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Abstract

Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced
stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid
metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes
using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node
metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using
monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1
and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or
strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples
(p,0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in
normal colonic epithelium (p,0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased
expression in primary colorectal cancers compared with normal colonic epithelium (p,0.001). Strong CYP26B1 expression
was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104–1.390, x2 = 15.063, p = 0.002). Strong LRAT was
also associated with poorer outcome (HR = 1.321, 95%CI = 1.034–1.688, x2 = 5.039, p = 0.025). In mismatch repair proficient
tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173–1.509, x2 = 21.493, p,0.001) and strong LRAT (HR = 1.464,
95%CI = 1.110–1.930, x2 = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the
retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and
that CYP26B1 and LRAT are significantly associated with prognosis both in the total cohort and in those tumours which are
mismatch repair proficient. CYP26B1 was independently prognostic in a multivariate model both in the whole patient
cohort (HR = 1.177, 95%CI = 1.020–1.216, p = 0.026) and in mismatch repair proficient tumours (HR = 1.255, 95%CI = 1.073–
1.467, p = 0.004).
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Introduction

Colorectal cancer is one of the commonest types of malignancy

whose 5 year survival remains at approximately fifty percent

despite the introduction of bowel cancer screening programmes

[1]. While the molecular pathogenesis of this type of tumour is

increasingly being understood and defined especially the early

stages of colorectal cancer development where the molecular

changes have been delineated with a high degree of detail [2–4].

However, there is still a clear need to identify biomarkers of

colorectal cancer including prognostic, predictive and diagnostic

markers [5–15].

Retinoic acid (RA) is a metabolite of vitamin A (retinol), which

performs essential functions in normal cell growth and differen-

tiation and dysregulated retinoic acid metabolism has been

implicated in tumourigenesis [16,17]. Retinoids, a term used to

describe natural or synthetic compounds showing a structural or

functional resemblance to retinol, have prominent roles to play in

cell growth, differentiation and apoptosis [16]. The most active

form of RA, all-trans retinoic acid (atRA), has a gene regulatory

function and plays a crucial role in development of the multiple

organs. 4-oxo-9-cis-retinoic acid (9-cis-RA) and 4-oxo-13-cis-

retinoic acid (13-cis-RA) are stereo-isomers of atRA and also play

an important role in RA signalling. Some retinoids possess anti-

cancer properties that have already been exploited for the

treatment of several types of cancer including cervical cancer

and promyelocytic leukaemia.

The intracellular processing of retinol involves lecithin retinol

acyl transferase (LRAT) which is responsible for the esterification

of retinol [18,19] while hydroxylation of retinol is performed by

the retinoic acid hydroxylases (CYP26A1, CYP26B1, CYP26C1)
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which are all members of the cytochrome P450 (P450) family of

enzymes [20,21].

The three members of the CYP26 family are all capable of

metabolising atRA into less biologically active 4-hydroxy-, 4-oxo-,

and 18-hydroxy-RA intermediates [22–24], of which, 4-oxo-RA is

the most common metabolite [16]. Although previous studies have

investigated P450 expression in tumours and shown tumour

selective expression of individual P450s most notably CYP1B1

[25] the CYP26 family of P450s has received little prior attention

in relation to their expression in tumours.

This study has profiled the expression of the retinoic acid

metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and

LRAT using a well characterised colorectal cancer tissue

microarray with monoclonal antibodies to CYP26A1, CYP26B1,

CYP26C1 and LRAT respectively, that have been developed and

characterised for their use by immunohistochemistry on formalin

fixed wax embedded tissue.

Materials and Methods

Monoclonal antibodies
Monoclonal antibodies to CYP26A1, CYP26B1, CYP26C1 and

LRAT were developed in collaboration with Vertebrate Antibod-

ies Ltd (Aberdeen, UK) using synthetic peptides. Peptides within

the putative protein sequences were identified which were

antigenic, exposed on the surface and unique to the target protein.

