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Abstract

Monoclonal antibody producing Chinese hamster ovary (CHO) cells have been shown to undergo metabolic changes when
engineered to produce high titers of recombinant proteins. In this work, we have studied the distinct metabolism of CHO
cell clones harboring an efficient inducible expression system, based on the cumate gene switch, and displaying different
expression levels, high and low productivities, compared to that of the parental cells from which they were derived. A
kinetic model for CHO cell metabolism was further developed to include metabolic regulation. Model calibration was
performed using intracellular and extracellular metabolite profiles obtained from shake flask batch cultures. Model
simulations of intracellular fluxes and ratios known as biomarkers revealed significant changes correlated with clonal
variation but not to the recombinant protein expression level. Metabolic flux distribution mostly differs in the reactions
involving pyruvate metabolism, with an increased net flux of pyruvate into the tricarboxylic acid (TCA) cycle in the high-
producer clone, either being induced or non-induced with cumate. More specifically, CHO cell metabolism in this clone was
characterized by an efficient utilization of glucose and a high pyruvate dehydrogenase flux. Moreover, the high-producer
clone shows a high rate of anaplerosis from pyruvate to oxaloacetate, through pyruvate carboxylase and from glutamate to
a-ketoglutarate, through glutamate dehydrogenase, and a reduced rate of cataplerosis from malate to pyruvate, through
malic enzyme. Indeed, the increase of flux through pyruvate carboxylase was not driven by an increased anabolic demand.
It is in fact linked to an increase of the TCA cycle global flux, which allows better regulation of higher redox and more
efficient metabolic states. To the best of our knowledge, this is the first time a dynamic in silico platform is proposed to
analyze and compare the metabolomic behavior of different CHO clones.
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Introduction

Monoclonal antibodies (mAbs) are among the largest segment of

today’s therapeutic proteins market, with a 21% annual increase

rate in launching into clinical trial [1]. Indeed, although CHO

cells is now the major cell line used industrially with culture and

production protocols that have been largely optimized [2], mAbs

production at high quantities and of high quality, e.g. with defined

glycosylation profile, still has to be achieved. Among many factors

affecting mAbs quality, the stability with time of high producing

level CHO cell clones with enhanced endogenous pathways (e.g

glutamine synthetase (GS) gene) [3], and presenting a prolonged

cell viability level due to the over-expression of some cytoplasmic

proteins (e.g. chaperones such as Hsp70 and Hsp27) is highly

critical [4]. Moreover, media composition and culture conditions,

as well as their management along with culture duration, have to

be optimized to achieve not only the objective of desired cell

productivity and viability but also mAbs quality specifications [5].

Ultimately and within this context, efficient process control

strategies, fed through on-line and off-line analyses, may allow

seeking and maintaining desired optimal conditions with time.

However, due to the large number of variables and decision steps

associated with the development and the identification of a stable

high-producer cell line, it is a highly challenging and time

consuming process [6,7]. Indeed, high-throughput screening

approaches are normally used for clone selection, but there is a

risk of performance discrepancy during scaled-up and manufac-

turing [8]. Therefore, only a knowledge-based strategy capable to

detect at each step desired and undesired cell traits, as well as to

extrapolate its behavior at the process scale, can efficiently guide

and accelerate cell line screening works. Indeed, such level of

knowledge has thus to be based on an adequate description of cell

behavior in a managed environment. In that context, various

‘‘omic’’ approaches have been applied to cell line characterization.

Clonal variations in rat fibroblasts [9] and hepatoma cells [10]

were first reported and revealed differences in growth character-

istics under both oxygen deficient and aerobic culture conditions.

Proteomic and genomic studies on various NS0 [11,12,13] and
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murine cell lines [14], and of their recombinant derivative clones,

allowed to clearly demonstrate that clones differing in their mAb

productivities also differ in the abundance of proteins involved in

cellular functions such as energetic metabolism, mAb folding/

assembly, and cytoskeletal organization. The issue of clonal

variation in recombinant CHO cells has also been largely

addressed. Early works compared clones for their growth and

morphological aspects, and showed altered cell morphology and

different sub-population spatial organization types between clones

when grown on agar [15,16]. Clone-specific variations at the

functional genetic level were also extensively described. It has been

reported that high- and low-producer CHO-mAb subclones differ

mainly in their DNA fragment sizes where high numbers of

differentially expressed genes were identified [17]. Analyses at the

proteomic level also revealed that different clones show different

behaviors at different culture phases such as at mid-exponential

and stationary [18–22]. The effect of culture conditions on

different CHO cell clones, with respect to cell growth and

productivity, was also investigated at reduced temperature [23].

Regarding specific productivity, different enhancing effects of low

culture temperature were observed in different clones. Recently, a

metabolomic study focusing on clonal variations in response to

culture condition variation has been conducted [24]. Comparing

clone-to-clone changes, beside specific productivity, strong varia-

tions in cell density, nutrient uptake and metabolic generation

patterns were also detected. Indeed, various fluxomic approaches

[25] have been developed to estimate metabolic fluxes rates, such

as using labeling techniques [26–30] and metabolic mathematical

models [31–36]. Using isotope labeling experiments, metabolic

flux analysis (MFA) techniques and mathematical models, different

metabolic patterns in CHO cell clones were observed such as a

higher metabolic efficiency as a result of lower by-products

production. Taken together, these works have significantly

improved our knowledge on CHO cell behavior, as well as our

conviction on the need for developing tools allowing a more in-

depth capacity to describe cell metabolic behavior. In that context,

kinetic models, when they describe transient behaviors, can serve

as in silico platform enabling either intuitive or counter-intuitive

metabolic flux exploration. In this work, we have further

developed a kinetic-metabolic model for CHO cells. The model,

which is based on cell energetic and redox states [36], was

implemented with metabolic regulation aspects and then applied

as an in silico platform to the characterization of clonal variation

comparing a parental CHO cell line to its high- and low-producer

derived clones. High- and low-producer clones, engineered with

the inducible cumate gene-switch expression system [37,38] were

cultured in shake flask cultures, under both induced and non-

induced conditions. The model was calibrated on experimental

data of extra- and intracellular metabolites. In the present work,

we thus present a descriptive model as well as evaluating its

predictive capacity.

Materials and Methods

Ethics statement
All cell culture protocols were approved by the ethics committee

of the Ecole Polytechnique.

CHO clones and culture
CHO clones that stably produce a recombinant monoclonal

human anti-CD20 at different specific productivities (high- and

low-producer) were provided by Viropro International Inc.

(Montreal, Quebec, Canada). These cells were derived from

CHO-Cum2 cells and stably express the reverse cumate

transactivator, as described in details by Mullick et al. 2006

[37]. Cells were seeded at 26105 cells mL21 in 300 mL of a

protein-free medium in 1-L shake flasks, and cultured on a shaker

(150 rpm) in a humidified incubator at 37uC and 5% CO2. The

medium used was a customized chemically-defined SFM4CHO

medium (Hyclone, Utah, USA) supplemented with 4 mM

glutamine (Hyclone, Utah, USA, cat. # SH30034), 30 mM

glucose (Sigma, Oakville, Canada, cat. # G8270), and 0.05 mg

mL21 dextran sulphate (MW: 500000, Sigma, Oakville, Canada,

cat. # D7037). For the comparative study, the parental clone,

together with high- and low-producer clones, were cultured in

duplicate. High- and low-producer clones were cultured both in

the presence and in absence of cumate, the latter serving as non-

induced control. In case of induction, 1 mg mL21 of cumate was

added after 48 hours of incubation, to trigger the recombinant

protein expression. It should be mentioned that no visible effects

on morphology or growth rates were reported for mammalian cells

cultured at a cumate concentration below 200 mg mL21 [37]. Cell

culture samples were taken every 24 h for cell counts, biochemical

assays, and quantification of amino acids and human IgG, the

recombinant mAb. Samples were centrifuged at 300 g for 5 min to

remove cells, and supernatant samples were stored at 220uC for

further analysis. Cultures were monitored for a total of 6 days.

Analytical methods
Cell density was determined by cell counting using a

hemocytometer, and cell viability was estimated using the trypan

blue (sigma, Oakville, Canada cat. # T8154) exclusion method.

The concentration of glucose, lactate, glutamine and glutamate in

the culture supernatant were determined using a dual-channel

immobilized oxidase enzyme biochemistry analyzer (2700 SE-

LECT, YSI Inc. Life Sciences, Yellow Springs, OH, USA), using

calibration buffers provided by the manufacturer. Ammonia

concentration in supernatants was assayed by an enzymatic kit

with respect to manufacturer technical instructions: Ammonia

Assay Kit (Sigma, Oakville, Canada cat. # AA0100). NAD(P) and

NAD(P)H were also extracted and assayed by an enzymatic kit

with respect to manufacturer technical instructions: NAD(P)/

NAD(P)H Quantitation Kit (BioVision, CA, USA, cat. # K337-

100). mAbs concentration was quantified using an enzyme-linked

immunosorbent assay (ELISA). First, 96-well plates (Costar)

(Fisher Scientific, Burlington, Canada, cat. # 3795) were coated

with a goat anti-human IgG1 (H+L) solution (Jackson Immuno

Research, PA, USA, cat. # 109-165-003) diluted to 2.5 mg mL21

in 50 mM sodium carbonate (Fischer Scientific, Burlington,

Canada, cat. # S263-1), and incubated at 4uC overnight. Then,

the blocking of non-specific sites was carried out by adding PBS

solution containing 1% casein. After incubation for 1 h at 37uC,

either samples or standards diluted in PBS-casein were added in

triplicate to each well and incubated for 1 h at 37uC. After the

plates were incubated 1 h at 37uC, peroxidise-conjugated

affinipure fragment Goat anti-human IgG (Jackson Immuno

Research, PA, USA, cat. # 109-035-003) (1:10,000 dilution) was

added to each well, and the plates were incubated for 1 h at 37uC.

