kB p65 antibody (1:50) and FITC-

conjugated goat anti-rabbit IgG (BD Biosciences). PTECs grown

on cover slips were fixed with 3% paraformaldehyde, blocked with

2% BSA in 0.2% Triton 6100, and then incubated with the NF-

kB p65 antibody. The slides were washed in PBS, and mounted

with Vectashield plus 49,6-diamidino-2-phenylindole (DAPI)

(Vector Laboratories, Burlingame, CA, USA). Cells were visual-

ized under a Leica microscope with the appropriate filters.

Figure 1. Tri-lineage differentiation capacities of BM-MSCs upon exposure to albumin. BM-MSCs were incubated with or without HSA for
24 h prior to induction of differentiation. Osteogenic differentiation was evidenced by Alizarin Red staining of mineralization (top panels) at day 21.
Oil droplet stained by Oil-Red-O revealed adipogenic differentiation (middle panels) at day 14. Chondrogenic differentiation was demonstrated by
toluidine blue staining of extracellular matrix formation (bottom panels) at day 14.
doi:10.1371/journal.pone.0090883.g001
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Figure 2. Effect of BM-MSCs on tubular inflammation in co-culture system I. (A) Co-culture set up of human PTECs with human BM-MSCs in
system I. The basolateral aspect of the PTEC monolayer was exposed to MSCs. HSA (2 mg/ml) was added to the upper chamber of the Transwell
insert. (B) After 6 h incubation, proinflammatory gene expression was determined by real-time PCR. Results are from three individual experiments. (C)
Using co-culture system I, both chambers of the Transwell insert were supplemented with HSA. (D) Proinflammatory cytokine and chemokine
expression in PTECs was assessed by real-time PCR after 6 h incubation. Results are from three individual experiments. *P,0.05, **P,0.01,
***P,0.001 versus PTECs exposed to medium control (NIL); #P,0.05, ##P,0.01 versus PTECs treated with HSA.
doi:10.1371/journal.pone.0090883.g002

Figure 3. Effect of the relative orientation between BM-MSCs and PTECs. (A) Co-culture setup of human PTECs with human BM-MSCs in
system II. PTECs were cultured in the lower chamber of the Transwell. MSCs were seeded (at an MSC/PTEC ratio of 1:5) onto the Transwell insert and
then co-cultured with or without the addition of HSA (2 mg/ml). The apical aspect of the PTEC monolayer was exposed to MSCs. After 6 or 24 h
incubation, mRNA of the PTEC monolayer was extracted for analysis by real-time PCR (B), and supernatants from the lower chamber were collected
for ELISA (C), respectively. Results are represented by means 6 SD of 3–4 independent experiments. * and ** denote significant differences at P,0.05
and P,0.01, respectively.
doi:10.1371/journal.pone.0090883.g003
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Murine BM-MSC isolation and characterization
Mouse BM-MSCs were isolated and expanded based on

published methods [21,22]. Briefly, bone marrow cells were

collected by flushing femurs and tibias with complete medium

constituted with DMEM and 10% MSC qualified FBS (Invitro-

gen). In order to remove debris, cells were passed through a 70-mm

cell restrainer (BD Biosciences) and seeded onto T75 culture flasks

in suspension. To maximally eliminate any unattached hemato-

poietic cells, the bone marrow cells were rinsed with PBS twice

after incubating for 4 h. The attached cells were cultured for 14

days. The colony forming cells were passaged once for future use.

The isolated BM-MSCs were characterized with MSC marker

antibodies’ panel (R&D systems) by immunostaining and fluores-

cence microscopy. The differentiation capacity of BM-MSCs was

assessed by StemPro differentiation kits (Invitrogen). Osteoblasts

were identified by staining with Alizarin Red S (Sigma, St Louis,

USA) after 21 days of incubation. The presence of adipocytes was

demonstrated by staining the cytoplasmic inclusion of lipid droplet

with Oil-Red-O (Sigma) at 14 days of induction. Toluidine Blue

Stain (Sigma) was used to examine the formation of chondrogenic

pellets after 14 days under differentiating condition.