The amino acid sequences and location on the proteins are

indicated in table 1. The peptides were obtained from Almac

Sciences Ltd, (Edinburgh, UK) and conjugated individually to

ovalbumin for the immunisations and to bovine serum albumin for

the ELISA tests [26]. The immunisation of mice, production of

hybridoma cells and ELISA screening were carried out essentially

as described previously [26] except that the antigen was given by

subcutaneous route. The hybridomas were cloned by limiting

dilution until a single ELISA positive colony was grown in a 96

well plate. Individual cell lines were then grown at high cell density

for the preparation of the antibody stock which was used

subsequently for their characterisation by immunoblotting and

immunohistochemistry.

Immunoblotting
Whole cell lysates from cells (human embryonic kidney cells)

overexpressing CYP26A1, CYP26B1, CYP26C1 and LRAT were

used as positive controls for immunoblotting while lysates from

cells containing vector only were used as negative controls. The

CYP26A1 cell lysate and its control were purchased from Abnova

(Taipei, Taiwan) while CYP26B1, CYP26C1 and LRAT contain-

ing cell lysates and their corresponding controls were obtained

from (Novus Biologicals, Cambridge, UK). Cell lysates (5 mg

protein/lane) were resolved by electrophoresis on NuPAGE 4-

12% bis-Tris gels (Fisher Scientific, Loughborough, UK). Follow-

ing protein transfer the membranes were blocked for 1 hour at

room temperature in phosphate buffered saline-Tween-20 (PBST)

containing 1% (w/v) skimmed milk powder. Membranes were

incubated overnight at 4uC with CYP26A1 (1/5 dilution),

CYP26B1 (1/2 dilution), CYP26C1 (1/2 dilution) or LRAT

(1/2 dilution) monoclonal antibodies diluted in PBST. Membranes

were washed (6 times) for 1 hour in 1% skimmed milk. The

membranes were subsequently probed for 1 hour with a secondary

antibody conjugated horseradish-peroxidase-conjugated anti-

mouse IgG (1/2000, Sigma-Aldrich, Dorset, UK). Membranes

were then washed (6 times) for 1 hour in 1% skimmed milk and

protein bands visualized using the enhanced chemiluminescence

detection system (Fisher Scientific).

Colorectal cancer tissue microarray
All cases of colorectal cancer included in this study were

retrospectively selected from the Aberdeen colorectal tumour bank

(now incorporated in and governanced by the NHS Grampian

Biorepository, Aberdeen, UK). In total, tumour samples from 650

patients were involved in this study, in each case, a diagnosis of

primary colorectal cancer had been made, and the patients had

undergone elective surgery for primary colorectal cancer, in

Aberdeen, between 1994 and 2009. None of the patients had

received any form of pre-operative chemotherapy or radiotherapy.

In particular patients with rectal cancer who had received

neoadjuvant therapy including short course radiotherapy were

excluded. The data for the patients and their tumours included in

this study is detailed in Table S1. Survival information (all cause

Table 1. Details of amino acid sequences used as peptide
immunogens.

Enzyme Amino acid sequence Location of peptide

CYP26A1 PARFTHFHGE 487–496

CYP26B1 DSNQNEILPE 494–503

CYP26C1 RWELATPAFP 481–490

LRAT RDQRSVLASA 190–199

doi:10.1371/journal.pone.0090776.t001

Figure 1. Immunoblots of CYP26A1, CYP26B1, CYP26C1 and LRAT antibodies. The left hand lane of each panel contains control cell lysate
while the right hand lane of each panel contains lysate prepared from cells over expressing the relevant protein. 5 micrograms of protein were loaded
per well.
doi:10.1371/journal.pone.0090776.g001
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Figure 2. Photomicrographs of CYP26A1, CYP26B1, CYP26C1 and LRAT in normal colonic mucosa, primary colorectal cancer and
metastatic colorectal cancer.
doi:10.1371/journal.pone.0090776.g002

Figure 3. The frequency distribution of the intensity of expression of CYP26A1, CYP26B1, CYP26C1 and LRAT in normal colonic
mucosa, primary colorectal cancer and metastatic colorectal cancer.
doi:10.1371/journal.pone.0090776.g003
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mortality) was available for all patients and at the time of censoring

patient outcome data there had been 309 (47.5%) deaths. The

mean patient survival was 115 months (95% CI 108–123 months).