After each of the previous steps, the wells were washed three times

(PBS with 1% w/v Tween 20). Finally, the reaction was revealed

by 3,3,5,59-Tetramethylbenzidine (TMB) (Sigma, Oakville, Can-

ada, cat. # T0440) and stopped after 15–20 min by adding 1 N

hydrochloric acid, and the plates were red by an automatic plate

reader at 450 nm using a Victor3 V microplate reader (Perkin-

Elmer, Vaudreuil-Dorion, Canada). The analysis of amino acid

concentrations was performed on an Agilent 1290 UPLC system

(Agilent technologies, Montreal, Quebec, Canada) coupled to an

Agilent 6460 triple quadruple mass spectrometer (Agilent
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technologies, Montreal, Quebec, Canada), following methods

previously described [39,40]. The underivatized amino acids were

separated by a 2.16150 mm ZICTM-Hilic column (3.5 mm, 200

A, PEEK) (Merck SeQuant, Peterborough, Canada) and

2.1620 mm ZICTM-Hilic guard column (5 mm, 200 A, PEEK)

(Merck SeQuant, Peterborough, Canada) at a column tempera-

ture of 35uC and injection volume of 5 mL. The mobile phase

buffer contained 20 mM HCOONH4 (Sigma, cat. # 74314) at

pH 4. The mobile phase A was 10% of the mobile phase buffer in

water, and the mobile phase B was 10% of the mobile phase buffer

in acetonitrile (ACN) (Sigma, cat. # A3396). The mobile phase B

was linearly decreased from 90% to 35% in 19 min, then was

increased to 90% in one minute and held at 90% for 15 min at a

flow rate of 0.1 mL min21. The Agilent 6460 triple quadruple

mass spectrometer (Agilent technologies, Quebec, Canada),

equipped with a Jet stream electrospray ion source (Agilent

technologies, Quebec, Canada), was used for the analysis of amino

acids in negative ion mode. The other parameters: Gas

temperature of 350uC, Gas flow rate of 9 L min21, Nebulizer

pressure of 45 PSI, sheath gas temperature of 350uC, sheath gas

flow rate of 10 L min21, capillary votage of 3 kv. An internal

standard solution which contains 2 mM Homoarginine (Fisher

cat.# AC169090010), 2 mM homophenylalanine (Sigma cat.#
294357) and 2 mM Methionine-d3 (CDN isotope D1292) was used

as internal standard for quantification. The MRM transition and

retention time of each amino acid is listed in Table S1. It should be

noted that commercial standards of every nutrients and metab-

olites were also used to establish calibration curves along with each

series of analysis. Finally, extraction efficiency and compounds

stability were determined using internal standards.

Respirometry test
Respirometry assays were performed as described by Lambour-

sain et al. [41]. Briefly, 3 mL of cell suspension containing at least

56106 cells were inoculated in a 10-mL borosilicate glass syringe

(Sigma, Oakville, Canada), in which the plunger was substituted

by an Ingold pO2 probe (Mettler Toledo, Montreal, Quebec,

Canada). At low cell densities, a volume of cell suspension

containing 56106 cells was collected and centrifuged, and the

pellet was re-suspended in a total of 3 mL of spent media. The

respirometer was kept at 37uC and magnetically agitated (60

RPM) to ensure the homogeneity of cell suspension. Dissolved

oxygen was recorded by an acquisition system (Centris, Longueuil,

Quebec, Canada).

Extraction of intracellular metabolites
For intracellular metabolomic analysis, 56106 cells were

obtained daily, washed twice with cold PBS and extracted with

400 mL of 80% cold methanol in the presence of 0.2 g of sand

(Sigma, Oakville, Canada, cat. # 274739). After 10 min on dry

ice, the mixture was vortexed and then sonicated in ice and water

for 5 min. Suspensions were then centrifuged at 4uC for 7 min at

21,000 g. The supernatants were then transferred to a clean tube

as extracts. Pellets were re-extracted as mentioned above with

200 mL of 50% cold methanol and 200 mL of cold water. At each

extraction, supernatants were combined with the first extract and

stored in 280uC prior to analysis.

Energetic nucleotide concentrations
Extracts were filtered through 0.2 mm filters (Millipore,

Etobicoke, Canada) before analysis. Nucleotides in CHO cells

extracts were analyzed using a 1290 UPLC system coupled to a

6460 triple quadruple mass spectrometer (both from Agilent

Technologies, Montreal, Quebec, Canada). Nucleotides were

separated by a Symmetry C18 column (15062.1 mm, 3.5 mm)

(Waters, Milford, USA) equipped with a Security C18 guard-

column (Waters, Milford, USA 1062.1 mm, 3.5 mm) by the ion-

pair method, as previously described [42]. DMHA (N,N-

dimethylhexylanine, Sigma, Oakville, Canada, cat. # 308102)

was used as an ion-pair reagent to improve the signal-to-noise ratio

with positive ionization mode. The mobile phase consisted of

Buffer A: 10 mM ammonium acetate, 15 mM DMHA at pH 7.0,

and Buffer B: 50/50% (v/v) acetonitrile, 20 mM NH4OAc at

pH 7.0. Mobile phase flow rate was set at 0.3 mL min21 with the

following gradient: 0–10 min at 10% B, 10–20 min at linear

gradient from 10 to 30% B, 20–21 min at linear gradient from 30

to 60% B, 21–26 min at 60% B, 26–27 min at linear gradient

from 60 to 10% B and 27–35 min at 10% B. External standard

curve was used for quantification. The Agilent 6460 triple

quadruple mass spectrometer (Agilent technologies, Quebec,

Canada), equipped with a Jet stream source (Agilent technologies,

Quebec, Canada), was used for the analysis of nucleotides in

positive ion mode. The mass spectrometer parameter were 100 ms

scan time; 350uC gas temperature; 7 L min21 gas flow rate; 30 PSI

nebulizer pressure; 350uC sheath gas temperature; 12 L min21

heath gas flow rate and 3500 V capillary voltage. The data was

recorded in MRM mode with the mass spectrometer conditions

listed in Table S2.

Organic acid and sugar phosphate concentrations
Extracts were filtered through 0.2 mm filters (Millipore,

Etobicoke, Canada) before UPLC–MS/MS (Agilent, Montreal,

Quebec, Canada) analysis equipped with a Hypercarb column

(10062.1 mm, 5 mm) and a Hypercarb pre-column (2.1610 mm,

5 mm) (Thermo Fisher, Burlington, Canada), as previously

described [43,44]. Mobile phase consisted in Buffer A: 20 mM

ammonium acetate at pH 7.5, and Buffer B: 10% (v/v) methanol

in water. Flow rate was set at 0.3 mL min21 using the following

gradient: 0–5 min at 10% A, 5–10 min at linear gradient from

10% to 20% A, 10–20 min at linear gradient from 20% to 100%

A, 20–30 min at 100% A, 30–32 min at linear gradient from

100% to 10% A and 32–40 min at 10% A. The Agilent 6460

triple quadruple mass spectrometer (Agilent technologies, Quebec,

Canada), equipped with a Jet stream source (Agilent technologies,

Quebec, Canada), was used for the analysis of sugar phosphates

and low molecular organic acids in negative ion mode. The mass

spectrometer parameter were 100 ms scan time; 300uC gas

temperature; 7 L min21 gas flow rate; 35 PSI nebulizer pressure;

400uC sheath gas temperature; 12 L min21 heath gas flow rate

and 3500 V capillary voltage. Data were recorded in MRM mode

with the mass spectrometer conditions listed in Table S3. The

external standard curve was used for quantification.

Model development
The global structure of the mathematical model developed and

presented here is based on a previous model describing CHO cells

central metabolism [36]. Details concerning the model (transient

mass balances, parameters, etc.) are provided in the Supporting

Information; with the description of the biochemical reactions

considered in the model metabolic network (Table S4), fluxes’

kinetic formulation (Table S5), state variables and initial condi-

tions (Table S6), affinity constants (Table S7) and maximal fluxes’

rates (Table S8). In the present work, the descriptive precision as

well as the predictive capacity of the model were improved by

including catabolic pathways of amino acids metabolism along

with other biochemical pathways (glycolysis, pentose phosphate

pathway, TCA cycle, glutaminolysis as well as cell respiration)

providing carbon skeletons to the central metabolism (Figure 1).