Mouse model of protein overload proteinuria
This study was approved by the Committee on the Use of Live

Animals in Teaching and Research of The University of Hong

Kong and was performed in accordance with the National

Institute of Health Guide for Care and Use of Laboratory Animals.

Murine protein-overload model was established in C57BL6 mice

at 6 wks as previously described [23,24]. Uninephrectomy was

performed under anesthesia 5 days before BSA injections began.

Low endotoxin BSA A-9430 (Sigma) was given 5 days a week

intraperitoneally at 10 mg/g body weight for 4 wks. Control mice

received the same volume of saline. Beginning on day 7 of BSA

injection, mouse BM-MSCs (16106 cells/mouse) were injected

intravenously into uninephrectomized mice with or without BSA

treatment at weekly intervals until sacrifice at wk 4 of BSA

injection. Renal CCL-2, CCL-5, a-SMA, collagen IV mRNA and

protein expression were evaluated in 4 mice randomly selected

from each group. Urinary albumin was measured by ELISA

quantitation kit (Bethyl Laboratories, Montgomery, AL, USA),

and blood urea nitrogen (BUN), urine and serum creatinine were

determined by enzymatic method (Stanbio Laboratory, Boerne,

TX, USA).

Immunohistochemistry
Immunohistochemistry was performed as previously described

in paraffin-embedded tissue sections at a thickness of 4 mm [18].

The primary antibodies used in this study were as follows: anti-

CCL-2 (1:200, Abcam), anti-CCL-5 (1:100, Santa Cruz), anti-a-

SMA (1:100, Sigma) and anti-collagen IV (1:400, Abcam).

Sections were counterstained with hematoxylin. Positive staining

were quantified by Image Pro Plus Software 5.0 (Media

Cybernetics, Silver Spring, USA) and presented as IOD value.

Statistical analysis
All data were expressed as means 6 standard deviation unless

otherwise specified. Statistical analysis was performed using

GraphPad Prism v.5 for Windows (GraphPad Software Inc., San

Diego, CA, USA). Intergroup differences for continuous variables

were assessed by multivariate ANOVA. P,0.05 was considered

statistically significant.

Figure 4. Human BM-MSCs attenuated HSA-induced phosphorylation of I-kB and nuclear translocation of NF-kB in PTECs. PTECs and
MSCs were mono- and co-cultured with or without exposure to HSA (2 mg/ml) for 1 h, and the phosphorylation state of IkB in PTEC was detected by
immunoblotting against anti-phospho-IkB antibody. (A) A representative Western blot. (B) Quantification. The levels of phosphorylation were
normalized to actin. Results were obtained from three independent experiments. *P,0.05. (C) Representative images of NF-kB subcellular
translocation. PTEC mono-culture or co-culture with BM-MSCs were incubated with HSA (2 mg/ml) for 2 h and stained by immunofluorescence for
the p65 subunit of NF-kB (green, top panels) and nuclei with DAPI (blue, bottom panels).
doi:10.1371/journal.pone.0090883.g004

BM-MSCs Rescue Protein-Loaded PTECs
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Results

MSC differentiation capacity was not altered after
albumin challenge

We first confirmed that HSA did not induce MSC differenti-

ation. BM-MSCs were exposed to HSA (2 mg/ml). After 24-h

incubation under normal growth conditions, MSCs retained their

osteogenic, adipogenic and chondrogenic differentiation capacities

when treated with the corresponding differentiation induction

medium (Fig. 1).