The tumours were reported according to The Royal College of

Pathologists UK guidelines for the histopathological reporting of

colorectal cancer resection specimens and which incorporates

guidance from version 5 of the TNM staging system [27]. The

histopathological processing of the colorectal cancer excision

specimens is detailed in Materials and Methods S1.

A colorectal cancer tissue microarray was constructed contain-

ing normal colon mucosal samples (n = 50), primary (n = 650) and

metastatic colorectal cancer samples (n = 285) as previously

described [28–30]. Details of the construction of the tissue

microarray are given in Materials and Methods S1.

Immunohistochemistry
Immunohistochemistry for each antibody was performed with

the biotin-free Dako Envision system (Dako, Ely, UK) using a

Dako autostainer (Dako) as previously described [28–30]. Details

of the immunohistochemistry are given in Materials and Methods

S1. The sections were evaluated by light microscopic examination

and the intensity of immunostaining in each core assessed

independently by two investigators (GTB and GIM) using a

scoring system previously described for the assessment of protein

expression in tumour microarrays [28–30]. The intensity of

immunostaining in each core was scored as negative, weak,

moderate or strong. The sub-cellular localisation (nuclear,

cytoplasmic or membranous) of the immunostaining was also

recorded. Variation in immunostaining between cores of each case

was not identified. Any discrepancies in the immunohistochemical

assessment of the tissue cores between the two observers were

resolved by simultaneous microscopic re-evaluation.

Assessment of mismatch repair status
Mismatch repair status (MMR) was assessed by immunohisto-

chemistry using antibodies to MLH1 and MSH2 as described

previously [28,30]. MMR status was recorded as either proficient

or defective.

Statistics
Statistical analysis of the data including the Mann-Whitney U

test, Wilcoxon signed rank test, chi-squared test, Kaplan-Meier

survival analysis, log-rank test and Cox multi-variate analysis

(variables entered as categorical variables) including the calcula-

tion of hazard ratios and 95% CIs was performed using IBM SPSS

version 21 for Windows 7TM (IBM, Portsmouth, UK). The log

rank test was used to determine survival differences between

individual groups. A probability value of p#0.05 was regarded as

significant. The influence of different cut-off points in relation to

survival was investigated by dichotomizing the intensity score for

each marker. The groups that were analysed were negative

staining versus any positive staining, negative and weak staining

versus moderate and strong staining and negative, weak and

moderate staining versus strong staining.

Ethics
The project had the approval of The North of Scotland research

ethics committee (ref. nos. 08/S0801/81 and 11/NS/0015). The

research ethics committee did not require written patient consent

Table 2. Comparison of CYP26A1, CYP26B1 and LRAT expression in normal colonic mucosa, primary colorectal cancer and lymph
node metastasis.

Immunoreactivity (p
value, normal versus
primary tumour)

Change in
expression in
tumour

Immunoreactivity
(p value, primary
tumour versus lymph
node metastasis)

Change in
expression in
lymph node

Immunoreactivity
(p value, paired primary
Dukes C tumour versus
lymph node metastasis)

Change in
expression in
lymph node

CYP26A1 0.002 q 0.015 Q 0.208 «

CYP26B1 ,0.001 q 0.822 « 0.656 «

CYP26C1 - - - - - -

LRAT ,0.001 q ,0.001 Q ,0.001 Q

Evaluation of normal colonic epithelium versus primary tumour samples for immunoreactivity (Mann-Whitney U test, q = increased in tumour, Q = decreased in
tumour, - = no change between tumour and normal) and evaluation of primary Dukes C colorectal tumour samples and their corresponding metastasis samples for
immunoreactivity (Wilcoxon signed rank sum test, q = increased in lymph node metastasis, Q = decreased in lymph node metastasis, « = no change between primary
and metastatic tumour). Significant values are highlighted in bold.
doi:10.1371/journal.pone.0090776.t002

Table 3. The relationship of CYP26A1, CYP26B1 and LRAT with pathological parameters.

