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Abstract

Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for
this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (A, in
astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD
exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both
conditions varying in duration and sequence. Changes in A\, visualized by change in the fluorescence of JC-1, were
investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all
experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on A\, during reperfusion,
whereas GD caused a robust A\s,,, negativation. In case no A\s,,, negativation was observed after OGD, subsequent chemical
oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as
compared to normoxic group. When GD preceded OD for 12 h, Ay, hyperpolarization was induced by both GD and
subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended
to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both
conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of
electron transport chain (glucose and oxygen) and their hyperpolarizing effect on AV, during substrate deprivation, thus
shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

Citation: Korenic¢ A, Boltze J, Deten A, Peters M, Andjus P, et al. (2014) Astrocytic Mitochondrial Membrane Hyperpolarization following Extended Oxygen and
Glucose Deprivation. PLoS ONE 9(2): €90697. doi:10.1371/journal.pone.0090697

Editor: Christopher Mark Norris, Univ. Kentucky, United States of America
Received October 9, 2013; Accepted February 3, 2014; Published February 28, 2014

Copyright: © 2014 Korenic¢ et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by intramural funds of the Fraunhofer Institute for Cell Therapy and Immunology (Department of Cell Therapy) and a DAAD
(German Academic Exchange Service, Deutscher Akademischer Austauschdienst) short term research fellowship, as well as by the Serbian Ministry of Education
and Science (lll 41005). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: agapije@gmail.com

Introduction compared to combined oxygen-glucose deprivation (OGD). Less
than 3 h of OGD do not produce irreversible astrocyte injury

[1,2,3] and signs of apoptosis in astrocytes have been reported not

(ATP) synthesis pathway in mitochondria. Energy required to earlier than after 4 h of OGD [4]. Exposures longer than 6-8 h
drive this process is stored as the mitochondrial membrane

potential (AV,,) across the inner mitochondrial membrane. This is
realized by respiratory proton (H") pumps as core elements of the
electron transport chain (ETC, complexes I-1V). Lack of the two
main substrates of the ETC, glucose (electron donor) and oxygen
(electron acceptor), causes a breakdown of the vital trans-
membrane potential and thereby ceases oxidative phosphoryla-
tion.

Oxidative phosphorylation is the major adenosine triphosphate

significantly increase the number of apoptotic and necrotic
astrocytes in culture [1,5], and induces formation of autophago-
somes [6] as well as peaking LDH release [2,7] from the remaining
cells.

A relatively short period of oxygen withdrawal (up to 20 min)
causes mitochondrial depolarization thereby abolishing AV,
fluctuations in cultured astrocytes [8]. However, much longer
exposure times are needed for increased lactate dehydrogenase
(LDH) release and noticeable morphological changes indicating
cellular injury, such as somatic swelling and detachment from the
culture dish [9]. Findings from more recent studies suggest that
astrocytes can maintain hyperpolarized mitochondria even during
extended periods of OD [10]. When glucose supply is preserved,
even 5 days of continuous OD cause little astroglial injury [1].

On the other hand, already 1.5 h of GD under normoxic
conditions induce mitochondrial membrane hyperpolarization,
followed by AV, decrease 4 h after GD onset. Even though not

Since the brain lacks sufficient oxygen and glucose storage
capabilities, interruption of continuous blood supply to the organ
in vivo (cerebral ischemia) can lead to disastrous consequences on
the cellular level already within seconds to minutes, and causes
macroscopic brain infarction in the long run. However, there are
remarkable differences regarding the tolerance of ischemic
conditions among the major brain cell populations. In contrast
to neurons, astrocytes are more resistant to ischemic conditions
in vitro than in vivo. The cells were reported to be relatively resistant
to sole oxygen deprivation (OD) or glucose deprivation (GD) when
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immediately followed by significant LDH increase or astrocyte
death [2,11], these observations implicate different levels of
tolerance to OD versus GD. However, astrocytes are also
surprisingly resilient against GD: cell injury comparable to 6-8 h
of OGD injury requires >36 h of GD [1]. Preceding structural cell
damage, astrocytes exhibit changes in AV, dynamics already
between 45 min and 2 h of exposure to OGD. However, the exact
time point of these early AV, imbalances onset is discussed
controversy [3], and changes in Ay, during simulated reperfusion
after extended OGD exposures were not investigated in detail yet.