BM-MSCs attenuated albumin-induced inflammation in
PTECs

We then tested whether BM-MSCs prevented albumin-elicited

proinflammatory responses in PTECs using co-culture system I. In

this system, human serum albumin (2 mg/ml) was only added to

the upper chamber of the Transwell (Fig. 2A). Real-time PCR

revealed that BM-MSCs significantly suppressed HSA-induced

tubular overexpression of TNF-a (p,0.05) and CCL-5 (p,0.05)

(Fig. 2B). When HSA was added to both chambers of the

Transwell (Fig. 2C), albumin-induced IL-6, IL-8, TNF-a, CCL-2

and CCL-5 were markedly attenuated by MSC co-culture

(p,0.05 for all factors, Fig. 2D).

The immunomodulatory effect of BM-MSCs was
independent of tubular polarity

PTECs are polarized cells that have distinct structural

construction and molecular composition between apical and

basolateral surfaces of the cell membrane [13,25]. To characterize

whether the polarity of PTEC might affect its response to BM-

MSCs, we employed co-culture system II (Fig. 3A) in which the

apical side of PTECs was exposed to BM-MSCs during co-culture.

Similar to system I, HSA-upregulated proinflammatory genes in

PTEC were all significantly suppressed by BM-MSC co-culture

(Fig. 3B). In addition, the secretion of IL-6, CCL-2, CCL-5, IL-8

and TNF-a proteins was reduced in the presence of BM-MSCs

(p,0.05) (Fig. 3C).

Figure 5. Effect of BM-MSCs on tubular EMT induced by HSA. Using co-culture system II, PTECs were co-cultured with BM-MSCs in the
presence of HSA for 3 days for mRNA detection (A) and 6 days for protein examination (B and C). Results were representatives of 3 independent
experiments. **P,0.05, **P,0.01, ***P,0.001 versus PTECs exposed to medium control (NIL); #P,0.05 versus PTECs treated with HSA.
doi:10.1371/journal.pone.0090883.g005

BM-MSCs Rescue Protein-Loaded PTECs
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The anti-inflammatory effect of BM-MSCs on PTECs was
associated with attenuation of NF-kB activation

Since NF-kB signaling was shown to mediate the tubular

proinflammatory response induced by albumin overload [14], we

then investigated whether BM-MSCs prevented tubular inflam-

mation by attenuating NF-kB signaling. PTECs were incubated

with HSA (2 mg/ml) for various time points in the presence or

absence of BM-MSC co-culture (system II). HSA markedly

upregulated the phosphorylation of I-kB in PTECs at 1 h of

incubation, and this process was attenuated by BM-MSC co-

culture (Fig. 4A). Furthermore, nuclear translocation of NF-kB

p65 subunit induced by HSA was partially blocked by BM-MSC

co-culture (Fig. 4B).

Albumin-induced tubular EMT was suppressed by BM-
MSCs

A growing body of evidence indicated that long-term incubation

with albumin was able to induce tubular EMT [26,27]. However,

the effect of BM-MSCs on albumin-induced tubular EMT has not

been examined. We co-cultured PTECs with BM-MSCs for 3 days

using system II in the presence or absence of HSA (5 mg/ml). BM-

MSCs co-culture significantly suppressed tubular EMT as they

restored E-cadherin mRNA and attenuated the upregulation of a-

SMA, fibronectin (FN) and collagen IV mRNAs induced by HSA

(Fig. 5A). After 6 days of co-culture, BM-MSCs also prevented the

loss of E-cadherin protein and the upregulation of collagen IV

protein induced by HSA (Fig. 5B and C).