An In Silico Platform to Study CHO Metabolism
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For simplification purposes, amino acids are pooled into 3 groups

channeled through TCA intermediates such as succinate, oxalo-

acetate and a-ketoglutarate. The other entry points for amino acid

carbon skeletons are lumped to pyruvate. A special care was taken

to preserve all stoichiometric relationships while lumping and/or

combining reactions. In addition, we also further described the cell

specific growth rate from its precursor’s building blocks by

considering G6P (leading to phospholipids and organic phosphate

compounds), R5P (to DNA, RNA and nucleotides), and extracel-

lular glutamine together with other amino acids (to proteins)

(reaction 34, Tables S4 and S5). Cell growth is described from the

main cell building blocks for which experimental data were

available; thus excluding precursors of lipids. This approach,

although reductive, allowed describing cell growth with culture

time from the major anabolic pathways that are logically expected

to affect growth behavior, as previously demonstrated [36].

Furthermore, a description of the cell-specific recombinant protein

production rate from the mAb composition in amino acids is

incorporated into the model. Extracellular amino acid concentra-

tions are included individually in the kinetic expression for both

the cell specific growth rate and mAb productivity. For

simplification purposes and because of a lack of available data in

literature as well as experimentally, a single affinity constant value

is used for each amino acid, either as a substrate for biomass

formation or antibody production, except for glutamine. Indeed,

experimental data show that cell growth stopped specifically upon

depletion of glutamine, while it has not limited antibody

production. Consumption rate of each precursor for the synthesis

of biomass or recombinant protein is calculated as proposed by

Martens [45], considering the stoichiometry of precursor metab-

olites (Table S4, reactions 34–35). The mass balance on amino

acids thus includes their production (where it applies) and their

consumption for anabolic needs for growth and production as well

as their contribution toward energy production through TCA

cycle.

The stoichiometric coefficients of the respective biosynthetic

equations were taken from literature [27]. The global metabolic

network is presented in Figure 1, and a detailed summary of each

flux reactions is given in Table S4. Only amino acids measured in

this work are considered in the model. For amino acids, only

extracellular pools were considered except for glutamate; extra-

cellular glutamine is directly converted to intracellular glutamate,

and intracellular glutamate exchange for extracellular glutamine is

also considered to account for the management of nitrogenous

sources as the culture enters the plateau phase. Intracellular

glutamate is channeled through TCA cycle via a bidirectional

exchange for a-ketoglutarate, as reported by Nolan et al. (2001)

[34]. From experimental data obtained in this work, extracellular

aspartate concentration showed low constant values as the culture

reaches the plateau phase, which suggests a possible exchange of

intracellular oxaloacetate for extracellular aspartate, a phenome-

non that has thus been described in the model. Finally, it is

assumed that at low extracellular glutamine level, the cells take up

extracellular alanine; an activation term based on a threshold

concentration for extracellular glutamine was thus included in the

model.

Description of flux kinetic regulation
Mathematical formulations of metabolic flux kinetics have been

determined based on a previous work [36] or adapted from Segel

(1993) [46], both for their biological mechanistic representation

and for the model capacity to simulate experimental data for

another CHO cell line in bioreactor cultures. Michaelis-Menten

type kinetic formulation was applied considering substrates, co-

factors [47,48], energetic nucleotides ratios, as well as inhibitors

and activators when required as described in literature (brenda-

enzymes.info [48]). ATP-to-ADP ratio has been reported to be

maintained, in metabolically healthy cells, at a ratio around 10:1

[49], NADH-to-NAD in the order of 0.03-0.07 and NADPH-to-

NADP 10-100 folds higher [50]. Moreover, since our experimen-

tal data on the cell contents in these single nucleotides suggest that

their respective sums (ATP+ADP+AMP; NAD+NADH; NADP+
NADPH) vary of lower amplitudes than the ratios during a batch

culture; it has thus been decided to keep with using ratios, as we

have recently used to describe another CHO cell line [36]. This

approach has also been suggested by Dash et al. (2008) [51] to

model metabolism and energetics in Skeletal Muscle cells. We

have thus considered using these nucleotide ratios as the driving

forces coordinating metabolic reactions. Moreover, the uptake

rates of extracellular metabolites (glucose, glutamine, amino acids)

are the dominant factors driving changes in the metabolic system.

However, the Km values for most metabolite transporters are low

relative to the extracellular concentration of the metabolites

(Tables S6–S7) [52]. This suggests that the transport of a

metabolite into a cell may not be mainly controlled by the

transporter, but rather from the intracellular enzymatic reactions

and regulation. The extracellular concentrations influence the

dynamics of intracellular concentrations. Therefore, it is proposed

in this work to model the consumption of extracellular metabolites

through the intracellular enzyme-catalyzed reactions with related

kinetic rate expressions as suggested by [53], where the

concentration dependencies of the kinetic expressions are based

on the corresponding extracellular metabolite concentration. In

this work, additional regulatory functions, mainly in glycolysis

(Figure 2), were introduced and evaluated, one by one, to either

describe activation or inhibition of enzyme kinetics. The

regulatory mechanisms involved in glycolysis are described as

hexokinase inhibition by its product G6P (term I), phosphoglucose

isomerase (term II) and phosphofructokinase inhibition (term III)

respectively by PEP and G6P, activation of pyruvate kinase by F6P

(term IV), as well as the inhibition of lactate dehydrogenase

forward reaction (term V) were considered based on information

derived from the literature [54–56]. Activation and inhibition

mechanisms of the enzymatic reactions are expressed through

negative and positive feedback and feedforward loops, modifying

the Michaelis-Menten rate laws as illustrated in Figure 2 [57].

Finally, reaction reversibility has been taken into account, for

those showing negative flux rate values during the course of a

culture simulation: understanding that model simulations were not

restricted in their signs. Thermodynamics aspects of biochemical

kinetics were not considered in this work, because the model

includes mainly lumped biochemical reactions.

Model calibration
The final fully dynamic model includes 35 reactions and 46

variables. The kinetic formulations for the flux regulation are

presented in Table S5. The model has 95 kinetic parameters, 48

affinity constants (Table S7), 42 maximum reaction rates (Table

S8) and one parameter for each regulatory function (Table S7).

Initial conditions for most of the variables were available from

culture data (Table S6), while those remaining were taken from

literature for similar conditions (brenda-enzymes.info and references

therein [48]). The set of kinetic parameters previously determined

for another CHO cell line in bioreactor cultures [36] was used as

initial estimates, when described, and the new parameters were

taken from literature for similar biological systems (brenda-

enzymes.info and references therein [48]). The parameter estimation

approach used is extensively discussed in a previous study [36].

An In Silico Platform to Study CHO Metabolism
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Briefly, for each of the five cultures under investigation, a

sensitivity analysis was performed for evaluating the influence of

each parameter on the model output. In order to define their

influence, parameters were systematically varied from their initial

value comparing respective model output, defined as the weighted

sum of squared residuals (WSSRES) between available experi-

mental data (Xmea) and simulated values (Xsim) for each state

variable m at time k, where the weight is the inverse of the variance

of the experimental data for each state variable, varm
21:

min WSSRES~
Xk

t~1

Xn

m~1
X sim

t,m {X mea
t,m

� �2

var{1
m

� �

The sensitivity analysis procedure allowed to rank the param-

eters by their decreasing influence, and to remove parameters that

were not contributing to model sensitivity from further optimiza-

tion cycle, keeping them at their initial value. Optimal parameter

values (for the sensitive ones) were then obtained by minimizing

the normalized sum-squared errors using a Least-squares minimi-

zation function in MATLAB’s Optimization Toolbox (The

Mathworks, Inc., Natick, USA) for non-linear regression. Finally,

Figure 1. The metabolic network considered in the model.
doi:10.1371/journal.pone.0090832.g001
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95% confidence intervals for both model sensitive parameters and

model predictions were calculated using built-in MATLAB

functions ‘‘nlparci.m’’ and ‘‘nlpredci.m’’, respectively.

Results

Model structure fine-tuning and characterization
The model was first applied to parental cell line culture data

obtained in shake flasks. Model performance assessment with

cumate-induced and non-induced cultures of low-producer and

high-producer clones is presented thereafter, and the details on

model parameters calibration are shown as (Figures S1, S2, S3).