Tumour site
Tumour
differentiation pT stage pN stage Dukes stage EMVI MMR status

Bowel screen
detected

x2 p value x2 p value x2 p value x2 p value x2 p value x2 p value x2 p value x2 p value

CYP26A1 13.000 0.043 1.625 0.654 15.728 0.073 9.476 0.136 11.545 0.073 3.03 0.387 0.613 0.894 1.367 0.713

CYP26B1 25.723 0.002 1.760 0.624 25.723 0.002 10.743 0.097 21.000 0.002 8.839 0.032 1.649 0.648 5.192 0.158

CYP26C1 - - - - - - - - - - - - - - -

LRAT 29.861 ,0.001 3.815 0.282 29.861 ,0.001 3.073 0.800 22.208 0.001 8.563 0.036 1.198 0.754 5.624 0.131

Significant values are highlighted in bold.
doi:10.1371/journal.pone.0090776.t003
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Figure 4. The relationship of CYP26B1 and survival. A–D whole patient cohort. A. overall survival showing individual CYP26B1 categories. In
B–D the influence of different cut of points is shown. E–H Mismatch repair proficient cohort. E. overall survival showing individual CYP26B1
categories. In F–H the influence of different cut-off points is shown.
doi:10.1371/journal.pone.0090776.g004
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for the retrospective tissue samples that were included in the

colorectal cancer tissue microarray.

Results

Monoclonal antibodies
The specificity of the monoclonal antibodies to CYP26A1,

CYP26B1, CYP26C1 and LRAT were determined by ELISA

using the immunogenic peptides and also by immunoblotting

(figure 1) using whole cell lysates from cells overexpressing each

protein. A band migrating at the expected molecular weight was

observed for each antibody in a lysate prepared from cells

overexpressing the relevant protein while no bands were detected

with the corresponding control lysate.

Immunohistochemistry
CYP26A1, CYP26B1 and LRAT all showed immunoreactivity

in both normal colonic epithelium and primary and metastatic

colorectal cancer and in each case immunostaining was localised

to the cytoplasm of cells (figure 2). There was no nuclear or cell

surface membrane imunoreactivity. In normal colonic epithelium

immunostaining was predominantly localised surface epithelial

cells and no intratumour heterogeneity was observed in either

primary or metastatic colorectal tumours. CYP26C1 did not show

any immunostaining in any of the tissue samples examined.

The intensity of immunostaining was significantly higher in

primary colorectal cancer compared with normal colonic mucosa

for CYP26A1 (p = 0.002), CYP26B1 (p,0.001) and LRAT

(p,0.001) (figure 3, table 2). There was no difference in the

intensity of expression of either CYP26A1 or CYP26B1 between

Dukes C colorectal cancer and their corresponding lymph node

metastasis whereas for LRAT there was a significant decrease in

immunoreactivity in the lymph node metastasis compared with the

corresponding primary tumours (p,0.001) (figure 3 and table 2).

The expression of CYP26A1 was strongly correlated with both

CYP26B1 expression (x2 = 192.2, p,0.001) and LRAT expression

(x2 = 89.54, p,0.001) while CYP26B1 expression also correlated

with the expression of LRAT (x2 = 144.88, p,0.001).

Relationship with clinico-pathological parameters
Comparisons of the expression of CYP26A1, CYP26B1 and

LRAT and clinico-pathological parameters are summarised in

table 3. CYP26B1 and LRAT both showed significant associations

with tumour site, tumour (T) stage, extramural venous invasion

and overall stage. In contrast, CYP26A1 only showed a

relationship with tumour site and did not show a relationship

with any of the other clinico-pathological parameters investigated.

Survival analysis
Whole patient cohort. The relationship of the expression of

CYP26A1, CYP26B1 and LRAT with overall survival was

investigated using different cut-off points (negative v weak v

moderate v strong, negative v positive, negative/weak positive v

moderate/strong and negative/weak/moderate v strong) of the

immunohistochemical scoring and is summarised in table 4 and

figure 4.