Therefore, the present study investigated AV, during simulated
reperfusion within one hour after extended exposure of cultured
primary mouse astrocytes to GD or OGD. Since it has been
proposed that either OD or low cytosolic ATP/ADP ratio can up-
regulate glycolysis and thus support AV, via ATP hydrolysis
[12,13,14], we have also studied the effect of reduced glucose levels
(preconditioning) prior to OGD. In addition, by applying a potent
respiration inhibitor (NaN3) during the simulated reperfusion, we
have investigated the effect of “chemical OD” on AV, which was
already affected by preceding OGD.

Materials and Methods

Astrocyte Primary Cell Culture

All animal experiments were performed according to the NIH
Guide for Care and Use of Laboratory Animals (1985) and the
European Communities Council Directive (86/609/EEC), and
were approved by the responsible animal welfare authority at the
Leipzig Regional Board (protocol number T22/12). All efforts
were made to minimize animal suffering and to reduce the
number of animals used.

Primary brain cells were prepared from the dissociated
forebrain cortices of fetal BALB/c mice on gestation day 18
(E18) as previously described [15]. In brief, embryos were
sacrificed by decapitation, brains were exposed, and meninges
removed. Cortices were minced before gentle dissociation in
DMEM supplemented with 10% (vol/vol) FBS. Cells were then
seeded in 75 em? cell culture flasks (10 hemispheres per flask) and
incubated at 37°C under a humidified 5% COg-containing
atmosphere. After 7 days m vitro (DIV7), flasks were vigorously
shaken for several minutes to displace microglia and loosely
adhered oligodendrocytes. Cells were washed with phosphate
buffered saline (PBS), and medium was changed twice a week.
After DIV14, the cells were trypsinized, split 1:2, and further
grown in DMEM containing 10% FBS for additional 10-14 days
before being plated at a density of 5x10* cells on poly-L-lysine-
coated 14 mm cover slips. Cells were used in experiments 4 days
later.

In vitro Glucose Deprivation, Oxygen Deprivation and
Oxidative Stress

The experimental procedure was divided into three steps:
glucose preconditioning in normoxic conditions (i.e. GD), OGD
and reperfusion. We used three different culturing media: “high
glucose” (hG), “low glucose” (IG) and “no glucose” (nG) medium
(Fig. 1).

For OGD, astrocytes on cover slips were rinsed two times with
incubation medium, either 1G or nG. The culture medium was
replaced with the incubation medium shortly before transferring
plates to an incubator (Binder Labware, Tuttlingen, Germany)
containing a humidified gas mixture of 1% Oy, 5% COy and 94%
N, at 37°C. Control astrocyte cultures were incubated under
normoxic conditions. Following OGD, cultures were reoxygenated
and fresh medium was provided for 10 min at 37°C under
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normoxic conditions in a humidified atmosphere containing 5%
COg, simulating reperfusion i vivo. Subsequently, astrocytes were
stained for microscopic imaging (see below).

Sodium azide (NaN3), a potent inhibitor of the cytochrome ¢
oxidase (complex IV) and FoF;-ATPase’s hydrolyzing function
[16,17,18,19] was used for induction of “chemical OD”. To
induce mitochondrial depolarization 5, 10, or 25 mM were
applied for 10 min each. We also used high concentrations of
hydrogen peroxide (3 and 15 mM HyOy) to verify the results
observed with NaNj since such concentrations of HyO, inflict
both loss of Ay, and cell membrane integrity [20].