Describing the regulation of glycolysis ameliorates model

simulations of experimental data. Biologically relevant

scenarios (Figure 2) of enzyme regulation mechanisms, known to

play a role in glycolysis robustness, were successively evaluated

from model performance to simulate experimental data. For

clarity reasons, only simulations for four significant model

variables, such as cell density, glucose, ATP-to-ADP and

NADH-to-NAD ratios, are shown here (Figure 2) for parental

and the induced low- and high-producer cultures, and the

remaining results can be found as (Figures S4, S5, S6, S7, S8,

S9, S10). The last two model variables are markers of cell energetic

and redox states, respectively [58]. Interestingly, one can observe

Figure 2. Regulation scheme of the model with enzymes activation or inhibition. Symbol ‘‘Q’’ indicates activation and ‘‘H’’ inhibition.
Glycolytic enzymes are either inhibited Kia

Kiaza

� �
or activated 1z Kaa

a

� �
by an effector ‘‘a’’. The corresponding activation/inhibition terms are labeled as I,

II, III, IV, and V. The bottom diagram represents model simulations for parental, induced low- and induced high-producer cell lines with no regulation
(solid black line), with the addition of term I (solid red line), with the addition of terms I and II (solid blue line), and the addition of all terms (solid
green line). Experimental data are represented by triangles (parental culture), squares (induced low-producing culture), and circles (induced high-
producing culture) for cell density (A), glucose (B), ATP-to-ADP ratio (C), and NADH-to-NAD ratio (D). Error bars are standard deviations from duplicate
flasks. Error bars are standard deviations for duplicate cultures.
doi:10.1371/journal.pone.0090832.g002
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that model simulations of cell growth agreed with experimental

data in all regulation scenarios. However, the error between model

simulation and experimental data for extracellular glucose and

energetic nucleotides ratio shows to be high, when no regulation

terms are included in the kinetic flux expressions. Hexokinase

inhibition by G6P (term I) decreases the simulation error for

extracellular glucose and redox nucleotides ratio, and to a lesser

extent for energetic nucleotides ratio. Adding a term (II) to

account for PGI inhibition by PEP further reduces the error

between model simulations and experimental data, and this is

particularly obvious for energetic nucleotide ratios. This suggests

that variations in sugar phosphate cell concentrations, although of

low magnitudes, may trigger the first two regulatory mechanisms

to control glycolytic fluxes. To verify whether incorporating other

regulatory terms into rate expressions significantly influences

simulation results, a formulation with all main regulatory steps was

also tested. The last formulation also shows to allow simulating

experimental data almost similarly to the case when the first two

terms are considered. This may suggest that not all the regulatory

terms are solicited within experimental conditions in this study.

Therefore, because of a higher performance level as well as a lower

formulation complexity, a kinetic formulation including the first

and the second regulatory terms was used in the remaining of this

study. Considering extracellular metabolites (Figures S4,S6,S8) the

model is far from predicting experimental data when no regulatory

terms are considered. However, model simulations are closer to

experimental data when only adding the first (term I) and the

second (term II) regulatory terms, respectively hexokinase feed-

back inhibition by its product, G6P, and phosphoglucose

isomerase inhibition by PEP. Interestingly, our experimental data

set accounts for a wide diversity of metabolites such as by-products

(lactate, NH4
+, glutamate), amino acids (alanine, glutamine, serine,

aspartate, and amino acid pools to TCA cycle), sugar phosphates

of glycolysis (G6P and PEP) as well as glucose, cell density and

energetic nucleotides, which are all well simulated by the model

implemented with regulation terms I and II. Similar observations

can be drawn for scenarios of intracellular organic acids such as

PYR and SUC. In addition, model simulations corresponded

more closely to experimental data for organic acids such as AKG

and MAL in induced low- and high-producer cultures, but to a

lesser extent to no clear effect for other amino acids and AMP

(Figures S5,S7,S9). Finally, the same behavior can be observed for

the cell specific oxygen consumption rate (qO2), for which

simulations were closer to experimental data comparing to the

case with no regulation (Figures S4,S6,S8).

A limited subset of model parameters drives the in silico

cell behavior. A sensitivity analysis was performed on the

resulting model, aiming to identify the most critical parameters.

Values of model parameters were changed from 285 to +300%,

one at a time, from their optimal value, and the normalized sum-

squared differences (WSSRES) were calculated as previously

described. Resulting WSSRES values were then further normalized

to that obtained for original optimal parameter values (i.e. 0%

change). Parameters showing a deviation of 615% and higher

were considered sensitive; a colormap (Figure S1) was drawn to

illustrate the extent to which normalized WSSRES values vary

from that of the optimal value (i.e. minimal simulation error). The

model reveals to be primarily sensitive to parameters of glycolysis,

TCA cycle and energetic reactions, amino acids catabolism

pathways, partially to glutaminolysis, and to a lesser extent to

the pentose phosphate pathway. The specific glucose uptake rate

(nmaxHK) and other parameters of glycolysis (nmaxPGI, nmaxPK, nmaxf

LDH and nmaxr LDH) show to strongly affect simulation error.

Moreover, maximum reaction rates for three enzymes in TCA

cycle (nmaxAKGDH, nmaxCS, and nmaxMLD), and for the reaction

connecting glycolysis to TCA cycle (nmaxPDH, nmaxME, and nmaxPC),

also reveal to be significant. The model is also highly sensitive to

three reactions related to glutaminolysis (nmaxfGLNS, nmaxrGLNS,

nmaxfGLDH, nmaxrGLDH, nmaxfAlaTA, and nmaxASX), and to a lesse extent

to two parameters related to the pentose phosphate pathway

oxidative branch (nmaxG6PDH, and nmaxEP). The model shows a high

sensitivity to energetic reactions, represented here by parameters

related to non-specifically described ATP (nmaxATPase) and NADH

consuming reactions (nmaxresp). Furthermore, the maximum specific

growth rate (nmaxgrowth) also strongly influences the simulation error.

Finally, parameters related to amino acids catabolism (nmaxrAlaTA,

nmaxSAL, nmaxfASTA, nmaxHISARGTA, and nmaxLYSILELEUHISVALTYRTA) also

demonstrate to be influential. There are therefore a high number

of non-influential parameters with 65 out of 95. This lack of

sensitivity may partially come from the experimental space used to

calibrate and to challenge the model. Although these non-sensitive

parameters are biologically relevant, describing existing active

pathways and enzymatic reactions, they may require expanded

experimental culture conditions to be solicited, as we proposed in a

recent work [59]. For space limitation only, sensitivity results for

parental culture are shown while the other cultures exhibited

almost the same results. Therefore, the model was kept as is at this

point because actual non-sensitive parameters may become

sensitive and thus be useful in a future study exploring outside

the actual experimental space.

A limited subset of measured variables contribute to the

overall model sensitivity. The specific contribution of each

measured variable to the overall model sensitivity was also

investigated. Among measured variables, cell density, extracellular

glucose, glutamine, lactate, ammonia, ASX (ASN+ASP), amino

acids pool to glutamate and nucleotide ratios showed a high

sensitivity level compared to pyruvate and succinate (Figure S2).

Not surprisingly, energetic nucleotide ratios exhibited the highest

sensitivity as it is affected by multiple reactions in various parts of

the metabolic network, through their regulatory role. Interestingly,

parameters with a relatively high global sensitivity on model

overall output may not systematically impact on all variables

simulated. Here again, results are conditioned by the experimental

space studied. It may thus suggest that experimental intracellular

concentrations have never reached threshold levels, above or

below which a higher impact could have been observed. The

whole procedure of model parameters calibration has then been

performed on the cumate-inducible cell lines, induced and non-

induced. For space limitation and clarity reasons, only final

calibrated results are shown and discussed in the following sections

(see Tables S7 and S8 for parameters values).

Assessment of the in silico platform performance
The model describes intra- and extracellular metabolites

concentration profiles and growth kinetics. The kinetic

expression for the cell specific growth rate, as multiplicative

Michaelis-Menten kinetics for precursors of cell building blocks,

was able to simulate the viable cell concentration profile in all

CHO cells cultures under study (Figure 3). High- and low-

producing clones exhibit almost similar growth profiles, reaching

maximum viable cell densities of ,3.56106 cells mL21, while

parental cell line reached slightly higher maximum viable cell

density (,4.56106 cells mL21). The model also simulates

extracellular metabolites profile with time, although significant

differences in behavior are observed between the parental, low-

and especially high- producer clones (Figure 3). Interestingly,

differences between induced and non-induced cultures of the same

clone are non-significant. Irrespective of the clone or induction
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state, all cultures were not glucose-limited (.5–15 mM at culture

harvest), with the higher consumption in high-producer clone

cultures. Parental and low-producer cultures exhibit similar

glutamine profiles, and a faster depletion is again observed for

the high-producer clone. Growth cessation coincided with the

depletion of glutamine. Interestingly, unlike glucose, lactate

concentration profile differs among clones but the model structure

is able to simulate each case. Lactate is produced all along cultures

but, however, the high-producer clone seems to start consuming

lactate at glutamine depletion, suggesting the coupling of these

phenomena as suggested by Zagari et al. (2013) [60]. Ammonia

production was almost similar in parental and low-producer

cultures, reaching a final concentration of approximately ,4 mM

whereas it was ,5 mM in the case of the high-producer clone.

Similarly to lactate, the high-producer clone seems to start

consuming ammonia following glutamine depletion. Differences

in extracellular metabolites profiles are significantly related to

amino acids metabolism (see Table S8 for statistical analysis).

Globally, all amino acids except alanine and glutamate are

consumed and the consumption/production rates are greater in

the case of high-producer clone (Figure 3). Glutamate concentra-

tion constantly increases in all culture media, and alanine is also

constantly produced during exponential phase but consumed

thereafter (from ,96 h), with a more pronounced decrease in the

high-producer clone. In that culture, alanine may have compen-

sated for the lack of glutamine, once the latter was depleted. Beside

alanine, extracellular concentrations in (ASN+ASP) and SER in

the high-producer reached depletion. These amino acids are

expected to contribute to pyruvate synthesis. Although a higher

consumption of grouped amino acids channeled through succinate

and glutamate can be identified in the high-producer culture, there

is no depletion observed. Interestingly, most intracellular metab-

olites show constant and similar levels between cultures except for

G6P and PEP with an increasing trend after exponential phase

(Figure S10).

