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Abstract

The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low
resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore
application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore
present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image
Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure
boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure
image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary
amendment method to connect the gaps in the detected boundaries. We use a SARSA (l)-based curve traveling and
amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving
point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the
approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided
stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our
approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection
approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance
measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark
method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate
identification of substructures in EM images and therefore useful for the identification of imaging features related to brain
diseases.
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Introduction

The brain is the center of the nervous system in all vertebrates

and most invertebrate animals [1], and it comprises a vast number

of interconnected neurons, which are the basic building blocks of

the nervous system. Each part of a neuron plays an important role

in the communication of information throughout the body [2–5].

The connections between neurons in the brain, i.e., synapses,

allow neurons to pass signals to individual target cells [4]. The

precise patterns of these synaptic contacts are fundamental for

neurobiological research [6]. However, synaptic contacts are very

small, so they can only be detected using high-resolution electron

microscopy (EM).

To produce connectomes based on EM, we need to identify

each synapse and trace the axons and dendrites in the brain using

images, which technologically is an image segmentation task with

the goal of segmenting neuronal structures. Image segmentation,

the key step of image processing and image analysis, is the process

of dividing the image into several specified areas which have

distinct properties for extracting interested objects. The result of

neuronal structure segmentation that interests us is the boundary

of the neuronal structure [7,8]. The neuronal structure segmen-

tation task is especially challenging because neurons contain many

intracellular organelles such as mitochondria and endosomes. This

internal clutter can be distracting. In addition, the external

boundaries between neurites and internal boundaries of the

intracellular organelles add to the complexity of detection and

make the task even harder [9]. Moreover, neuronal EM images

are generally low resolution gray images that contain numerous

kinds of noise. In many cases, some useful features such as

brightness, color, and texture, could be unavailable in EM gray

images. Therefore, the results are usually dissatisfactory when

conventional image segmentation approaches are applied to the

identification of neuronal structures [10].

Therefore, we propose a novel approach for neuronal structure

segmentation. As most neuronal EM images are low resolution

with noise, Gaussian filtering [11] is applied initially to remove the

noise and we generate an EM image Gaussian pyramid [12]. Next,

we use Laplacian of Gaussian (LoG) to identify neuron structure

boundaries from the generated multi-scale images. After that we

make use of a multi-scale fusion algorithm to combine the results

from different layers of the Gaussian pyramid to obtain neuron
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structure boundaries. However, there are usually many gaps in the

detected boundaries reducing the quality of identification and

adding confusion to next step analysis. Hereby removing gaps is

necessary and helpful for us to analyze the EM images.

Meanwhile, the uncertainty and unpredictable features of EM

gray images make it difficult to prepare a model for missing

curving fitting in advance. Thus, we propose a reinforced gradient-

descent shaping fitting method to approximate the missing part of

the curve. This approach uses the existing curve as an input and

adjusts the behavior of an agent when interacting with the

environment, which avoids the limitations of the training-and-

modeling approach used by most conventional machine learning

approaches. Next, we utilize a SARSA (l)-based curve gap

amendment algorithm by using the approximate curve. In the

algorithm, the moving point starts at the one end of the incomplete

curve and walks through the image and the decisions made by the

agent aim to minimize the connection cost, until a closed curve is

formed.

Related Work
Various operators are commonly used for image segmentation,

such as Sobel [13,14], Prewitt [13,14], Laplace of Gaussian

function (or Laplacian of Gaussian function: LoG) [15], Canny

[16], Kirsch [13,14], and Roberts Cross operators [13,14]. The

Sobel operator is a simple and effective tool for image

segmentation. However, it is not based on gray image processing,

so it cannot separate foreground objects from the background of

an image, which may make the outline of an image unsatisfactory.

The Prewitt operator computes an approximation of the gradient

of the image intensity function. The Prewitt operator tends to lose

small amplitude boundary points, which lead to some errors. The

LoG operator is used frequently in digital image processing for

segmentation and binarization. The LoG operator starts by

smoothing the original image suppress noise, before detecting the

boundary.

The parameters of the Canny operator can be adjusted to

specific requirements to identify boundaries with different

characteristics. However, the Canny operator is slightly slow

during real-time image processing. The Kirsch operator is a

nonlinear detector that finds the maximum boundary strength in a

few predetermined directions. The Roberts Cross operator is used

for image segmentation and it highlight changes in intensity in a

diagonal direction. This operator is simple, but it suffers greatly

from sensitivity to noise.

Recent studies have shown that machine learning can improve

the accuracy when detecting object boundaries in images. Many

features associated with boundaries, such as the brightness, color,

gray level, and texture, can be utilized [17]. Dollar et al. [18]

proposed a supervised learning algorithm for object boundary

detection, which selects and combines features at different scales.

Some researchers have aimed to improve optimization constraints,

e.g., the metric proposed by Jain et al. [10] aimed to minimize

topological disagreements rather than disagreements over bound-

ary location and their approach improved the segmentation

performance significantly. In addition, the gap elimination

approach proposed by Denk et al. [19] can amend an incomplete

curve.

Image segmentation related techniques have been applied

widely to biological and biomedical images. Accurate and

automatic particle detection by EM is very important for the

high-resolution reconstruction of large macromolecular structures.

Cardona et al. [9] introduced an approach to the comprehensive

anatomical reconstruction of neuronal microcircuitry based on

transmission EM sections of a small brain, i.e., the early larval

brain of Drosophila melanogaster. Yu et al. [20] proposed a method

for particle picking based on shape feature detection. Jurrus et al.