Mitochondrial Membrane Potential Measurements

The mitochondrial membrane potential was examined by
staining astrocytes with JC-1 (5,5',6,6-tetrachloro-1,1",3,3'-tetra-
ethylbenzimidazolyl-carbocyanine 1odide), a lipophilic, cationic
dye that exhibits a fluorescence emission shift upon aggregation
from 530 nm (green monomer) to 590 nm (red “J-aggregates”)
[14,21,22]. In healthy cells with high mitochondrial AV,,, JC-1
enters the mitochondrial matrix in a potential-dependent manner
and forms aggregates. Staining was performed using 2.5 ug/ml
JC-1 at 37°C for 15 min. After staining, cells were rinsed 3x with
phosphate buffered saline (PBS). Dye equilibration was allowed for
10 min at room temperature prior to imaging. Images were taken
using Nikon Eclipse Ti-E inverted microscope with a Plan Fluor
10x objective. Samples were illuminated with Nikon C-HGFIE
Intensilight (Precentered Fiber Illuminator) and fluorescence was
recorded using Nikon DS-QilMc digital camera. Stained,
polarized mitochondria were detected with fluorescence settings
for Cy3 (excitation/emission = 550/570 nm, EV =50 msec). Loss
of mitochondrial integrity was detected with settings for FITC
(excitation/emission =485/535 nm, EV =500 msec).
were analyzed using the NIS-Elements v3.0 software (Nikon
Instruments Inc., Melville NY, USA) by assessing the average
fluorescence intensity from an individual image. Micrographs were
slightly enhanced for printing (ImageJ 1.48a) and modification
parameters (brightness, contrast and LUTs) were strictly the same
for each micrograph depicted in one panel to ensure compara-
bility.

Images

Statistical Analysis

Measurements from individual plates were performed at least in
triplicates with fluorescence intensities of all images obtained from
a single experimental setting being averaged. The JC-1 fluores-
cence values were first normalized to its respective control for red
and green signal separately before the ratio between them was
calculated. All data sets were tested for normal distribution with
Shapiro-Wilk’s normality test. Statistically significant differences
between average values obtained in different experimental settings
were analyzed by one-way ANOVA and Holm-Sidak’s multiple
comparisons test as a post hoc test (GraphPad Prism 5.03). We used
approximations of two-way ANOVA to examine the effect of
culture media in comparison to OGD. All values are presented as
mean * standard deviation (SD). P-values <0.01 were considered
as statistically highly significant (indicated by double symbols: *, #
or A).

Results

Astrocytes were exposed to GD or OGD, varying the duration
and sequence of each treatment. Effects on Ay, were investigated
by JC-1 staining (Fig. 1).
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Is there effect of given condition(s) on Ay, during reperfusion?

prolonged

delayed
depolarization

IG vs. nG
12 h preconditioning

48 h preconditioning
with IG

GD and OD have
synergistic effect

8 h of normO,-nG
8 h of hypoO,-nG

difference
between media

8 h of
hypoO,-IG

compare
media

OGD had little
effect on Ay,

normO, - normoxia
hypoO, - hypoxia

“high glucose” (hG) - DMEM high glucose + 10 % FBS
“low glucose” (IG) - DMEM no glucose + 1 % FBS
“no glucose” (nG) - Neurobasal-A without glucose
+2 % B27 serum-free supplement + 1 % L-glutamine

Figure 1. Schematic representation of the experimental design and most important results. Figure illustrates crucial steps in
investigation of Ay, changes during simulated reperfusion within one hour after extended exposure of astrocytes to GD or OGD. The culturing
media are designated as: high glucose (hG), low glucose (IG) or no glucose (nG). During the experiments cells were cultured either in normoxic
(normO,) or hypoxic (hypoO,) conditions. Ellipsoid shapes show conditions the cells were subjected to. Text on connector lines shows whether we
found significant effect of given experimental condition(s). Octagons indicate conclusions we made.

doi:10.1371/journal.pone.0090697.g001

Chemical OD Following OGD

Effect of chemical OD [16,17,18,19] was assessed during
simulated reperfusion following 6 h of OGD in 1G medium.
Control astrocytes were incubated under normoxic conditions in
hG medium.