Model simulates CHO cells clonal variations in energetic

state. As previously mentioned for the parental cell line, the cell

energetic state represented by ATP-to-ADP, NADH-to-NAD

ratios, and the cell specific oxygen consumption rate (qO2) are

well simulated for all cultures (Figure 3). Although the cell specific

oxygen consumption rate is generally greater for the high-

producer clone, the ATP-to-ADP ratio, a marker of respiration

and energy consumption, showed relatively stable and similar

values in all cultures. NADPH-to-NAPD was also substantially

similar and stable in exponential phase in all cell lines, with a slight

decrease after exponential phase, which suggests the down-

regulation of NADPH production. Finally, the NADH-to-NAD

ratio, which is a marker of TCA cycle activity, was considerably

higher in high-producer clone than in parental and low-producer

cell lines, indicating a sustained up-regulated TCA activity, as

discussed in the next sections.

Clonal variation in physiology can be inferred from a

limited set of model kinetic parameters. In order to further

evaluate parameters adjustment attributed to clonal variation, the

associated p-values for each pair of estimates (control vs. either

induced low-producer or high-producer cultures) were calculated

(Table S8). In low- and high-producer clones, only two and four

parameters, respectively, were statistically different from those for

parental to allow the model to simulate the effect of cumate

induction. Briefly, in the case of the induced low-producer clone,

main differences can be observed for parameters related to

glycolysis (nmaxrLDH), and ATP consumption reactions, which are

lumped as ATPase proton pumps requirements (nmaxATPase).

However, in the case of the induced high-producer clone, nmaxr

LDH and nmaxATPase are both significantly changed in addition to one

parameter related to glutaminolysis (nmaxfASTA) and one related to

the reactions connecting glycolysis to TCA cycle (nmaxPDH). The

high-producer clone thus resulted in a significantly different in silico

behavior compared to the parental cell line and, to a lesser extent,

to the low-producer clone (Figure S3 and Tables S8) regarding the

simulations that are however in agreement with experimental

data. Interestingly, the high-producer clone only requires the

adjustment of four parameters values from those of the parental

for the simulations to cope with experimental data.

The model simulates mAb production. The dynamics of

mAb production, modeled as multiplicative Michaelis-Menten

kinetics of amino acids, resulted in the simulation of mAb titers

(Figure 3) both in low- and high-producer clones. The model thus

shows to simulate experimental data in induced cultures while it

simulates the production resulting from the leaky expression of the

inducible system.

Discussion

The kinetic-metabolic model is a reliable in silico tool to
assess CHO cells clonal variations

Induction of recombinant proteins in microbial cell platforms

has been shown to cause an increased energetic demand in

support to a metabolic burden [61,62]. Unlike microbial cells, the

links between cell metabolic load and protein productivity in

engineered mammalian cells has yet to be tackled, although some

progress has been accomplished with the help of 13C-labeling [29].

In this work, an inducible system with low- and high-producer

clones have been selected in order to study an induction effect on

CHO cell metabolic behavior and load. Towards this goal, the use

of an in silico platform, made of a kinetic-metabolic model, confers

a unique capacity to explore mAb CHO producing cells beyond

experimental observations onto which the model has been

anchored a priori. Therefore, the remaining discussion will be

based on the results derived from the developed in silico platform.

Clone to clone variations yield more significant metabolic
changes than recombinant protein expression

In the previous sections, we reported large differences in

behavior between the low- and the high-producer clones,

comparing non-induced and induced cells (Figure 3). However,

it is of interest to evaluate the source of these differences. The

contribution of mAb production is estimated to account for atmost

5% of total carbon uptake by the cells, as previously observed [29],

even for the high-producer clone, and one can expect the de novo

metabolic load associated to the recombinant proteins to be low

compared to the intrinsic one related to endogeneous protein

synthesis. This estimate is calculated taking the carbon mass in

1 mol of mAb to the augmentation of the total mass of carbon

from cellular growth, considering a specific productivity of

,161026 mmol 1026 cells h21 and a specific growth rate of

,0.04 h21, and assuming a dry cell weight of 350 pg cell21, a

cellular molecular weight of 150 g mol21 and the reported

elemental formulas for both biomass and mAb [34]. Therefore,

the production capacity is not thought to be limited at the anabolic

level, but rather at the protein processing stage (assembly and the

folding) [63]. We then used the model to evaluate the effect of

cumate induction on the metabolic load, and similar intracellular

flux distribution, metabolic fluxes and ratios were found when

normalized to their time-corresponding values in non-induced

controls (Figure 4). Only metabolic fluxes and ratios of major

metabolic networks such as glycolysis and TCA are shown.

Interestingly, most normalized values of metabolic fluxes and
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ratios are close to 1 for the high-producer clone, while the low-

producer clone exhibits deviations from 0 to 10% for a series of

fluxes with +10% for VHK, VPGK, VGLNS, TCA flux and ATP

turnover rate. In the case of the high-producer clone, the

contribution of glutamine to TCA cycle is lower in the induced

culture. Indeed, the higher deviation between induced and non-

induced cells is observed comparing the mAb specific production

rates with time, with production rates that are 13 to 8 times higher

in the low-producer clone and 5 to 1 times higher in the high-

producer clone. This higher deviation level in the low-producer

clone looks surprising but it can be attributed to a higher leakage

level of the cumate gene switch in the high-producer clone in the

absence of cumate induction (Figure 3). Our results, both

experimental and from simulations, thus suggest that within our

experimental conditions, differences in metabolic time profile

caused by clonal variation [24] exceeded that induced by

recombinant protein expression [61,62].

High producer clone selection favors metabolically
efficient cell population subsets

The high-producer clone shows a more efficient lactate

metabolism. Model simulations (Figure 4) suggest that the

distinct metabolism of the high-producer clone favors mAb

production irrespective of cumate induction. Induced and non-

induced high-producer show similar glycolytic rates (VHK, VPGK),

glutamine metabolism (VGLNS) and ATP turnover rate for the

whole culture duration. However, interestingly, although hexoki-

nase and phosphoglucose isomerase activities are both not affected

by cumate induction, lactate dehydrogenase activity shows the

lowest values for the high-producer clone, and to a lesser extent for

the low-producer clone (Figure 5). Lactate production rate for the

high-producer clone is lower (246% at mid exponential phase and

256% at the end of exponential phase) than that for parental

(Figure 4, Table 1). Therefore, although an overflow of glycolytic

flux to lactate has been extensively reported under non-limiting

glucose conditions [64], irrespective to recombinant protein

expression, the high-producer CHO cell clone seems to maintain

a more efficient metabolic state; a result that is also supported form

simulated lower values of lactate production rate-to-glucose

consumption rate ratio (Figure 6). While a quasi-constant ratio

value is maintained for the parental clone, the low-producer also

exhibits a decreasing trend, but to a lower extent than for the high-

producer. With ratios lower than 1, while literature usually reports

a 1-2 range, one can clearly conclude of a respiratory metabolism,

coupled to a high feeding rate of intermediates to anabolic

reactions.

Anaplerosis/cataplerosis requirements allows for

different flux distribution around pyruvate node in the

high-producer clone. Lower values for the lactate production

rate-to-glucose consumption rate ratio were concomitant to higher

fluxes through pyruvate dehydrogenase in the high-producer

clone. Pyruvate dehydrogenase activity remains almost constant in

Figure 3. Simulated and experimental data for parental and induced/non-induced cell lines. Parental (experimental data: black triangles,
simulated data: solid black line), induced low-producer (experimental data: black squares, simulated data: dashed black line), non-induced low
producer (experimental data: blue squares, simulated data: dashed blue line), induced high-producer (experimental data: black circles, simulated
data: dotted black line), and non-induced high-producer (experimental data: red circles, simulated data: dotted red line).
doi:10.1371/journal.pone.0090832.g003
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parental, while it increases of 75% in high-producer and of 45% in

low-producer at mid exponential phase (Figure 5, Table 1). In

addition, both pyruvate carboxylase and malic enzyme show non-

zero fluxes in all clones (Figure 5). Our values agree, in order of

magnitude, with non-zero values that have been recently estimated

for CHO cells using isotopic tracers technique [27]. These

anaplerotic/cataplerotic reactions are known to be important for

the replenishment of TCA-cycle intermediates [65]. Unlike

parental and low-producer, the balance between these two fluxes

favors the formation of oxaloacetate from the beginning of the

culture, which implies a higher activity of pyruvate carboxylase

and a lower activity of malic enzymes in high-producer clone.

Higher efflux of malate out of TCA cycle implies a higher rate for

its conversion to pyruvate, and finally to lactate in parental clone.

The latter agrees with higher values of lactate production rate,

both observed experimentally and from simulations (Figure 5,

Table 1). In addition, slightly higher values of the NADPH-to-

NADP ratio suggest a greater contribution of malic enzyme in

both lactate and NADPH production in parental cell line.