[21] used Kalman-snakes and optical flow computation to track

axons across large distances in volumes acquired by serial block-

face scanning EM. Zhang et al. [22] proposed a multi-domain

fast-marching method with manual or fit-based multi-seeding to

segment meaningful substructures. The dual point decision process

developed by Giuly et al. [23] can segment the three-dimensional

(3D) structures obtained by 3D microscopy. Seghier et al. [24]

described a method for microbleed detection using automated

image segmentation, which delivered fairly consistent results

compared with the manual method. Plaza et al. [25] aimed to

minimize the manual correction and segmentation time by

proposing a probabilistic method for reducing manual correction,

but without losing the segmentation quality.

Brain magnetic resonance image (MRI)-related information

processing is a hotpot for researchers. Gousias et al. [26]

segmented neonatal and developed brain MRIs into 50 anatom-

ical regions. Their proposed approach could automatically classify

the images into predefined categories, which allowed age-specific

brain atlases of neonates to be produced. Yu et al. [27] evaluated

the effects of neonatal intensive care and predicted the neurode-

velopmental outcomes of high risk newborns using a combination

of manual and automated segmentation tools. Wang et al. [28]

also argued the importance of infant brain MRI segmentation

when quantifying patterns during early brain development. They

proposed a longitudinally guided level set method for segmenting

serial infant brain MRIs. Keihaninejad et al. [29] utilized a kernel-

based class separability criterion to segment structures in brain

images, before using a support vector machine to categorize the

results. Attique et al. [30] identified tissues using MRIs. Caskey

et al. [31] proposed an open-source software tool for tissue

segmentation in images. Eggert et al. [32] analyzed and discussed

several factors that may affect MRI segmentation in terms of the

final segmentation quality and specific adequate performance

criteria.

Metrics Used for Evaluation

Precision, Recall Rate, and F-score
Many metrics have been used to evaluate the performance of

image segmentation task where the goal is to detect boundary. The

precision, recall rate, and F-score are used frequently. The

precision [33] is the probability that a resulting boundary pixel is a

true boundary pixel. The recall rate [34] is the probability that a

true boundary pixel is detected. The F-score [35], which is defined

for all points on the precision-recall curve, is the harmonic mean of

the precision and the recall rate. Definitions of the precision, recall

rate, and F-score are as follows.

precision~
detected true boundary pixels

detected boundary pixels
ð1Þ

recall~
detected true boundary pixels

all true boundary pixels
ð2Þ

F{score~
2�precision�recall

precisionzrecall
ð3Þ
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Pixel Error
The pixel error [10] of the test labeling of an image relative to

the standard labeling is based on the number of pixel locations

where the two labeling systems disagree. The pixel error is defined

as 1 - the maximal F-score of the pixel similarity, as follows:

Pixel error ~1{ max F{score of pixel similarityð Þ ð4Þ

Rand Index
The Rand index [36] is a measure of the similarity between two

data groups. It can also be used to evaluate the performance of

image segmentation. Given an image S with n pixels, as well as two

segmentations X and Y, let:

a be the number of pixels in S that are both the same in two

segmentations;

b be the number of pairs in S that are both different in the two

segmentations.

The Rand index [36] is then defined as:

Rand index~ azb
n

2

� �
ð5Þ

Rand error, used as a measure of disagreement, is the frequency

with which the two segmentations disagree over whether a pair of

pixels belongs to the same objects or not.

Rand error ~1{Rand index ð6Þ

Warping Error
There is a type of disagreement when the sketch of an object has

been identified roughly whereas the detected boundaries are

incomplete. The pixel error metric is overly sensitive to minor

displacements in the location of a boundary, which leads to large

quantitative differences in the pixel error, although there are no

qualitative differences in the interpretation of the image. This

shows that the pixel error and Rand error are not good choices in

such cases. Thus, we use the warping error [10] to evaluate this

type of disagreement. The warping error penalizes the topological

disagreements produced when an object splits and merges. Given

the pixel error of T relative to warpings of L*, the warping error

between some candidate labeling T and a reference labeling L*

can be regarded as the Hamming distance between L* and the best

warping of L* onto T, as follows [10]:

D TEL�ð Þ~ min
L5L�

T{Lk k2 ð7Þ

Macro Metrics
The aforementioned error rates can be only used to evaluate the

performance of a single test. If we want to measure the global

performance of a system, we need to use a macro averaging

evaluation rate, such as macro precision, which is computed by

averaging the labeled precision. Definition of the macro precision

rate, macro recall rate, macro F-score, macro Rand error, and

macro warping error are as follows:

macro precision ~

Pn
i~1

precisioni

n
ð8Þ

macro recall rate ~

Pn
i~1

recall rate i

n
ð9Þ

macro Rand error ~

Pn
i~1

Rand error i

n
ð10Þ

macro warping error ~

Pn
i~1

warping error i

n
ð11Þ

Methods

Criteria for Structure Detection
In general, a good structure detection algorithm should

determine the precise location of the boundary. Thus, we propose

five criteria that our structure detection algorithm should follow.

Rule 1. The approach should minimize the probability of

missing an actual boundary point and the probability of mislabeled

a non-boundary point.

Rule 2. Detected pixels should be located as much as possible

in the actual centers of the boundary points.

Rule 3. A point is either a boundary point or a non- boundary

point, but never both.

Rule 4. With topological disagreements, minor differences in

the boundary location can be tolerated.