Figure 6. Synthesis of HGF and TSG-6 by BM-MSCs and the signaling pathways involved. (A) Western blot analysis of signaling pathways
in BM-MSCs mono-culture. BM-MSCs were incubated with HSA (2 mg/ml) for 0–120 min. Total protein from BM-MSCs was collected and subjected to
Western blotting for ERK, NF-kB and p38 signals. (B and C) Dose effect of HSA on mRNA and protein expression of HGF. BM-MSCs were exposed to
increasing doses of ambient albumin (from 1 to 10 mg/ml) for 6 h (for real-time PCR) or 24 h (for ELISA assay). (D and E) Dose effect of albumin on
mRNA and protein expression of TSG-6. BM-MSCs were incubated with HSA (2 mg/ml) for 6 h. All results represent means 6SD from 3 independent
experiments. *P,0.05, **P,0.01, ***P,0.001 versus medium control. (F and G) Effect of the corresponding inhibitors on HSA-induced HGF and TSG-6
expression. BM-MSCs were treated for 6 h with medium control, HSA (2 mg/ml), the ERK inhibitor PD98059 (10 mM, added 1 h before the addition of
HSA), the NF-kB inhibitor PDTC (25 mM, added 1 h before the addition of HSA) or the p38 inhibitor SB203580 (25 mM, added 1 h before the addition
of HSA). Results are mean 6SD from 3 independent experiments. n.s. indicates no significant difference. * and *** denote significant differences at
P,0.05 and P,0.001, respectively.
doi:10.1371/journal.pone.0090883.g006

BM-MSCs Rescue Protein-Loaded PTECs
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BM-MSCs were activated to release paracrine factors
under albumin overload

In search of possible paracrine factors contributing to the effect

of BM-MSCs on tubular injury, an antibody-based cytokine array

was utilized to screen for 507 human proteins. A total of 34 factors

were apparently upregulated compared with medium control ($2-

fold increase) (Table 2). Of interest, HGF and TSG-6, both known

to be important in regulating inflammation and fibrosis, were

elevated under an albumin-overloaded condition. We confirmed

in BM-MSC mono-culture that HSA upregulated HGF and TSG-

6 expression in a dose-dependent manner (Fig. 6B–E), together

with phosphorylation of p38, ERK and I-kB by Western blotting

(Fig. 6A). Pre-incubation with SB203580 and PDTC but not

PD98059 completely or partially inhibited the overexpression of

HGF and TSG-6 in BM-MSCs exposed to HSA (Fig. 6F and G).

HGF and TSG-6 contributed to the anti-inflammatory and
anti-fibrotic effects of BM-MSCs

Since BM-MSC HGF and TSG-6 expression was significantly

activated by HSA, we next explored the contribution of HGF and

TSG-6 to the modulatory effect of BM-MSCs on tubular

inflammation and EMT. Pretreatment of PTECs with recombi-

nant HGF, but not TSG-6, for 6 h significantly attenuated HSA-

induced upregulation of TNF-a, CCL-2 and CCL-5 transcripts

(Fig. 7A and B). Pretreatment of PTECs with recombinant of

TSG-6, but not HGF, for 3 days suppressed the upregulated

expression of a-SMA, FN and collagen IV (Fig. 7C and D).

Moreover, the addition of anti-HGF neutralizing antibody

abrogated the suppressive effect of BM-MSCs on HSA-induced

overexpression of TNF-a, CCL-2 and CCL-5 (Fig. 7E), while

blocking TSG-6 by its neutralizing antibody reverted the

ameliorative effect of BM-MSCs on HSA-elicited upregulation

of a-SMA, FN and collagen IV in PTECs (Fig. 7F).

Mouse BM-MSCs conferred renoprotection in murine
protein overload proteinuria

To examine the effect of BM-MSCs in a murine model of

protein overload proteinuria, we isolated BM-MSCs from mice

femur and tibia and expanded the cells in vitro. These cells were

characterized to be positive for CD106, CD29 and CD73, and

negative for CD11b and CD45 (Fig. 8A). They also possessed tri-

lineage differentiation capacity (Fig. 8B). We then created an

animal model of protein overload proteinuria by daily injection of

high dose of BSA (10 mg/g body weight) in uninephrectomized

mice for up to 4 weeks. Repeated BSA injection for 4 wks

significantly increased serum BUN and urinary albumin-to-

creatinine ratio (UACR) (Table 3), indicating kidney injury in

these mice. In albumin-overloaded mice that received MSC

treatment, serum BUN was significantly reduced together with a

trend towards a lower UACR level compared with control animals

(Table 3).