There was no significant difference between control and OGD
astrocytes (p>>0.01, Fig. 2A,C). However, subsequent chemical
treatment with both 5 and 10 mM NaNNj significantly lowered JC-
1 red/green fluorescence ratio in treated normoxic astrocytes as
compared to untreated control (83.1+18.9% and 58.1%£15.3%,
p<<0.01). On the other hand, astrocytes subjected to 6 h of OGD
and treated with 5 mM NalNj afterwards did not show any
significant change of JC-1 red/green fluorescence ratio when
compared to control levels. Therefore, addition of 5 mM NaNj
during simulated reperfusion to both normoxic and OGD
astrocytes led to significant differences between these groups
(one-way ANOVA, 83.1%x18.9% vs. 97.4%14.9%, p<0.01).
Although normoxic astrocytes treated with 10 mM NaNj exhib-
ited lower fluorescence ratio when compared to respective OGD
protocols (58.1£15.3% vs. 68.2%£14.4%, respectively), there was
no statistically significant difference between them.
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Chemical OD vs. Oxidative Damage: Effect of NaN3 vs.
H202

Our next aim was to compare the effect of NaN3 and H,O4 on
AV, (Fig. 2B). To this end, astrocytes were exposed to different
NalNj3 or HyOs concentrations for 15 min in order to simulate
conditions of ETC impairment or oxidative stress/damage,
respectively. In all experimental conditions the JC-1 fluorescence
was recorded without washing out NaNj3 or HyO, (i.e. without
simulated reperfusion), since the effect of NaNj; was found
transient and reversible already 15 min after washing out the
inhibitor in previous experiments (data not shown). A dose-
dependent, significant decrease of JC-1 red/green fluorescence
ratio was observed for both NaNj (75.25%6.7% at 5 mM and
51+12.51% at 25 mM, p<<0.01) and HyO, (74.17£7.6% at
3 mM, and 45.3%7.7% at 15 mM; p<<0.01). When red and green
signals were analyzed separately, we found that NaNj increased
solely the green signal to 188.6%£25.4% (red signal remained
98.9%+21.1), while HyOy decreased the green signal to
90.0+33.3% and also decreased the red signal to 39.8%£13.5%.
Loading the dye under ETC inhibition did not show any
significant difference in JC-1 red/green fluorescence ratio when
compared to pre-dye loading procedure.
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Figure 2. OGD in IG partly preserves A\, (i.e. delays depolarization) caused by subsequent NaN; treatment. (A) Sodium azide (NaNs)
causes concentration-dependent decline of A\, in both experimental conditions. However, OGD in IG medium significantly delayed the decrease in
JC-1 fluorescence ratio caused by treatment with 5 mM NaNs during simulated reperfusion. (B) Expectedly, both NaNs and H,0, show concentration-
dependent effect by lowering the JC-1 red/green fluorescence ratio. Astrocytes were stained with JC-1 either before or during the treatment with
NaNs; (marked as pre-dye loading and dye loading under ETC inhibition, respectively). NaN; has not affected the cell membrane organization allowing
at the same time JC-1 to enter the cytoplasm and mitochondria within. (C) Representative fluorescent micrographs of astrocytes labeled with JC-1
Original micrographs were converted to tritanope color palette (Image) 1.48a). Depolarization is visible in the normoxic group (b, c) (seen as
concentration-dependent decrease in magenta and increase in blue color), but it is more pronounced than in OGD group after treatment with NaNs
(e, f). Some mitochondria remained partly depolarized. Data are expressed as a percentage normalized to the red/green fluorescence ratio values of
untreated control (the first bar from left). Significant differences are indicated by **p<<0.01 with respect to untreated control, ##p<0.01 between
treatment and its respective control, AAp<<0.01 between different inhibitor concentrations.

doi:10.1371/journal.pone.0090697.g002

The Role of Glucose in Oxygen Deprivation increase in JC-1 red/green fluorescence ratio from the control in

In order to further investigate the effect of OGD on AV, we
subjected astrocytes to 8 h of OGD 1in either 1G or nG medium, as
well as solely GD in normoxic conditions (Fig. 3A).