Rule 5. The intensity of boundaries should correspond as

closely as possible to what a human would perceive.

Based on rule 1, we can obtain the maximal signal-to-noise ratio

because the two probabilities in rule 1 are proportional to the

opposite directions of the signal-to-noise ratio of the resulting

image. To satisfy rule 3, we need to ensure that the boundaries

produced are well defined. Therefore, for a given boundary, the

point has only one unique result rather than different boundary

extraction results in a single curve. If there are different extracted

results, then some must be incorrectly identified. As images are

representative of actual images in the real-world, it is unavoidable

to contain noise in images and it is almost impossible to remove all

noise that may cause pixel errors. Minor errors in pixels will have

little effect on the understanding of structures and wrapping errors

are more sensitive to topology analysis, so the minimization of

topological disagreement rather than pixel disagreement is the first

goal of this task. The proposed algorithms and the amendment

algorithm meet these criteria.

Multi-scale Fused Structure Boundary Detection
Two key problems must be solved to segment connectomes.

First, each synapse must be identified. Second, the ‘‘wires’’ of the

brain, i.e., its axons and dendrites, must be traced in images. The

complexity of neuronal structures and the negative effects of noise

make it difficult to segment structures from EM images.

Segmentation of Neuronal Structures
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Furthermore, the absence of useful features such as brightness,

color, and texture, add the difficulty of segmentation.

Many operators, such as Sobel, Prewitt, Kirsch, and Roberts

cross, require little computation, but they are sensitive to noise,

which makes it difficult to obtain a satisfactory result. LoG and

Canny are effective in determining the locations of boundary

points, but these two methods require an appropriate scale. At a

small scale, operators are sensitive to boundary points and noise,

whereas they are stable at a large scale, but they tend to filter out

incorrect details. Thus, we utilize a multi-scale method to describe

the diversity of structures and to determine the boundary. At a low

resolution scale, our approach identifies boundary points rapidly

by suppressing noise and detail, before identifying the position of

boundary points precisely at high resolution, and it finally tracks

the actual position of the boundary points using a coarse-to-fine

tracking strategy.

The Laplacian operator is usually used in image segmentation.

However, it is very sensitive to noise. A tradeoff between

computational complexity and noise reduction is to carry out

Gaussian blur before detecting the boundary using Laplacian

operator, which is known as LoG. However, LoG is not much

effective in the case of EM images with too much noise

information. At present, Gaussian pyramid [12] is getting widely

used in many fields, such as image processing, computer vision and

signal processing. A Gaussian pyramid decomposes an image into

a set of images at different scales, each of which provides specific

boundary information. Gaussian pyramid is essentially the

representation of image at different scales. An image is blurred

by Gaussian function and down-sampled to generate a series of

images at different scales for later processing. Inspired by the

principle of Gaussian blur, we generate a Gaussian pyramid of the

image to be processed, then apply LoG to each level of Gaussian

pyramid image to detect neuron structure boundary, and finally

combine the detected results together to attain the structures.

The Gaussian pyramid technique generates a stack of successive

images, where each pixel contains a local average that corresponds

to a pixel neighborhood at a lower level of the pyramid. The

detected boundaries are different at various scales, the fine details

can be detected at small scale whereas details are often missed at a

large scale, such as, a ramp boundary can be only detected easily

at a small scale. The last step is to assemble the detected

boundaries. However, multi-scale boundary fusion does not mean

that the boundaries detected at different scales are simply merged

together. The operator discriminates responses at different scales,

thereby locating the detected boundary point in a different

position, which would cause boundary redundancy if we simply

combined them. In general, the resulting boundary produced at a

large scale, which tends to be more stable and noise-resistant but

poor in terms of positioning accuracy, corresponds to the outline of

the image. By contrast, the results obtained at a small scale

maintain the rich details of the image and a high positioning

accuracy, but they are susceptible to noise interference. Thus, we

obtain boundaries with different positions at different scales.

However, the boundary positions at two adjacent scales are close

to each other. For example, the positional difference at two

adjacent scales is just one pixel. Thus, multi-scale boundary fusion

should be carried out between adjacent scales. The algorithm used

for multi-scale fused structure boundary detection is as follows.

Algorithm 1: Multi-scale Fused Structure Boundary Detec-

tion.

Input: I, EM image

l, the level of Gaussian pyramid

a, predefined value for a boundary point

b, predefined value for a non-boundary point

weight, predefined weight for Gaussian pyramid of image

Output: boundary, array for detected result where boundar-

y(x,y) = 1 denotes point (x,y) is a boundary point and boundar-

y(x,y) = 0 denotes point (x,y) isn’t a boundary point

1: generate an l level Gaussian pyramid of image I and get

I1…Il.

2: for i = 1 to l do

3: detect boundary of image Ii and get boundaryi

4: end for

5: for all point (x,y) in I

6: fusion_account r 0

7: for i = 1 to l do

8: if pointi (x,y) is a structure boundary then

9: fusion i (x,y) r a * weight of level i

10: else

11: fusion i (x,y) r b
12: end if

13: for i = 1 to l do

14: fusion_account r fusion_account+fusion i (x,y)

15: end for

16: if fusion_account,threshold

17: point (x,y) isn’t a boundary

18: boundary(x,y) r 0

19: else

20: point (x,y) is a boundary

21: boundary(x,y) r 1

22: end if

23: end for

24: return array boundary

Boundary Amendment
As neuronal EM images are usually of low contrast, of low

resolution and with much noise, the structure detection approach-

es often have incorrect results and leave many gaps in detected

boundary curves. The gaps will make it more difficult to determine

the outlines of neuronal structures. Connecting incomplete curves

improves our comprehension of images. In general, the gaps are

not very large and the curves still appear continuous overall. Thus,

we can take advantage of the criteria stated earlier, to exploit the

continuity of the boundary pixels in the gradient magnitude or

gradient direction and to connect the gaps in the detected

boundary.