BM-MSCs attenuated tubular inflammation in protein-
overloaded mice

To determine whether BM-MSCs influenced tubular damage in

protein-overloaded mice, we examined the cortical expression of

the inflammatory genes, CCL-2 and CCL-5, by real-time PCR

and immunohistochemical staining. BSA treatment caused a 5-

fold increase in CCL-2 mRNA expression and 2-fold increase in

CCL-5 mRNA expression (Fig. 9B). These were associated with

heavy tubular staining for CCL-2 and CCL-5 (Fig. 9A and C).

Treatment with BM-MSCs markedly attenuated the upregulation

of CCL-2 and CCL-5 mRNA expression, and the increase in

CCL-2 and CCL-5 immunostaining.

Tubulointerstitial fibrosis was suppressed by BM-MSCs
treatment

Interstitial fibrosis is a hallmark of the protein overload model

[28]. To examine the effect of BM-MSCs on interstitial fibrosis, we

detected the expression of fibrotic markers in renal cortical tissue.

Protein overload induced a 4.9-fold increase in a-SMA mRNA

(Fig. 10B) and an 8-fold increase in its protein level (Fig. 10A and

C), which was associated with intense tubulointerstitial a-SMA

immunostaining (Fig. 10D and E). BM-MSC treatment substan-

tially prevented all these changes (Fig. 10). Similarly, collagen IV

Table 2. The 34 proteins overexpressed in human BM-MSCs
stimulated by HAS.

Cytokines
Normal
Medium

Albumin Loaded
Medium Ratio

Activin A 397.0 896.4 2.3

CD 163 143.0 300.1 2.1

CD30/TNFRSF8 35.0 84.6 2.4

CV-2/Crossveinless-2 32.5 66.8 2.1

Endocan 77.0 201.5 2.6

Eotaxin-2/MPIF-2 25.0 51.7 2.1

FGF-11 63.5 158.9 2.5

Glut5 40.0 91.0 2.3

GRO 161.5 437.4 2.7

HGF 25.0 75.4 3.0

HGFR 142.0 289.8 2.0

IL-1 F8/FIL1 eta 48.0 101.3 2.1

IL-15 R alpha 53.0 134.1 2.5

IL-17B 61.0 149.2 2.4

IL-6 142.0 351.2 2.5

IL-8 92.0 464.4 5.0

I-TAC/CXCL11 27.5 75.4 2.7

Lipocalin-1 35.0 114.2 3.3

Lipocalin-2 25.0 54.9 2.2

Lymphotactin/XCL1 35.0 73.8 2.1

MCP-1 155.0 382.5 2.5

MFG-E8 25.0 57.6 2.3

MIP 2 32.5 327.5 10.1

MMP-1 32.5 66.8 2.1

MMP-3 25.0 72.7 2.9

MMP-8 25.0 66.8 2.7

Orexin A 25.0 57.6 2.3

Pentraxin3/TSG-14 30.0 63.6 2.1

SLPI 25.0 52.3 2.1

TCCR/WSX-1 25.0 84.6 3.4

Thymopoietin 25.0 63.6 2.5

TIMP-1 53.5 108.3 2.0

TSG-6 25.0 52.0 2.1

Ubiquitin+1 25.0 52.3 2.1

doi:10.1371/journal.pone.0090883.t002
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was overexpressed in the renal cortex of proteinuric mice, which

was abrogated by BM-MSC treatment (Fig. 10).

Discussion

CKD is a global health problem that afflicts millions [29]. Its

prognosis is largely governed by the extent of tubulointerstitial

pathology [30]. Effective protocols that could stamp or reverse its

progression to ESRD are lacking. The emergence in recent years

of stem cell therapy brings new hope to a variety of conditions. Its

application in CKD, however, is still limited due to the complexity

of the many different resident cell types within the kidney.