There was a consistent and significant association between

CYP26B1 expression and outcome (Figure 4). Considering each

CYP26B1 intensity group separately, increasing intensity of

CYP26B1 immunoreactivity was associated with poorer prognosis

(HR = 1.239, 95%CI = 1.104–1.390, x2 = 15.063, p = 0.002). For

CYP26B1 negative tumours (n = 242) the mean survival was 133

months (95%CI = 118–148 months), for CYP26B1 weak express-

ing tumours (n = 216) the mean survival was 106 months
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Figure 5. The relationship of LRAT and survival. A. The relationship of LRAT and survival in all colorectal cancers and B. The relationship of
LRAT and survival in mismatch repair proficient tumours.
doi:10.1371/journal.pone.0090776.g005
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(95%CI = 95–116 months), for CYP26B1 moderate expressing

tumours (n = 106) the mean survival was 103 months

(95%CI = 85–120 months) and for strongly expressing CYP26B1

tumours (n = 58) the mean survival was 81 months (95%CI = 60–

101 months).

Comparing CYP26B1 negative tumours with tumours that

showed any CYP26B1 immunoreactivity then poorer survival was

associated with CYP26B1 expression (HR = 1.352, 95%CI =

1.054–1.735, x2 = 5.707, p = 0.017). For CYP26B1 negative

tumours (n = 242) the mean survival was 133 months

(95%CI = 118–148 months) while for CYP26B1 positive tumours

(n = 380) the mean survival was 107 months (95%CI = 98–116

months). Comparing CYP26B1 negative and weakly positive

tumours with CYP26B1 moderate and strong expressing tumours

showed that there was a highly significant association with survival

(HR = 1.465, 95%CI = 1.151–1.865, x2 = 9.832, p = 0.002). Mean

survival for the negative/weak tumours (n = 458) was 125 months

(95%CI = 115–135 months) while the mean survival for the

moderate/strong group of tumours (n = 164) was 96 months

(95%CI = 108–124 months). CYP26B1 negative/weak/moderate

expressing tumours when compared with CYP26B1 strongly

expressing tumours also showed a highly significant association

with survival (HR = 1.737, 95%CI = 1.248–2.418, x2 = 11.092,

p = 0.001). The mean survival for the CYP26B1 negative/weak/

moderate group (n = 564) was 119 months (95%CI = 111–128

months) whereas the mean survival for CYP26B1 strong tumours

(n = 58) was 80 months (95%CI = 60–101 months).

For LRAT there was a significant relationship with survival

(HR = 1.321, 95%CI = 1.034–1.688, x2 = 5.039, p = 0.025) when

the immunohistochemistry intensity score were dichotomised into

LRAT negative and weak cases (n = 239) versus LRAT moderate

and strong cases (n = 383) (figure 5). For LRAT negative and weak

cases mean survival was 132 months (95%CI = 119–146 months)

while for LRAT moderate and strong cases mean survival was 106

months (95%CI = 96–116 months). There was no association

between CYP26A1 and survival in the whole patient cohort.

The detailed relationship between CYP26A1, CYP26B1 and

LRAT expression, pathological parameters and overall survival is

shown in Tables S2, S3, S4, and S5.

In multivariate analysis CYP26B1 remained independently

prognostic (p = 0.026) while there was no independent prognostic

significance of LRAT expression (table 5). If the multivariate

analysis model contains only the variables that would be available

from a biopsy of colorectal cancer (i.e. no information regarding

pT stage, pN stage and EMVI) then CYP26B1 is a significant

independent prognostic marker (p = 0.017, Table S6).