Linking a gap in an incomplete curve can be regarded as

connecting the starting point P0 (x0, y0) at one side of the curve

with the ending point P1 (x1, y1) at the other side of the curve given

some curvilinear trend. It is not appropriate to take the shortest

path from point P0 (x0, y0) to the nearest point Pi (xi, yi) as the gap

connection curve. As shown in Figure 1, point C is the nearest

point to starting point A, but it is not the ending point of gap

connection curve. Indeed, point B is the correct point. Connecting

point A with point C fails to complete the task of closing the

opening curve, but it could also destroy the topology of recognized

neuronal structures. Therefore, we propose a SARSA (l)-based

curve shape fitting amendment algorithm to connect gaps in open-

ended curves.

SARSA (l)
The reinforcement learning [37] problem is considered to be a

straightforward framing of the problem of learning from

interaction to achieve a goal. The basic reinforcement learning

model comprises a set of controllers, process, actions, rewards, and

states [38]. The controller obtains the output from a process and

applies an action to the process so the behavior of the process can

Segmentation of Neuronal Structures

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e90873



fit predefined requirements. The flow of the interactions during

reinforcement learning is shown in Figure 2.

At each time step t, the controller selects an action at MA from

the action space A. As a result, the state changes to st+1MS from stMS

according to a transition function f: S6AR[0,‘):

stz1~f st,akð Þ ð12Þ

where st+1 denotes the state at step t+1, st denotes the state at step t,

at is the action taken at step t, and f is the transition function.

The controller receives a reward rt+1 according to the reward

function ~rr:

rkz1~~rr st,at,stz1ð Þ ð13Þ

where rt+1 is the received reward by reward function ~rr at step t

with taking action at and transferring state from state st to state st+1.

The state-action value function Qp: S6ARR of some policy p
yields the return, a long-term reward, from a starting state:

Qp s,að Þ~
X?
t~0

ctr st,atð Þ ð14Þ

where Qp is the state-action value function with policy p, and

cM[0,1) is the discount rate, which shows how far-sighted the

controller is when considering the rewards, and it is also a factor

for increasing the uncertainty of future rewards.

Temporal difference (TD) learning [39] is an important concept

in reinforcement learning, which is a combination of Monte Carlo

and dynamic programming concepts. TD learning occurs

according to experience in an environment model. For most

real-world applications, TD requires less memory and computa-

tional time than conventional approaches, but it usually yields

better effects.

SARSA, which is defined by the tuples of state, action, reward,

next state, and next action, which is denoted by (st, at, rt+1, st+1), is

an online TD control method. The update of Q [40] depends on

(15):

Qtz1(st,at)~Qt(st,at)zat½rtz1zcQt(stz1,atz1){Qt(st,at)� ð15Þ

where Q is the state-action value function, cM[0,1) is the discount

rate, atM (0,1] is the learning rate and the rt+1+cQt(st+1, at+1)-Qt(st, at)

part is regarded as the TD. The SARSA TD includes the value

that Q takes in the next state.

SARSA updates according to the difference between the

continuous expected reward values, rather than the difference

between the expected value and the true value. Therefore, SARSA

learning does not need to wait for the end of the task execution.

The TD part of SARSA demonstrates its online characteristic,

which means that the data are not necessarily prepared in advance

because the system can find out a solution during processing. In an

offline approach, the image data should be available in advance

because the offline approach needs to know the image model for

processing, which is almost impossible in practice because there

may be various sophisticated images that make the image model

changeable so we cannot predict the image model. Online

characteristics of SARSA are superior to offline approaches when

solving our problem.

SARSA (l) is an eligibility trace version of SARSA. Eligibility

trace, a memory mechanism used by cognitive science, is

associated with backward states. The eligibility trace is updated by:

et(s,a)~
clet{1(s,a)z1 if s~st and a~at

clet{1(s,a) otherwise

�
ð16Þ

where et denotes the eligibility trace at step t, cM[0,1) is the discount

rate, lM [0,1] is a weight parameter and Q is updated by:

Qtz1(s,a)~Qt(s,a)zadtet ð17Þ

where dt = rt+1+cQt (st+1, at+1)-Qt (st, at) is the TD error for state-

action prediction.

Reinforced Gradient-descent Curve Shape Fitting
Curve fitting aims to find out a mathematical expression that

models the existing data. The distribution of the points on the

curve is restricted by the model. In our study, we consider the

curve before the amendment and the curve after amendment

when fitting the model. Thus, if we consider the untreated curve

and the amended curve as a whole, the continuous portion of the

curve can be viewed as one with continuous and dense points

whereas the incomplete portion of the curve can be treated as that

with discrete and sparse points.

Let the curve be given by:

F xð Þ~h1f1 xð Þzh2f2 xð Þz � � �zhnfn xð Þ ð18Þ

where h is the parameter and f(x) can be any given basis function.

A point on the curve can be represented by (x, F(x)).