Abnormal protein trafficking is a hallmark in many forms of CKD

and impacts tubulointerstitial inflammation. Indeed, the prognos-

tic value of proteinuria is demonstrated in numerous clinical

studies among both diabetic and nondiabetic CKD [31–33]. Here,

we sought to explore the renoprotective potential of MSCs in

culture systems of proximal tubular cells and in an animal model

of overload proteinuria that resembles the proteinuric state in

many forms of human CKD.

We constructed a simple co-culture system that allowed the

interaction between BM-MSCs and PTECs via a panel of soluble

molecules under an albumin-overloaded milieu. This co-culture

setup mimicked the in vivo environment encountered by the

proximal tubule in proteinuric patients receiving BM-MSC

therapy. Using this setup, we showed for the first time that BM-

MSCs exerted a suppressive effect on albumin-induced proximal

tubular cell inflammatory responses and epithelial-to-mesenchy-

mal transition. As MSCs that were concomitantly stimulated with

HSA produced a much more dramatic anti-inflammatory and

anti-EMT response in PTECs, it can be inferred that an injury

signal is essential for the induction of a tissue-repairing phenotype

in MSCs. Here, we showed that the secretome of BM-MSCs acted

on tubular cells and contributed to their anti-inflammatory and

anti-EMT effects.

Figure 7. Roles of HGF and TSG-6 on HSA-induced tubular inflammation and EMT. (A–D) PTECs were pretreated with HGF and TSG-6 at
different doses for 1 h. TNF-a, CCL-2, CCL-5, E-cadherin, a-SMA, FN and collagen IV mRNA expression was then determined by real-time PCR. (E and F)
HGF and TSG-6 neutralizing antibodies (1 mg/ml) were introduced to PTEC and BM-MSC co-culture system II. mRNA expression of TNF-a, CCL-2, CCL-5,
a-SMA, FN and collagen IV were detected by real-time PCR. Results are obtained from 3 independent experiments. *P,0.05, **P,0.01, ***P,0.001
versus PTECs treated with HSA alone; #P,0.05 versus PTECs treated with HSA and co-cultured with BM-MSCs; n.s., no significant difference.
doi:10.1371/journal.pone.0090883.g007
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In vivo studies have shown that infused BM-MSCs were capable

of migrating to sites of injury where they might encounter injurious

signals propagated by damaged tissue [2,5]. These signals

comprised various growth factors or cytokines that could stimulate

the reparatory capacity of BM-MSCs or initiate lineage differen-

tiation of BM-MSCs. Whether such a local environment is

conducive to the therapeutic effect of BM-MSCs was little known.

Our data showed that the stress of albumin overload activated

BM-MSCs and enhanced their anti-inflammatory and anti-fibrotic

potential. HSA-stimulated BM-MSCs attenuated the activation of

NF-kB signaling in PTECs when subjected to albumin overload.

Importantly, albumin treatment neither induced differentiation

nor impaired the tri-lineage differentiation capacity of BM-MSCs,

suggesting that the beneficial effects were truly derived from the

stem cells and not from differentiation of these cells into other

more mature cell types.

Furthermore, HSA significantly activated several proinflamma-

tory signaling pathways in BM-MSCs, namely P38, ERK and NF-

kB. This in turn brought about upregulation of a number of

paracrine factors in BM-MSCs. Among the 34 factors detected by

cytokine array studies to be induced by albumin, the anti-

inflammatory and anti-fibrotic factors, HGF and TSG-6, were

regulated by P38 and NF-kB, as inhibition of these pathways

prevented the HGF and TSG-6 responses. HGF is multipotent

growth factor that exerts mitogenic, anti-inflammatory and anti-

fibrotic responses on cells expressing the cognate receptor HGFR/

c-Met. Functional expression of HGF contributes to BM-MSC

migration, wound healing and tissue repair [34]. Overexpression

of HGF in BM-MSCs enhanced their regenerative effect in acute

myocardial infarction, while suppression of HGF expression

reduced their efficacy [35,36]. In the remnant kidney model,

HGF treatment significantly ameliorated interstitial inflammation

by modulating tubular expression of CCL-2 and CCL-5 [37],

probably via disrupting NF-kB signaling [38].