Moreover, a higher pyruvate carboxylase activity in the high-

producer may decrease the available pyruvate pool, which could in

fine reduce lactate formation rate. The anaplerotic flux through

glutamate dehydrogenase stay moderate in all three cultures,

suggesting that acetyl coenzyme A derived from pyruvate is the

predominant intermediate fuelling the TCA cycle. This result is

supported by a high glucose contribution to TCA cycle (50–60%)

(Figure 6, Table 2). A higher portion of pyruvate directed to TCA

leads to higher values of the pyruvate branch point ratio (+75%)

estimated in high-producer, and in low-producer to a lesser extent

(Figure 6, Table 2). While a large fraction of pyruvate enters the

TCA cycle (55 to 75%), only 15–35% is converted into lactate in

the high-producer clone. A lower value of lactate production rate-

to-glucose consumption rate has been associated to the over-

expression of pyruvate dehydrogenase in other animal cells

[66,67]. The fraction of pyruvate entering the TCA is noticeably

higher compared to values previously reported for other CHO cell

lines [68,69], but they are in agreement with recent reports on low

values of lactate production [70], or even showing a net lactate

consumption [27]. The pyruvate branch point ratio shows an

increasing trend in the high-producer clone, with a more active

TCA cycle along culture time. Independently of the clone, the flux

distribution around the pyruvate branch point suggests that a high

proportion of pyruvate is derived directly from glycolysis (,80%)

(Figure 6, Table 2), while the remaining 20% may mainly

originate from malic enzyme activity through the efflux of malate

from TCA cycle, and amino acids catabolism. The estimated flux

from malate to pyruvate is high at the beginning of the culture, but

Figure 4. Comparison of metabolic fluxes and ratios. Specific glucose uptake rate (n(HK)), glycolytic flux(n(PK)), lactate production-to-glucose
consumption ratio ((nf(LDH)-nr(LDH))/n(HK)), pyruvate branch point as the ratio of the pyruvate influx through TCA cycle divided by the total flux into
pyruvate pool ((v(PDH)+ n(PC)/(n(PK)+n(SDH)+n(ME)+n(AlaTA)), when the last two fluxes positively fed pyruvare, percentage of pyruvate derived from
glucose (v(PK/(n(PK)+n(SAL)+n(ML-PC)+n(AlaTA)), Contribution of glucose to TCA cycle as the ratio of pyruvate influx to TCA cycle via n(PDH),
considering most of the n(PDH) has been originated from n(PK), to the total flux channeled through TCA cycle via its intermediates (v(PDH)/(n(PDH)+
n(ASTA)+ n(GLDH)+ n(LYSILELEUVALTYRTA)+n(PC)), Contribution of glutamine to TCA cycle as the ratio of glutamate influx to TCA cycle via n(GLDH) to
the total flux channeled through TCA cycle via its intermediates (v(GLDH)/(n(PDH)+n(ASTA)+n(GLDH)+n(LYSILELEUVALTYRTA)+n(PC))), Contribution of
other amino acids to TCA cycle ((v(LYSILELEUVALTYRTA)+n(ASTA))/(n(PDH)+n(ASTA)+n(GLDH)+n(LYSILELEUVALTYRTA)+n(PC))), TCA cycle flux (n(SDH/
FUM)), specific glutamine uptake rate (nf(GLNS)-nr(GLNS)), ATP turnover rate (n(PGK)+n(PK)+v(SCOAS)+nr(GlnT)+ nf(CK)+vr(AK)+2P/O ratio*n(resp)),
Specific growth rate n(growth), and specific production rate n(mAb),between induced and non-induced low-producer (dashed line) and high-producer
(dotted line) cell lines. The values are defined as the ratio of specific metabolic fluxes (mmol (10 6cells)21 h21) or ratio in induced cultures to that in
the non-induced control cultures at each time point.
doi:10.1371/journal.pone.0090832.g004
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this flux drops and stays at a low value as culture is progressing

(Figure 5); a behavior that has also been reported [71].

Ammonia accumulation impairs the contribution of

glutamine-metabolism to TCA cycle activity in all clones

except in high-producer. Although glutamine has been shown

to be the major amino acid catabolized in the TCA cycle [29,45],

its contribution to TCA decreases with respect to time to values

close to zero at ,48 h for the parental and the low-producer

clones only, while it reduces to ,4.5% for the high-producer clone

at 72 h for then remaining quasi-constant until the end of the

culture (Figures 5,6). It even appears that the direction of the

glutamate dehydrogenase flux is reversing from a a-ketoglutarate-

producing (positive flux) to a glutamate-producing (negative flux)

reaction in parental and low-producing cultures. This result

suggests that the CHO cell lines under study may redirect the flux

through glutamate dehydrogenase when the ammonia concentra-

tion increases, since glutamate dehydrogenase provides an

alternative for the uptake (i.e. detoxification) of NH4
+. A reversed

flux has been reported in literature from a medium concentration

threshold of 10 mM NH4+ [72]. However from our experimental

Figure 5. Selected metabolic fluxes of parental and induced low- and high-producer cell lines. Parental (solid line), induced low-producer
(dashed line), and induced high-producer (dotted line). The fluxes (y-axis) are given in mmol (106 cells)21 h21 and the time (x-axis) in hours. Negative
values indicate fluxes in the opposite direction of the arrow.
doi:10.1371/journal.pone.0090832.g005

An In Silico Platform to Study CHO Metabolism

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90832



T
a

b
le

1
.

C
o

m
p

ar
is

o
n

o
f

m
e

ta
b

o
lic

fl
u

xe
s

in
p

ar
e

n
ta

l,
in

d
u

ce
d

lo
w

-p
ro

d
u

ci
n

g
an

d
in

d
u

ce
d

h
ig

h
-p

ro
d

u
ci

n
g

ce
ll

lin
e

s.

A
t

4
8

h

M
e

ta
b

o
li

c
F

lu
x

p
a

re
n

ta
l

L
o

w
-p

ro
d

u
ci

n
g

H
ig

h
-p

ro
d

u
ci

n
g

t
te

st

V
a

lu
e

In
te

rv
a

l
V

a
lu

e
In

te
rv

a
l

V
a

lu
e

In
te

rv
a

l

n H
K

7
.6

7
E-

5
[6

.3
3

E-
5

,9
.0

3
E-

5
]

7
.3

2
E-

5
[6

.1
1

E-
5

,8
.5

2
E-

5
]

7
.6

6
E-

5
[6

.1
4

E-
5

,9
.1

8
E-

5
]

–

n P
G

K
1

.3
5

E-
4

[8
.1

9
E-

5
,1

.8
8

E-
4

]
1

.3
1

E-
4

[8
.7

8
E-

5
,1

.7
4

E-
4

]
1

.3
8

E-
4

[1
.0

8
E-

4
,3

E-
4

]
–

n L
D

H
8

.7
4

E-
5

[7
.1

3
E-

5
,1

.0
4

E-
4

]
7

.3
6

E-
5

[5
.6

8
E-

5
,9

.0
9

E-
5

]
4

.4
9

E-
5

[2
.6

8
E-

5
,6

.3
0

E-
5

]
p

,
0

.1
+

n P
D

H
4

.0
4

E-
5

[2
.6

4
E-

5
,5

.4
5

E-
5

]
4

.8
6

E-
5

[3
.6

5
E-

5
,6

.0
8

E-
5

]
7

.0
6

E-
5

[5
.6

0
E-

5
,8

.5
2

E-
5

]
p

,
0

.1
+

n S
D

H
=

F
U

M
4

.9
0

E-
5

[3
.2

3
E-

5
,6

.5
7

E-
5

]
6

.1
6

E-
5

[4
.6

8
E-

5
,7

.6
3

E-
5

]
9

.3
5

E-
5

[7
.6

5
E-

5
,1

.1
1

E-
4

]
p

,
0

.1
+

n M
E
{

n P
C

3
.7

0
E-

6
[1

.7
3

E-
6

,5
.6

7
E-

6
]

4
.7

2
E-

6
[2

.7
5

E-
6

,6
.6

9
E-

6
]

-3
.5

7
E-

6
[-

1
.8

6
E-

6
,-

5
.2

7
E-

6
]

p
,

0
.1

+

n G
L

N
S

2
.9

1
E-

5
[2

.0
5

E-
5

,3
.8

0
E-

5
]

3
.8

9
E-

5
[2

.6
9

E-
5

,3
.8

9
E-

5
]

3
.8

1
E-

5
[2

.7
4

E-
5

,4
.8

7
E-

5
]

–

n G
L

D
H

5
.2

7
E-

7
[2

.4
3

E-
7

,8
.1

1
E-

7
]

3
.2

3
E-

7
[1

.1
9

E-
7

,5
.2

7
E-

7
]

6
.7

3
E-

6
[3

.2
9

E-
6

,1
.0

2
E-

5
]

p
,

0
.1

+

n A
la

T
A

1
.3

6
E-

5
[9

.4
6

E-
6

,1
.7

7
E-

5
]

1
.6

1
E-

5
[1

.2
0

E-
5

,2
.0

2
E-

5
]

2
.0

2
E-

5
[1

.5
2

E-
5

,2
.5

3
E-

5
]