Figure 1. A curve with a gap between A and B rather than A
and C which is nearer than B. However connecting A and C is
incorrect.
doi:10.1371/journal.pone.0090873.g001

Figure 2. The flow of the interactions in the reinforcement
learning framework.
doi:10.1371/journal.pone.0090873.g002
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Let F(x) be the real ordinate value of point (x, y) and F̂F xð Þ is the

estimated ordinate value of point (x, y). We can see that a lower

difference between F(x) and F̂F xð Þ yields a better fitting result.

Thus, our goal is to minimize the mean-squared error

D~
P

F xð Þ{F̂F xð Þ
� �2

. If the derivative of D equals zero,

F xð Þ{F̂F xð Þ takes the maximum or minimum value of the

function. In the present study, F xð Þ{F̂F xð Þ takes the minimum

value.

In gradient-descent [41], h
I

~ h1, � � � ,hnð ÞT is a parameter vector

with real valued components. For each h, we have a representation

of a corresponding approximation Q, as follows.

Q̂Q~G hð Þ ð19Þ

where Q̂Q is the approximation value of Q, h is the parameter and G

is the basis function.

Gradient-descent methods minimize the value of the mean-

squared error D by adjusting the parameter vector gradually with

each sampled data:

h
I

tz1~ h
I

t{
1

2
a Q st,að Þ{Qt st,að Þ½ �2

~ h
I

tza Qp st,að Þ{Qt st,að Þ½ �+
h
I

t
Qt st,að Þ

~ h
I

tza Qt{Qt st,að Þ½ �+
h
I

t
Qt st,að Þ

ð20Þ

where a is the step-size parameter, and Qt(st, a) is an approximating

function:

Qt st,að Þ~h1
�f1 stð Þz � � �zhn

�fn stð Þ ð21Þ

Figure 3. Thirty test EM images for segmentation from ISIB 2012.
doi:10.1371/journal.pone.0090873.g003
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where h* approximates h. Then, +
h
I

t
Qt st,að Þ can be represented

as +
h
I

t
f h

I
t

� �
, which is the vector of the partial derivatives:

Lf h
I

t

� �
Lh1t

, � � � ,
Lf h

I
t

� �
Lhnt

0
B@

1
CA

T

ð22Þ

where the derivative vector is the gradient of f with respect to h
I

t.

Various basis functions [42], such as polynomial functions and

radial basis functions, have been used widely for image processing,

nonlinear approximation, time sequence analysis, data categori-

zation, pattern recognition, information processing, system mod-

eling, and other tasks. Polynomial fitting functions, which aim at

fitting a function using a polynomial function, are simple and easy

to use. Given the cost of implementation, we selected a polynomial

function as the basis function of f(x). Other types of basis function,

such as radial basis functions, trigonometric functions, and 0–1

binary functions, could also be used. A typical polynomial function

is defined by:

Q xð Þ~a0za1xz � � �zanxn ð23Þ

where a0,a1,…,an are constants.

Therefore, the curve F(x) is given as follows:

F xð Þ~h1Q1 xð Þzh2Q2 xð Þz � � �zhnQn xð Þ ð24Þ

We put together the items with the same order of x and we

obtain:

Figure 4. Standard labeled results after neuronal structure segmentation provided by ISIB 2012.
doi:10.1371/journal.pone.0090873.g004
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F xð Þ~h00zh01
:xz � � �zh0n

:xn ð25Þ

where

h00~ h1z � � �zhnð Þ:a0

h01~ h1z � � �zhnð Þ:a1

..

.

h0n~ h1z � � �zhnð Þ:an

ð26Þ

Indeed, equation (25) is a linear basis function version of equation

(18). Without loss of generality, we can use equation (27) to

represent the curve.

y~h0zh1
:xz � � �zhn

:xn ð27Þ

where h is the parameter, and x and y is the coordinate values of

the point.

In our study, the current point position (x, y) is referred to as the

state. The action set is defined as:

move{set:

fright,up,left,down,up{right,down{right,up{left,down{leftg

The reward for an action is defined based on the distance

between the point with coordinates (x, y) on the curve and the

corresponding approximated point with coordinates (x’, y’).

Figure 5. Segmentation results for neuronal structures using our approach after boundary amendment.
doi:10.1371/journal.pone.0090873.g005
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reward~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{x’ð Þ2z y{y’ð Þ2

q
ð28Þ

As the objective can be viewed as minimize total space interval

between the approximate curve and real curve, the goal of the

proposed SARSA (l) based algorithm is to minimize the total

reward of all points along the curve.

From equation (27), we can see that the reward can be rewritten

as follows:

reward~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{x’ð Þ2z h0zh1

:xz � � �zhn
:xnð Þ{ h0zh1

:x’z � � �zhn
:x’nð Þð Þ2

q

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{x’ð Þ2z h1(x{x’)z � � �zhn(xn{x’n)ð Þ2

q ð29Þ

Let w
I

~

xn
1 � � � 1

..

. ..
. ..

.

xn
n � � � 1

0
B@

1
CA and h

I

~

h0

..

.

hn

0
B@

1
CA, and then Q is defined

as:

Figure 6. Segmentation results for neuronal structures using our approach without boundary amendment.
doi:10.1371/journal.pone.0090873.g006
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Q~w
I

h
I

~

y1

..

.

yn

0
BB@

1
CCA ð30Þ

Correspondingly, the gradient-descent of Q is the difference

between the two.

The complete algorithm for online reinforced gradient-descent

curve shape fitting is given in algorithm 2.

Algorithm 2: Reinforced gradient-descent curve shape fitting.

Input:the curve C, fitting function F(x), neighborhood D,

learning rate a.