Another important anti-inflammatory and anti-fibrotic factor,

TSG-6, was previously shown to be upregulated in MSCs when

stimulated by TNF-a in vitro [39] or when they were trapped in the

lung as microemboli in vivo [40]. Activation of TSG-6 mediated the

effect of BM-MSCs in myocardial infarction [40], cornea damage

[41], and more recently peritoneal injury [42], via a common

mechanism of inhibiting local inflammation and fibrosis.

In the present study, we showed that recombinant HGF dose-

dependently attenuated HSA-induced mRNA expression of TNF-

a, CCL-2 and CCL-5 in PTECs, while TSG-6 prevented tubular

EMT by inhibiting upregulation of a-SMA, FN and collagen IV.

In addition, these two factors at least partially contributed to the

Figure 8. Mouse BM-MSC characterization. (A) Surface marker expression on mouse BM-MSCs. BM-MSCs were seeded on chamber slides for
24 h. Immunostaining was performed by using MSC surface marker antibodies (CD106, CD29 and CD73) and hematopoietic cell marker antibodies
(CD11b and CD45). (B) Tri-lineage differentiation. Mouse BM-MSCs cultured for 14–21 days with induction medium were stained by Alizarin Red, Oil
Red O and Toluidine Blue to assess osteogenic, adipogenic and chondrogenic differentiation, respectively.
doi:10.1371/journal.pone.0090883.g008

Table 3. Physical and biochemical parameters of experimental animals (at wk 4 of BSA injection).

Parameters UNX UNX+MSCs UNX+BSA UNX+BSA+MSCs

N 7 8 9 8

Body Weight (g) 24.860.6 24.760.2 22.560.2a 23.960.4b

UACR (mg/mg) 180.6622.4 146.1611.7 785.26148.9a 656.0.3688.3a

BUN (mg/dL) 32.161.3 33.661.3 48.361.3a 29.961.4b

UNX, uninephrectomy; UACR, urine albumin-to-creatinine ratio; BUN, blood urea nitrogen.
aP,0.05 versus UNX group.
bP,0.05 versus UNX+BSA group.
doi:10.1371/journal.pone.0090883.t003
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modulatory effect of BM-MSCs on tubular inflammation and

EMT, as these phenomena were partially blocked by their

respective neutralizing antibodies. Since BM-MSCs and PTECs

were grown in a physically separated co-culture setup, it can be

inferred that HGF and TSG-6 secreted by BM-MSCs acted in a

paracrine manner to exert their modulatory effects on tubular

inflammation and EMT. This observation might provide one

mechanism for MSCs to promote renal recovery despite extremely

low rates of migration to the site of injury and the absence of cell

differentiation [4,5].

On the other hand, recombinant HGF and TSG-6 failed to

fully reproduce the suppressive effect of BM-MSCs on HSA-

induced tubular inflammation and EMT. In our experiments, at

least IL-6 and IL-8 expression was unaffected by HGF and

blocking of TSG-6 failed to neutralize the protective effect of BM-

MSCs on E-cadherin loss in PTECs. This implies that apart from

HGF and TSG-6, other paracrine factors may be secreted by BM-

MSCs which act on PTECs to dampen their inflammatory and

fibrotic phenotype. The identification of these factors merits

further investigation in order to fully exploit the reparatory

potential of BM-MSCs.