MMR proficient cohort. In MMR proficient tumours there

was a consistent relationship between the intensity of CYP26B1

expression and overall survival (table 6, figure 4). Increasing

intensity of CYP26B1 immunoreactivity was associated with poorer

prognosis (HR = 1.330, 95%CI = 1.173–1.509, x2 = 21.493,

p,0.001). For CYP26B1 negative tumours (n = 200) the mean

survival was 143 months (95%CI = 127–158 months), for

CYP26B1 weak tumours (n = 186) the mean survival was 106

months (95%CI = 94–116 months), for CYP26B1 moderate

tumours (n = 87) the mean survival was 96 months

(95%CI = 82–112 months) and for strongly expressing CYP26B1

tumours (n = 49) the mean survival was 77 months (95%CI 56–

98 months).

Comparing CYP26B1 negative tumours with tumours that

showed any CYP26B1 immunoreactivity then poorer survival was

associated with CYP26B1 expression (HR = 1.604, 95%CI =

1.207–2.132, x2 = 10.796, p = 0.001). For CYP26B1 negative

tumours (n = 200) the mean survival was 143 months

(95%CI = 127–158 months) while for CYP26B1 positive tumours

(n = 322) the mean survival was 104 months (95%CI = 94–114

months). Comparing CYP26B1 negative and weakly positive

tumours with CYP26B1 moderate and strong expressing tumours

showed a highly significant association with survival (HR = 1.617,

95%CI = 1.242–2.105, x2 = 12.962, p,0.001). Mean survival for

the negative/weak tumours (n = 386) was 130 months

(95%CI = 120–141 months) and the mean survival for the

moderate/strong group of tumours was 92 months

(95%CI = 79–106 months). CYP26B1 negative/weak/moderate

expressing tumours when compared with CYP26B1 strongly

expressing tumours also showed a highly significant association

with survival (HR = 1.948, 95%CI = 1.366–2.777, x2 = 14.149,

p,0.001). The mean survival for the CYP26B1 negative/weak/

moderate group (n = 473) was 123 months (95%CI = 113–132

months) and the mean survival for CYP26B1 strongly expressing

tumours was 77 months (95%CI = 56–98 months).

For LRAT there was a significant relationship with survival

(HR = 1.464, 95%CI = 1.110–1.930, x2 = 7.425, p = 0.006) when

the immunohistochemistry intensity scores were dichotomised into

LRAT negative and weak cases (n = 198) versus LRAT moderate

and strong cases (n = 326) (figure 5). For LRAT negative and weak

cases mean survival was 139 months (95%CI = 124–156 months)

while for LRAT moderate and strong cases mean survival was 106

months (95%CI = 96–116 months). There was no association

between CYP26A1 and survival in the MMR proficient patient

cohort.

In multivariate analysis CYP26B1 remained independently

prognostic (p = 0.026) while there was no independent prognostic

significance of LRAT expression (table 7). If the multivariate

analysis model contains only the variables that would be available

from a biopsy of colorectal cancer (i.e. no information regarding

tumour stage, nodal stage and extra-mural venous invasion) then

CYP26B1 is a highly significant independent prognostic marker

(p = 0.001, Table S6).

There was no relationship of MMR defective tumours with

CYP26A1, CYP26B1 or LRAT expression and overall survival.

Discussion

Colorectal cancer is one of the commonest types of cancer

whose incidence is continuing to rise and while the molecular

events characterising the early stage of colorectal cancer develop-

ment have been described in detail there is still clear requirement

Table 5. Multivariate analysis of whole patient cohort.

Variable Wald value p-value Hazard ratio (95%CI)

Age 25.027 ,0.001 1.899 (1.477–2.442)

Gender 1.313 0.252 0.871 (0.687–1.103)

Tumour site 6.390 0.041 0.983 (0.713–1.909)

Tumour differentiation 4.469 0.035 0.603 (0.377–0.964)

Tumour (pT) stage 21.910 ,0.001 0.486 (0.234–1.010)

Nodal (pN) stage 68.015 ,0.001 0.255 (0.184–0.702)

EMVI 20.064 ,0.001 1.872 (1.423–2.463)

MMR status 0.245 0.620 0.921 (0.666–1.274)

CYP26B1 4.962 0.026 1.177 (1.020–1.216)

LRAT 0.482 0.487 0.663–1.216)

doi:10.1371/journal.pone.0090776.t005
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to identify, characterise and validate biomarkers of colorectal

cancer [4–6,12].