Output: parameter vector h
I

1: h
I

/0

2: h
I{
/0

3: get all coordinates of points on the curve in neighborhood D
4: repeat
5: for each point i in D of the curve C

6: move r get move given by p for (x, y)

7: take move

8: observe reward r by (28) from (x, y)

9: observe (x’, y’) for next step

10: observe Q~w
I

i h
I

i

11: step counter r step counter +1 (batch updating version)

12: if reaches predefined step count (batch updating version)

13: h
I{
/ wT w

 �{1

wT Q

 �

14: step counter r 0

15: end if

16: h
I{
/ wT w

 �{1

wT
Q


 �
(instant updating version)

Figure 7. Segmentation results for neuronal structures using the Canny operator.
doi:10.1371/journal.pone.0090873.g007
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17: d
I

/h
I{

{h
I

18: h
I

/h
I

zad
I

19: (x, y) r (x’, y’)

20: move r move’

21: end for

22: until h
I

unchanged

23: return h
I

SARSA (l)-based Curve Traveling and Amendment
Given a starting point P0 (x0, y0), the ending point Pn (xn, yn)

could be in any of eight directions, i.e., up, down, left, right, up-left,

down-left, up-right, and down-right relative to the point P0 (x0, y0). The

neighboring points of P0 (x0, y0) could be on the boundary, which

we refer to as a marked point with pixel gray value 1 in the image,

or they might not be on the boundary, which we refer to as a blank

point with pixel gray value 1 in the image.

If the successive point P1 (x1, y1) of the current point P0 (x0, y0) is

a blank point, which indicates that the line that is assumed to fit

the curve model should be made up from the current point to the

next point to connect them, we will subtract a predefined

penalization cost value gap, otherwise if the next point is a marked

point, we will add a gain to show that the two points have already

been connected and the traveling route of the time is correct. Next,

the point P1 (x1, y1) is set as the subsequent starting point. We

continue exploring until any one of the termination conditions is

satisfied, e.g., going back to point P0 (x0, y0), the sum of the

Figure 8. Segmentation results for neuronal structures using the Kirsch operator.
doi:10.1371/journal.pone.0090873.g008
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penalization cost is less than a predefined threshold, or maximal

number of processing episode steps is reached.

In our study, we know little about the model of the structures

hidden in complex images. Furthermore, we cannot obtain a

complete image beforehand in actual cases. An online approach

does not strictly require a model of the environment, reward, and

subsequent state probability [40]. Thus, we utilized SARSA (l) as

the basis of our amendment approach.

The slope of a curve is the tangent slope of some point on the

curve. In a small domain, a change in the curve slope can be

represented as a derivative value of the point, which is the

geometric meaning of the derivative. In a small domain, the curve

is related to the curve model of some point within its

neighborhood. Thus, if the next point is a blank point, we will

obtain a model of part of the curve that is the neighborhood of the

current point as the expected curve trend. Moreover, it is very

difficult to obtain the whole model, whereas it is relatively easy to

obtain a model of a small portion of the curve. Therefore,

obtaining a curve model of a small area satisfies the characteristics

of changing stability and it is also feasible. In our study, when the

next point is blank point, we take the current point as the starting

point, trace back and move forward within a small neighborhood,

obtain a small portion of the curve, approximate a model of the

segment, and connect the curve under the supervision of the

obtained model.

The current point position (x, y) is referred to as a state. The

action set is defined as:

move{set:

fright,up,left,down,up{right,down{right,up{left,down{leftg

Figure 9. Segmentation results for neuronal structures using the LoG operator.
doi:10.1371/journal.pone.0090873.g009
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The reward for traveling is given by:

reward~

{gap if the next unvisitedpoint is a blank point

gain
if the next unvisitedpoint is a marked

point orontheedgeoftheimage

{? if the nextpoint is out of the image

0 if the nextpoint is visited

8>>>>><
>>>>>:

ð31Þ

In algorithm 3, a moving point starts from one end of the

incomplete curve and walks randomly through the image where

decisions are made by a controller. The point will stop in any of

three conditions: (i) returning to the starting point; (ii) the action-

value function Q is less than the predefined threshold; (iii) the

maximum number of processing step in the whole image is

reached, which is called an episode step. The SARSA (l)-based

curve traveling and amendment algorithm is as follows.

Algorithm 3: SARSA(l)-based curve traveling and amend-

ment

Input:starting point (x0, y0), threshold, maximal_step

Output: action-value function Q under moving policy

1: initialize Q((x, y), move) arbitrarily

2: episode_count r 0

3: for each point (x, y) in image and movei in move-set do

4: e((x, y),movei) r 0

5: end for

6: repeat scanning of image

7: for each episode step

8: initialize (xt, yt), move, and e((xt, yt), move)

Figure 10. Segmentation results for neuronal structures using the Prewitt operator.
doi:10.1371/journal.pone.0090873.g010
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9: move-set rfright,up, left,down,up{right,down{right,
up{left,down{leftg

10: take move and get new point (xt+1, yt+1)

11: r r get reward by equation (31)

12: if (xt+1, yt+1) is a blank point

13: trace backward neighborhood
D

2
and save points

14: repeat

15: move forward to point (x’, y’)

16: if (x’, y’) is not a blank point

25: movet/
arg maxmQ xt,ytð Þ,mð Þ with probability 1{e

taking movej[ move set with probability e � p movej

� ��

26: d r r+ cQ((xt+1, yt+1), movet+1)- Q((xt, yt), move)