One limitation of these in vitro studies is that they were confined

to the interaction between BM-MSCs and PTECs. Our results

may underestimate the involvement of other resident and

infiltrating cells within the kidney such as immune cells that are

probably also regulated by BM-MSCs and may have contributed

to the observed recovery of tubular inflammation and EMT.

Nevertheless, our results revealed that the effect of BM-MSCs on

PTECs is at least direct and independent of cell-cell contact.

Finally, we showed in an animal model of overload proteinuria

that BM-MSC treatment reduced serum BUN without signifi-

cantly lowering proteinuria, indicating that the renal-repairing

effect of BM-MSCs was independent of changes in proteinuria.

On the other hand, downregulation of both CCL-2 and CCL-5

mRNA in the albumin-overloaded kidney suggests that albumin-

induced renal inflammation was suppressed by BM-MSC treat-

ment. Immunohistochemical staining further revealed that the

suppressive effect of BM-MSCs on CCL-2 and CCL-5 protein

expression mainly occurred in proximal tubular cells, which is

consistent with our in vitro findings that BM-MSCs inhibited

cytokine and chemokine expression in protein-overloaded PTECs.

In addition, BM-MSCs treatment significantly attenuated the

abnormally upregulated fibrotic markers such as a-SMA and

collagen IV at both mRNA and protein levels in renal cortical

tissue, supporting an additional antifibrotic effect of BM-MSCs.

Immunohistochemical staining confirmed that tubular interstitial

deposition of a-SMA and collagen IV was ameliorated by BM-

MSC treatment.

In summary, we have provided novel data to support the

reparatory effect of BM-MSCs in ameliorating renal tubular

Figure 9. Tubular inflammation in protein-overloaded mice with or without BM-MSC treatment. (A) Cortical immunohistochemical
staining for CCL-2 and CCL-5. (B) Renal cortical expression of CCL-2 and CCL-5 mRNA determined by real-time PCR. Results were from 4 mice
randomly selected from each group. (C) Quantitative analysis of tubular CCL-2 and CCL-5 staining. n = 6 for UNX and UNX+MSCs, n = 7 for UNX+BSA
and UNX+BSA+MSCs. **P,0.01 versus UNX group; #P,0.05, ##P,0.01 versus UNX+BSA group.
doi:10.1371/journal.pone.0090883.g009
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Figure 10. BM-MSCs reduced cortical expression of a-SMA and collagen IV. (A) Renal cortical expression of a-SMA and collagen IV mRNA
determined by real-time PCR. (B) Western blot analysis of renal cortical a-SMA and collagen IV protein expression. (C) Quantitative analysis of Western
blot. n = 4 mice randomly selected from each group. *P,0.05, **P,0.01 versus UNX group; #P,0.05, ##P,0.01 versus UNX+BSA group. (D)
Representative immunostaining of tubulointerstitial a-SMA (upper panel) and collagen IV (lower panel). (E) Quantitative analysis of a-SMA and
collagen IV. n = 6 for UNX and UNX+MSCs, n = 7 for UNX+BSA and UNX+BSA+MSCs. **P,0.01 versus UNX group; #P,0.05 versus UNX+BSA group.
doi:10.1371/journal.pone.0090883.g010
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inflammation and fibrosis in the context of albumin overload that

is seen in many forms of CKD. This is likely mediated by the

paracrine action of HGF, TSG-6 and other factors secreted by

BM-MSCs that together mitigated albumin-induced NF-kB

activation and the downstream upregulation of inflammatory

chemocytokines and EMT phenotypic changes in tubular cells, the

key cell type that orchestrates tubulointerstitial inflammation and

fibrosis. Our findings support the notion that apart from immune

cells, PTECs might also be a direct target for BM-MSCs to exert

their biologic actions, and may explain why BM-MSCs were able

to ameliorate functional parameters in certain chronic diabetic

and non-diabetic nephropathies. The potential anti-inflammatory

and anti-fibrotic effects of BM-MSCs warrant confirmation in

other animal models of CKD.
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