This study has defined the expression profile of the retinoic acid

metabolising enzymes CYP26A1, CYP26B1 and CYP26C1 which

are members of the P450 family of enzymes and LRAT in a large

cohort of well characterised colorectal cancers. The prognostic

significance of the expression of these retinoic acid metabolising

enzymes has also been established.

The P450s are a large group of NADP dependent hydroxylases

classified into families, sub-families and individual members

[31–34]. There are two distinct functional groups of P450s based

on their substrate specificity for either xenobiotics or endogenous

compounds. CYP1, CYP2 and CYP3 are the predominant

families involved in the metabolism of xenobiotics while other

families from CYP4 upwards are involved in the metabolism of

specific groups of biologically active endogenous compounds

including eicosanoids, steroid hormones, bile acids and vitamins

including vitamin A and D [35–42]. They have multiple

transcriptional and post-transcriptional regulatory mechanisms

[43]. The xenobiotic metabolising forms of P450 have been

extensively studied in tumours and many individual members have

been shown to be overexpressed in specific types of tumours most

notably CYP1B1 which has been shown to have increased

expression in a wide range of tumours [25,44–52]. The tumour

selective expression of P450 has been proposed as a therapeutic

target especially for P450 mediated pro-drug activation [51–57].

The P450s involved in endogenous compound metabolism have

generally received much less study in tumours with the exception

of those P450s involved in sex hormone (oestrogen and

testosterone) metabolism in relation to targets in breast and

prostate cancer respectively [58–60].

Structurally the P450s show greatest amino acid diversity at

their C-termini which is the hydrophilic component of the protein

in contrast to the N-terminus which is the most lipophilic

component of the protein. Given the marked C-terminal amino

acid variation and its hydrophilicity the use of peptides to the C-

terminus of individual P450 as immunogens to produce mono-

clonal antibodies to individual forms of P450 has proven for many

research groups including our own to be a highly efficient strategy

to develop individual form-specific P450 monoclonal and poly-

clonal antibodies [30,61,62].

In this study we have produced antibodies that are specific for

individual forms of the CYP26 family namely CYP26A1,

CYP26B1 and CYP26C1. All three CYP26 enzymes hydroxylate

retinoic acid and the most fully characterised is CYP26A1 which is

the predominant form involved in retinoic acid hydroxylation.

CYP26B1 and CYP26C1 are more recently identified members of

the CYP26 family and are less well characterised in comparison

with CYP26A1. CYP26C1 appears to have predominant but not

Table 7. Multivariate analysis of MMR proficient cases.

Variable Wald value p-value Hazard ratio (95%CI)

Age 26.009 ,0.001 2.045 (1.553–2.692)

Gender 3.381 0.068 0.782 (0.601–1.016)

Tumour site 4.108 0.128 0.946 (0.677–1.836)

Tumour differentiation 7.941 0.005 0.420 (0.230–0.768)

Tumour (pT) stage 15.314 0.002 0.510 (0.241–1.080)

Nodal (pN) stage 49.405 ,0.001 0.263 (0.181–0.690)

EMVI 14.120 ,0.001 1.808 (1.327–2.461)

CYP26B1 8.091 0.004 1.255 (1.073–1.467)

LRAT 1.969 0.161 0.787 (0.563–1.100)

Significant values are highlighted in bold.
doi:10.1371/journal.pone.0090776.t007

Figure 6. A schematic pathway indicating the interaction of retinoic acid metabolising enzymes in normal and metastatic colorectal
cancer cells. A. CYP26A1, CYP26B1 and LRAT expression are low in normal cells which result in the ‘‘correct’’ amount of retinoic acid and expression
of retinoic acid target genes to maintain and promote normal cell growth and differentiation. B. CYP26A1, CYP26B1 and LRAT show significant
overexpression in metastatic colorectal cancer cells potentially reducing retinoic acid levels and retinoic acid target gene transcription which in turn
significantly alters growth, differentiation and promotes a pro-metastatic phenotype. Stra6, stimulated by retinoic acid gene 6 receptor, this cell
surface receptor promotes the intracellular uptake of retinol; RDH, retinol dehydrogenase; RALDH, retinaldehyde dehydrogenase.
doi:10.1371/journal.pone.0090776.g006
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necessarily exclusive expression in specific regions of the brain

[22,23].