27: e((xt, yt), move) r e ((xt, yt), move)+1

28: for each point (x, y) in image, movei in move-set do

29: Q((xt, yt), move) r Q((xt, yt), move)+ ade((xt, yt), move)

30: e((xt, yt), move) r cle ((xt, yt), move)

31: end for

32: (x, y) r (xt+1, y t+1)

33 movet+1r movet

34: episode_count r episode_count +1

35: until (x, y) = (x0, y0) or Q((x, y), move), threshold or
episode_count.maximal_step

36: end for

37: return Qmove

Results and Discussion

There are many competitions in biomedical imaging processing,

such as the International Symposium on Biomedical Imaging

(ISBI) [43], which focuses on the presentation of technological

advances in theoretical and applied biomedical imaging and image

computing. ISBI 2012 presented the challenge of automatically

segmenting neural structures from EM images. ISBI 2012

Figure 11. Segmentation results for neuronal structures using the Roberts Cross operator.
doi:10.1371/journal.pone.0090873.g011
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provided 30 different sets of serial section Transmission EM

(ssTEM) images of the Drosophila first instar larval ventral nerve

cord (VNC). Each set included a section of ssTEM images that

could be used to test the behavior of the approach, as well as

corresponding labeled images, which could be used as the

evaluation results.

We use the approach that is with boundary amendment and the

approach that is without boundary amendment, as well as the

Canny, Kirsch, LoG, Prewitt, Roberts Cross, and Sobel operators,

to segment structure boundaries from EM images. Figures 3–12

are the 30 test EM images, their corresponding labeled results, and

the test results using all eight approaches.

We evaluate our results in terms of the pixel error, Rand error,

and warping error [10,44,45]. Macro averaging evaluation rating

results are shown in Table 1. Table 1 shows that both of our

methods (with or without amendment) performed better than the

other six conventional approaches in terms of all the evaluation

indicators. In particular, our approaches performed a better

comfortable margin in evaluations with the Rand error indicator

and warping error indicator. This is because the conventional

approaches simply outline a small part of the structures and they

miss the majority of boundaries. Therefore, differences in the

Rand error, which evaluates the completeness of structures, are

very large.

A boundary point in an image is a minor portion of the image

and most points are non-boundary points, so successfully

identifying part of the boundary only leads to a small reduction

in the pixel error rate, which compares the image labeling at each

location. Thus, although the conventional operators miss the

majority of the boundary points, pixel errors of 4/5 conventional

approaches were affected only slightly, increasing and falling by

20% to 30%.

By contrast, the Rand error detects the differences between two

images, while the warping error measures the disagreement

Figure 12. Segmentation results for neuronal structures using the Sobel operator.
doi:10.1371/journal.pone.0090873.g012
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between outlines, thereby providing a relative comparison of the

match with the images. The results indicate that both of our

approaches worked very well. The main concept used by our

amendment approach is to utilize the curve shape and the trend in

the image boundary as a supervisor to connect any gaps. The

amendments are based on the curve shape and the predicted

trend, so it probably causes boundary dislocation in only a very

small area. Therefore, the pixel error could even be slightly higher

than that before the amendment, as showed in Table 1, whereas

the other two evaluation indicators tend to fall as expected. The

Rand error and warping error prove to be more useful during

boundary segmentation, so we can conclude that the amendment

step actually improved identification.

We also compared our boundary amending method with the

benchmark method of ISBI 2012, Simple Thresholding [43,46]

which uses a threshold to segment images, and two other newly

published methods respectively by Burget [47] and HLFs-RF [48].

The Burget’s method used local-level features to determine

segments and their boundaries, and utilized segment-level features

to remove the unwanted objects still in the resulting images. In

HLFs-RF’s method, thirty four features extracted by traditional

way from the pixel, thirty five features extracted by statistical

methods from the superpixel, and three context level features

among multi superpixels make up the hierarchical level feature

vectors for segmentation. Random forest is trained with hierar-

chical level features to perform segmentation. The results of the

above methods are listed in Table 2. Performance measurements

by the Rand error and warping error which are the most

important for structure segmentation showed our method with

boundary amending is best among all the four methods.

Table 3 shows the pixel error, Rand error, and warping error

values of the two methods: using the approach with amendment

and the approach without amendment. These results show that the

Rand error and warping error obtained using the approach with

amendment were much better than those obtained using the

approach without amending, where the difference is an order of

magnitude. The pixel error results are not as good as the other

two, but we consider that it is better to obtains a complete

boundary structure at the cost of a small increase in the degree of

the pixel error, as discussed previously, because the Rand error

and warping error are more comprehensive indicators, which

reflect the quality of the identified boundaries better than the pixel

error.

The performance of identification on the ISIB 2012 EM images

is mostly satisfactory. The proposed method doesn’t work well in

few EM images. As shown in Figures 3–12 and Table 3, it could be

found that the causes of dissatisfactory identification have three

aspects. The first is the low brightness and low contrast of the

image, which reduce image segmentation quality and finally lead

to low structure identification accuracy. Such as the cases in

Figures 3 (5), (8) and (9), the problem can be solved by adopting

image enhancement or other image preprocessing methods to

increase the image contrast and therefore to improve the

segmentation, although the preprocessing need more computa-

tional time. The second is the noise occurred in the place where a

massive concentration of small neurons locates. The noise will be

more affective because the interval between two detected neurons

is tiny. In such cases, even a small amount of noise can result in

large differences in the final result. For example, in the right part

of Figure 3 (12), where multiple small neurons congregate,

structure identification performance isn’t good. This kind of

Table 1. Macro averaging evaluation rating results for 30 test EM images from ISBI 2012 using the proposed approach with
boundary amendment and the proposed approach without boundary amendment, as well as the Canny, Kirsch, LoG, Prewitt,
Roberts Cross, and Sobel operators.