–

n H
IS

A
R

G
T

A
3

.1
6

E-
6

[2
.1

4
E-

6
,4

.2
5

E-
6

]
4

.3
8

E-
6

[3
.1

4
E-

6
,5

.6
2

E-
6

]
4

.9
9

E-
6

[3
.4

5
E-

6
,6

.5
3

E-
6

]
–

n S
A

L
5

.9
5

E-
6

[5
.6

7
E-

6
,6

.2
3

E-
6

]
7

.9
5

E-
6

[4
.3

7
E-

6
,1

.1
5

E-
5

]
9

.7
1

E-
6

[6
.1

2
E-

6
,1

.3
3

E-
5

]
–

n A
T

P
a
se

4
.7

8
E-

4
[2

.1
3

E-
4

,7
.4

3
E-

4
]

5
.5

1
E-

4
[2

.8
6

E-
4

,8
.1

6
E-

4
]

9
.9

3
E-

4
[4

.2
7

E-
4

,1
.5

6
E-

3
]

–

n r
es

p
9

.3
2

E-
5

[4
.9

9
E-

5
,1

.3
6

E-
4

]
1

,4
4

E-
4

[1
.0

9
E-

4
,1

.7
9

E-
4

]
2

.1
0

E-
4

[1
.6

8
E-

4
,2

.5
3

E-
4

]
–

n l
ea

k
1

.5
2

E-
5

[9
.0

6
E-

6
,2

.1
3

E-
5

]
1

.7
5

E-
5

[8
.1

6
E-

6
,2

.6
8

E-
5

]
2

.4
7

E-
5

[1
.1

6
E-

5
,3

.7
7

E-
5

]
–

n g
ro

w
th

0
.0

3
5

[0
.0

3
1

,0
.0

3
8

]
0

.0
2

8
[0

.0
2

5
,0

.0
3

1
]

0
.0

3
1

[0
.0

2
6

,0
.0

3
5

]
–

n m
A

b
–

–
6

.4
3

E-
7

[5
.4

3
E-

7
,7

.4
3

E-
7

]
3

.1
1

E-
6

[2
.2

1
E-

6
,9

.0
0

E-
7

]
–

A
t

7
4

h

M
e

ta
b

o
li

c
F

lu
x

p
a

re
n

ta
l

L
o

w
-p

ro
d

u
ci

n
g

H
ig

h
-p

ro
d

u
ci

n
g

t
te

st

V
a

lu
e

In
te

rv
a

l
V

a
lu

e
In

te
v

a
l

V
a

lu
e

In
te

rv
a

l

n H
K

7
.6

E-
5

[6
.5

1
E-

5
,8

.7
1

E-
5

]
7

.3
3

E-
5

[6
.4

2
E5

,8
.2

5
E-

5
]

7
.7

3
E-

5
[6

.7
0

E-
5

,8
.7

5
E-

5
]

–

n P
G

K
1

.3
5

E-
4

[9
.0

3
E-

5
,1

.8
0

E-
4

]
1

.3
3

E-
4

[7
.8

1
E-

5
,1

.8
8

E-
4

]
1

.4
1

E-
4

[9
.1

6
E-

5
,1

.9
1

E-
4

]
–

n L
D

H
8

.5
3

E-
5

[7
.2

0
E-

5
,9

.8
6

E-
5

]
6

.8
5

E-
5

[5
.2

2
E-

5
,8

.4
8

E-
5

]
3

.6
4

E-
5

[2
.1

2
E-

5
,5

.1
8

E-
5

]
p

,
0

.1
+

n P
D

H
4

.1
5

E-
5

[2
.6

3
E-

5
,5

.6
7

E-
5

]
5

.2
9

E-
5

[3
.2

6
E-

5
,7

.3
1

E-
5

]
7

.8
4

E-
5

[6
.6

2
E-

5
,9

.0
6

E-
5

]
p

,
0

.1
+

n S
D

H
=

F
U

M
5

.0
6

E-
5

[2
.6

3
E-

5
,5

.6
7

E-
5

]
6

.5
1

E-
5

[4
.7

9
E-

5
,8

.2
1

E-
5

]
1

.0
1

E-
4

[8
.5

4
E-

5
,1

.1
7

E-
4

]
p

,
0

.1
+

n M
E
{

n P
C

2
.5

1
E-

6
[1

.0
3

E-
6

,3
.9

9
E-

6
]

3
.3

7
E-

6
[1

.9
E-

6
,4

.8
5

E-
6

]
-4

.5
3

E-
6

[-
2

.4
8

E-
6

,-
6

.5
8

E-
6

]
p

,
0

.1
+

n G
L

N
S

2
.4

8
E-

5
[1

.8
7

E-
5

,3
.0

9
E-

5
]

3
.2

1
E-

5
[2

.4
3

E-
5

,3
.2

0
E-

5
]

3
.0

1
E-

5
[2

.3
3

E-
5

,3
.6

8
E-

5
]

–

n G
L

D
H

-1
.4

E-
6

[-
3

.4
E-

7
,-

2
.4

5
E-

6
]

-1
.4

E-
6

[-
1

.1
8

E-
6

,-
2

.9
E-

6
]

4
.7

5
E-

6
[3

.2
9

E-
6

,6
.2

0
E-

6
]

p
,

0
.1

+

n A
la

T
A

1
.3

8
E-

5
[1

.0
7

E-
5

,1
.6

8
E-

5
]

1
.6

9
E-

5
[1

.2
9

E-
5

,2
.0

9
E-

5
]

1
.8

0
E-

5
[1

.5
0

E-
5

,2
.1

1
E-

5
]

–

n H
IS

A
R

G
T

A
3

.0
1

E-
6

[1
.5

3
E-

6
,4

.4
9

E-
6

]
4

.2
5

E-
6

[2
.2

3
E-

6
,6

.2
6

E-
6

]
4

.7
6

E-
6

[2
.6

1
E-

6
,6

.9
1

E-
6

]
–

n S
A

L
5

.9
4

E-
6

[3
.3

8
E-

6
,8

.5
0

E-
6

]
7

.9
2

E-
6

[5
.3

6
E-

6
,1

.0
5

E-
5

]
9

.5
6

E-
6

[6
.6

9
E-

6
,1

.2
6

E-
5

]
–

n A
T

P
a
se

4
.8

9
E-

4
[2

.1
2

E-
4

,7
.6

4
E-

4
]

5
.9

1
E-

4
[3

.1
3

E-
4

,8
.6

8
E-

4
]

1
.0

6
E-

3
[4

.6
2

E-
4

,1
.6

8
E-

3
]

–

n r
es

p
9

.5
3

E-
5

[5
.3

5
E-

5
,1

.3
7

E-
4

]
1

.5
4

E-
5

[1
.3

0
E-

4
,1

.7
8

E-
4

]
2

.9
4

E-
4

[2
.1

5
E-

4
,2

.4
3

E-
4

]
–

An In Silico Platform to Study CHO Metabolism

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e90832



data, it seems that the reverse direction of the glutamate

dehydrogenase flux is favored at extracellular ammonia econcen-

trations even below that threshold value. The fact that NH4
+ is

staying at concentrations within the order of magnitude of the

Michaelis affinity constant of glutamate dehydrogenase for NH4
+

(KmNH4) (0.5 to 3.2 mM) may partially explain the low level for

the direct contribution of glutamine to TCA cycle via glutamate

dehydrogenase. Interestingly, alanine, which is constantly pro-

duced during cell growth, is then consumed after glutamine

depletion, and at higher rates for the high-producer, and to a

lower extent for the low-producer. The alanine aminotransferase

flux even shows to turn negative (Figure 5). This also suggests that

under low glutamine concentration, a-ketoglutarate is re-chan-

neled to the TCA cycle through aminotransferase, thus maintain-

ing TCA cycle activity. The combined catabolism of all other

amino acids represents ,7% (parental) to ,15% (low- and high-

producers) of the total carbon metabolized through the TCA cycle

(Figure 6), entering as either succinate or oxaloacetate. Therefore,

the combined catabolism of all other amino acids represented a

small but non-negligible fraction of the total carbon entering the

TCA cycle. However, this contribution decreases of ,5% with

time in the three cultures. The slow increasing contribution of

glycolysis (expressed as glucose contribution) to TCA cycle

suggests that extracellular glutamine and other amino acids may

contribute less with time as they are getting depleted from the

culture medium. Further analyzing of both lactate and glutamine

profiles reveals that the high-producer clone switches to lactate

consumption toward the end of the culture from glutamine

depletion (Figure 5). Once glutamine is depleted, lactate is readily

consumed presumably to compensate for the reduced glutamine

entry to TCA cycle. This also shows that generally, a low

contribution of glutamine to TCA cycle may result in a lower net

lactate production rate, resulting from a metabolic switch while

glucose is still non-limiting, as observed in the high-producer clone

and to a lesser extent in the low-producer clone.

The high-producer clone showed enhanced TCA cycle

activity and ATP turnover rate. Greater pyruvate dehydro-

genase and pyruvate carboxylase fluxes provide higher TCA cycle

activity in the high-producer compared to the low-producer clone,

and to the parental. Concurrently, the high-producer clone

exhibits high values of NADH-to-NAD ratio (Figure 3). In

agreement with this result, high-producer CHO cells were

reported to have higher levels of intracellular NADH when

compared to low-level producers [25]. Hence, a higher NADH-to-

NAD ratio combined to higher TCA cycle fluxes in the high-

producer suggests both active glycolysis and oxidative phosphor-

ylation, meaning an intense production of intermediates as well as

of energy. This result is in agreement with a higher ATP turnover

rate simulated in this work and as reported in literature [73].