Colorectal cancers can be classified according to their micro-

satellite instability/MMR status and this represents a major

pathway of colorectal cancer development [63,64]. In this study

we found prognostic significance for CYP26B1 in both the whole

patient cohort and in those tumours which were defined as

microsatellite intact or stable. In contrast those tumours which

were MMR defective did not show any prognostic significance

suggesting that distinct regulatory mechanisms may be operating

in MMR proficient and MMR defective tumours.

The CYP26 enzymes have been proposed as anti-cancer drug

targets [65] and the increased expression of CYP26A1 and

CYP26B1 in colorectal cancer would suggest that these enzymes

may be relevant therapeutic targets in this type of tumours. Several

series of compounds based on different structural properties have

been synthesised that inhibit CYP26 [66–69]. These compounds

are highly selective for CYP26 and show high inhibitory activity

(nanomolar potency) towards CYP26A1. However, the inhibitory

activity of these compounds towards CYP26B1 and CYP26C1 has

not yet been evaluated. Epidemiological evidence has also

proposed targeting of retinoids and the retinoic acid pathways

for chemoprevention of colorectal cancer and the increased

expression of CYP26A1 and CYP26B1 in colorectal cancer would

indicate that targeting these enzymes may be a useful approach

[70–72].

This study also found increased expression of LRAT in primary

colorectal cancer compared with normal colonic epithelium. This

finding appears to contrast with previous studies of other tumour

types including bladder cancer [73], breast cancer [74] and

prostate cancer [75] which have suggested reduced LRAT

expression in cancer cells albeit in those studies relatively small

numbers of tumour samples were analysed and mainly biochem-

ical assays of whole tumour extracts were used resulting in the

assessment of an ‘‘average level’’ as tumour stroma and necrotic

tissue will have been included. There were significant associations

between LRAT expression in both the whole patient cohort and

MMR proficient tumours when the LRAT scores were dichot-

omised into negative/weak/moderate and strong. This association

was not as marked for other cut-off points and was less robust than

observed for CYP26B1 in terms of prognostic significances.

The major problem with most types of cancer, including

colorectal cancer, is metastatic disease and treatment is usually

targeted at metastasis although phenotypic assessment on which

treatment decisions are often made by analysis of primary tumour

specimens. In contrast to the well defined molecular events leading

to the development of colorectal cancer the pathways of metastasis

have received much less attention [76]. This study was designed to

include the assessment of phenotypic expression in both primary

tumours and their corresponding lymph node metastasis. It was

found that there was no difference in expression in CYP26A1 or

CYP26B1 between primary tumours and corresponding lymph

node metastasis. However, LRAT showed significant decrease in

expression in lymph node metastasis compared with the corre-

sponding primary tumours. This suggests both primary tumour

related factors and microenvironmental factors are involved in the

regulation of expression of these enzymes in metastasis of

colorectal cancer. The potential consequences of altered expres-

sion of CYP26A1, CYP26B1 and LRAT in metastatic colorectal

cancer cells and their contribution to a pro-metastatic phenotype

are outlined in figure 6.

In summary monoclonal antibodies to individual retinoic acid

metabolising enzymes have been developed that are effective on

formalin fixed wax embedded tissue and shown that the retinoic

acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are

significantly overexpressed in colorectal cancer and that CYP26B1

and LRAT are significantly associated with prognosis both in the

total patient cohort and in those tumour which are MMR

proficient. CYP26B1 which was independently prognostic in a

multivariate model both in the whole patient cohort and in MMR

proficient tumours represents a new biomarker of colorectal

cancer and CYP26B1 may represent a novel drug target for this

type of tumour.
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