methods pixel error (%) rand error (%) warping error(%)

with_amending 19.36 3.49 0.089

without_amending 13.99 35.78 1.03

Canny 31.76 59.56 1.48

Kirsch 23.79 82.97 2.41

Log 29.52 74.19 2.74

Prewitt 22.69 92.01 1.27

Roberts 22.16 94.78 0.56

Sobel 22.72 91.97 1.31

Total average 23.25 63.12 1.24

doi:10.1371/journal.pone.0090873.t001

Table 2. The performance of Simple Thresholding, Burget’s method, HLFs-RF and our method with boundary amending on the
ISBI 2012 data set.

methods pixel error (%) rand error (%) warping error(%)

Simple Thresholding 22.52 44.97 1.714

Burget’s method 10.23 13.90 0.264

HLFs-RF 7.913 10.63 0.120

Our method with boundary amending 19.36 4.654 0.089

doi:10.1371/journal.pone.0090873.t002
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misjudgment is hard to be corrected. The last one is related to the

predefined threshold in the amending algorithm, i.e., when the

length of a gap is larger than the predefined threshold, the

algorithm will skip it without any processing. This problem can be

resolved by increasing the threshold before amending starts, and

this will be more computational intensive.

We find that all three error ratings suggested that optimization

actually led to an improvement, which demonstrates that

optimization truly amended the curve and enhanced the detection

ability. The time cost of the amendment can be ignored because it

took just seconds to complete the process in our experiment.

The parameters used in the experiment are shown in Table 4

and Table 5. More episodes (higher episode count) and higher

dimensions tended to result in minor improvements in segmen-

tation.

Table 3. Pixel error, Rand error, and warping error for 30 EM images from ISBI 2012.

Image# pixel error (%) rand error (%) warping error(%)

1 14.38 9.64 1.023 18.50 0.068 0.63

2 17.49 11.89 1.091 21.63 0.024 0.99

3 13.62 9.42 0.850 16.58 0.057 0.63

4 16.45 11.81 0.952 22.31 0.074 0.78

5 25.55 20.54 1.710 42.86 0.109 1.33

6 23.89 19.06 1.330 34.54 0.096 1.35

7 16.46 11.87 0.842 21.09 0.089 0.54

8 29.23 22.85 1.993 49.97 0.105 1.93

9 47.76 42.61 3.040 83.16 0.179 2.33

10 14.06 9.59 1.212 22.07 0.073 0.60

11 14.62 9.86 1.366 20.56 0.071 0.56

12 26.56 20.49 2.263 37.56 0.118 1.36

13 24.38 19.35 2.175 35.26 0.097 1.04

14 22.41 16.18 2.266 34.43 0.079 0.98

15 16.82 11.31 1.855 24.16 0.069 0.78

16 15.01 9.92 3.734 37.33 0.098 0.80

17 21.88 15.59 2.585 36.14 0.094 0.96

18 18.59 13.07 1.923 24.34 0.105 0.93

19 16.68 10.97 3.918 37.71 0.088 0.95

20 15.79 10.84 2.187 24.41 0.098 0.91

21 17.67 11.24 59.001 88.23 0.087 1.30

22 16.03 10.38 15.105 67.83 0.085 0.98

23 22.91 16.29 2.319 29.67 0.112 1.20

24 18.53 12.53 2.254 28.00 0.097 1.41

25 20.17 12.81 3.204 33.80 0.103 1.43

26 16.85 10.74 7.942 53.88 0.082 1.07

27 14.92 9.74 1.641 37.41 0.082 0.72

28 14.73 9.78 4.449 34.78 0.083 0.90

29 14.66 9.80 1.916 19.26 0.070 0.70

30 14.77 9.39 3.485 35.88 0.090 0.76

average 19.43 13.99 4.654 35.78 0.089 1.03

In each column, the results on the left were obtained using our approach with amendment while those on the right were obtained using the approach without
amendment.
doi:10.1371/journal.pone.0090873.t003

Table 4. Parameters used for reinforced gradient-descent
curve shape fitting.

parameter value

episode count 10

boundary pixels ignored 2

maximal amending neighborhood 15

threshold of h 0.001

dimension of h 3

step size a 0.1

discounting factor c 0.95

We used a polynomial fitting function as the basis function: y = hnxn+hn-1xn21+
…+h0.
doi:10.1371/journal.pone.0090873.t004
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Conclusions

In this study, we proposed a novel structure boundary detection

algorithm where LoG was used at each level of Gaussian image

pyramid to attain structure boundaries at different scales. At a

larger scale, outlines of neuron structure were extracted and at a

smaller scale, the boundary positioning accuracy was improved. A

multi-scale fusion algorithm was utilized to combine the detected

structure boundaries of different scales together, before a

reinforcement learning-based approach was used to fix the gaps

in the detected boundaries.

We constructed a model of the curve to detect the trend during

the repair of the curve, and a reinforcement learning-based gap

fixing algorithm is used to repair the incomplete curve under the

supervision of the curve model. The test results obtained using 30

EM images from ISBI 2012 showed that both of our approaches,

i.e., with boundary amendment optimization and without

boundary amendment optimization, performed better than six

conventional approaches. The results also showed that boundary

amendment optimization improved the structure segmentation

effect.
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