Indeed, cell respiration determined experimentally is well simu-

lated by the model. Interestingly, the analysis of cell respiration

rate and oxidative phosphorylation activity (Figure 3) reveals that

,15% of the total oxygen uptake rate is not devoted to ATP-

producing purposes but may be consumed through the proton leak

phenomenon in the mitochondria. However, this is still speculative

given the large confidence intervals associated with the flux

representing ATP production, but it is in agreement with values

reported in literature (10%–13%) [74]. Although high-producer

cultures undergo metabolism with a high energy yield, the specific

cell concentration in ATP stays constant (data not shown), whereas

the ATP-to-ADP ratio is similar to that observed in the parental

and low-producer cultures (Figure 3). This may be due to a higher

mitochondrial proton leak in addition to a higher ATP consump-

tion rate by the maintenance processes, which are lumped as
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ATPase flux in the model. Overall, simulations suggest that

biomass synthesis only requires a minor part of ATP production

with ,15% (parental), ,10% (low-producer) and ,7% (high-

producer) (Figure 6, Table 2). Recombinant protein synthesis is

simulated to consume less than 2% of the ATP production rate, for

the high- and the low-producer clones, and regularly decrease

until the end of the culture (Figure 6, Table 2). The major portion

of ATP production goes into maintaining catabolic and anabolic

reactions, such as endogenous protein synthesis (80%–90%). Thus,

as also suggested by Link et al. (2004) [75] the rate of oxidative

phosphorylation, and consequently ATP production rate, may

positively affect cell specific productivity but unlike bacterial cells

[61], no direct correlation has been established yet linking the

ATP turnover rate and the recombinant protein productivity in

CHO cells. A higher ATP production rate may thus favor a better

coordination of cellular functions, including enabling a better

processing of endogenous proteins as well as of a recombinant

protein, in extensio. This result correlates with our observation that

ATP production rate is similarly elevated in both induced and

non-induced high-producer cultures, i.e. independently of the

recombinant mAb production rate. Taken together, it seems both

from our experimental data and model simulations, that the higher

productivity level of the high-producer clone in recombinant mAb

is a consequence of its higher global metabolic activity. This up-

regulation of central carbon metabolism was not a cause or a

consequence of increased protein production load on cell

metabolism but a clonal variation effect since the same result

was also observed in non-induced cultures. Similar findings were

reported in Chong et al. (2012) [76]. Therefore, our findings

suggest that the major criterion for a successful clonal selection

relies on the identification of clones showing a high metabolic

efficiency and activity.

Figure 6. Comparison of metabolic ratios. Lactate production-to-glucose consumption ratio ((nf(LDH)-nr(LDH))/n(HK)), pyruvate branch point as
the ratio of the pyruvate influx through TCA cycle divided by the total flux into pyruvate pool (v(PDH/(n(PK)+n(SAL)+n(ML-PC)+n(AlaTA)), when the last
two fluxes positively fed pyruvare, percentage of pyruvate derived from glucose ((v(PK)+ n(PC))/(n(PK)+n(SAL)+n(ML)+n(AlaTA)), Contribution of glucose
to TCA cycle as the ratio of pyruvate influx to TCA cycle via n(PDH), considering most of the n(PDH) has been originated from n(PK), to the total flux
channeled through TCA cycle via its intermediates (v(PDH)/(n(PDH)+ n(ASTA)+ n(GLDH)+ n(LYSILELEUVALTYRTA)+n(PC)), Contribution of glutamine to
TCA cycle as the ratio of glutamate influx to TCA cycle either via n(GLDH) to the total flux channeled through TCA cycle via its intermediates (v(GLDH)/
(n(PDH)+n(ASTA)+n(GLDH)+n(LYSILELEUVALTYRTA)+n(PC))), contribution of other amino acids to TCA cycle ((v(LYSILELEUVALTYRTA)+n(ASTA))/
(n(PDH)+n(ASTA)+n(GLDH)+n(LYSILELEUVALTYRTA)+n(PC))), ATP turnover rate (n(PGK)+n(PK)+v(SCOAS)+nr(GlnT)+ nf(CK)+vr(AK)+2P/O ratio*n(resp)),
percentage of ATP consumption for biomass synethesis(0.00043*3.78*n(growth)/(v(LYSILELEUVALTYRTA)+n(ASTA))/(n(PDH)+n(ASTA)+n(GLDH)+n(LYSILE-
LEUVALTYRTA)+n(PC)), and percentage of ATP consumption for antibodysynthesis(4*n(mAb)/(v(LYSILELEUVALTYRTA)+n(ASTA))/(n(PDH)+n(AS-
TA)+n(GLDH)+n(LYSILELEUVALTYRTA)+n(PC)),between parental (solid line), induced low-producer (dashed line) and induced high-producer (dotted
line) cell lines.
doi:10.1371/journal.pone.0090832.g006
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Conclusions

This work on the characterization of different CHO mAb cell

clones and their parental cell line, brings a wide set of

experimental data for extra- and intracellular metabolites concen-

trations that were used to develop a descriptive and predictive

kinetic-metabolic model. The in silico platform presented here

enabled to better describe and quantify the metabolic differences

resulting from CHO cells clonal variability. Such platform

represents a valuable tool for cell line selection, as well as

bioprocess development, but it may have also interesting

applications in biomedical and medical applications. In fine,

although this study is based on a large amount of experimental

data for both culture media and cell content, including thermo-

dynamic considerations on.

Supporting Information

Figure S1 Sensitivity analysis on model parameters for
parental cell line culture. The colormap represents the

normalized sum of squared difference between model simulations

and experimental data, when the parameter (row) is changed from

285% to +300% (column) from the optimal value. The values for

sum of squared difference are normalized by the value

corresponding to optimal values for parameters.

(TIF)

Figure S2 Partial sensitivity analysis on model param-
eters for parental cell line culture. Each colormap

represents the normalized sum of squared difference between the

simulated and measured extracellular metabolite concentration

over time, when the parameter (row) is changed from 285% to

+300% (column) of the optimal value. The values for sum of

squared difference are normalized by the value corresponding to

optimal values for parameters. The number for each row

corresponds to the parameter presented next to the same row in

Figure S1.

(TIF)

Figure S3 Parameter estimates with their error bars
for sensitive parameters. Glycolysis (A), TCA cycle and

Redox state (B), glutaminolysis and pentose phosphate pathway

(C), amino acids metabolism (D), energetic (E) and growth (F).

Horizontal solid lines are 1.96 standard error bars and represent

parameter estimate 61.96 standard error. Parental cell line: open

triangles for parameter estimates, induced low-producer cell line:

open squares for parameter estimates, and induced high-

producer cell line: open circles for parameter estimates. A

parameter is considered highly sensitive if a small variation in its

value (625%) causes more than a 15% increase of in the

objective function.

(TIF)

Figure S4 Comparison of model simulations regarding
enzymatic regulation for parental culture for extracel-
lular and energetic metabolites. Same conditions as in

Figure 2 applied.

(TIF)

Figure S5 Comparison of model simulations regarding
enzymatic regulation for parental culture for intracel-
lular metabolites. Same conditions as in Figure 2 applied.

(TIF)

Figure S6 Comparison of model simulations regarding
enzymatic regulation for induced low-producing culture

for extracellular and energetic metabolites. Same condi-

tions as in Figure 2 applied.

(TIF)

Figure S7 Comparison of model simulations regarding
enzymatic regulation for induced low-producing culture
for intracellular metabolites. Same conditions as in Figure 2

applied.

(TIF)

Figure S8 Comparison of model simulations regarding
enzymatic regulation for induced high-producing cul-
ture for extracellular and energetic metabolites. Same

conditions as in Figure 2 applied.

(TIF)

Figure S9 Comparison of model simulations regarding
enzymatic regulation for induced high-producing cul-
ture for intracellular metabolites. Same conditions as in

Figure 2 applied.

(TIF)

Figure S10 Simulated and experimental data for paren-
tal and induced/non-induced cell line. Parental (experi-

mental data: black triangles, simulated data: solid black line),

induced low-producer (experimental data: black squares, simulat-

ed data: dashed black line), non-induced low producer (experi-

mental data: blue squares, simulated data: dashed blue line),

induced high-producer (experimental data: black circles, simulated

data: dotted black line), and non-induced high-producer (exper-

imental data: red circles, simulated data: dotted red line).

(TIF)

Table S1 MRM transition and retention time of each
amino acid quantified.

(DOCX)

Table S2 MRM mode with the mass spectrometer
conditions for determination of nucleotides.

(DOCX)

Table S3 MRM mode with the mass spectrometer
conditions for determination of nucleotides.

(DOCX)

Table S4 Reactions of the metabolic network.

(DOCX)

Table S5 Biokinetic equations of the metabolites fluxes
(1-35) of the model.

(DOCX)

Table S6 State variables description and initial condi-
tions.

(DOCX)

Table S7 Affinity (Km), activation (Ka), and inhibition
(Ki) constants.

(DOCX)

Table S8 Maximum reaction rates (nmax) and compar-
ison of highly sensitive parameters in parental, low-
producing and high-producing clones.

(DOCX)
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