There was no statistically significant interaction between effects
of culturing media and OGD treatment (two-way ANOVA, p>
0.05). OGD alone did not exert significant effects with level of
significance being noticable low (p=0.059), but the effect of
culturing media alone did show significance (p<<0.01, accounting
for about 34% of the total variance). There was a significant
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astrocytes cultured for 8 h in normoxic conditions in nG medium
(one-way ANOVA 120.6+11.8%, p<<0.01). Astrocytes cultured in
nG medium and subjected to 8 h of OGD also showed a slight
increase in fluorescence ratio (111.0%£11.4%), however, this
difference was not statistically significant (p>0.01). Astrocytes
cultured in 1G conditions and subjected to 8 h of OGD, also did
not show any statistically significant change of fluorescence ratio
(102.0£10.6%, p>0.01).
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Figure 3. Glucose deprivation leads to hyperpolarization of A\, after both normoxic and OGD conditions. (A) Glucose deprivation for
8 h increases the ratio of JC-1 fluorescence. This effect was not detected when combining GD and OD, but level of significance was noticable low
(p=0.059). (B) Preconditioning for 12 h with media containing reduced or no glucose promotes hyperpolarization after OGD during simulated
reperfusion. After preconditioning, astrocytes were subjected to hypoxic conditions for additional 6 h (grey bars) or they were maintained in
normoxic conditions (white bars). (C) Lowering glucose in the incubation medium leads to an increased ratio of JC-1 fluorescence during simulated
reperfusion after normoxic and OGD conditions. There was significant interaction between effect of glucose in the culturing media and the effect of
OGD. Astrocytes were incubated for two days either in hG or IG medium. Subsequently, OGD was conducted for 6 h (grey bars). (D) Schematic
representation of the experimental design of C. The duration of each step is shown in brackets. (E) Representative red signal from fluorescent
micrographs of astrocytes labeled with JC-1. Original micrographs were converted to rainbow pseudocolor pallete using LUTs (ImageJ 1.48a).
Increase in red fluorescence is observed when astrocytes are incubated in OGD in nG medium as compared to normoxic conditions in IG medium
(Fig. 2B). The scale bar represents 100 um. Data are expressed as a percentage normalized to the JC-1 red/green fluorescence ratio values of
untreated control astrocytes (first bar on the left). Significant differences are indicated by **p<<0.01 with respect to control (normoxia in hG for Fig. 3A
and 3C, normoxia in IG for Fig. 3B), ##p<0.01 between normoxia and OGD (in IG or nG), AAp<<0.01 between two OGD treatments.
doi:10.1371/journal.pone.0090697.g003

GD Preconditioning fluorescence ratio as compared to astrocytes incubated under
normoxic conditions (114.6+9.2%, p<<0.01). Incubation in nG
reperfusion between astrocytes subjected to 8 hours of OGD also showed a significant increase in fluorescence ratio as
either in 1G or nG (Fig. 3A), the next set of experiments compared to astrocytes incubated in 1G (126.8+4.3%, p<<0.01).

investigated the effect of OGD preceded by a GD (IG or nG) In addition, astrocytes incubated in nG subjected to 6 h of OGD
showed a further increase of fluorescence ratio (145.8%4.0%)

which was significantly different from all three previously
mentioned conditions (p<<0.01).

Since there was no significant difference in AV, during

preconditioning step for 12 h (Fig. 3B,D).

There was no significant interaction between effects of
preconditioning and OGD on JC-1 red/green fluorescence ratio
(two-way ANOVA, p>0.05), but there were statistically significant
differences between all tested groups (one-way ANOVA, p<0.01). Extended Preconditioning
Astrocytes that were cultured in 1G medium and subjected to 6 h Further, the effect of extending preconditioning was studied.
of OGD showed a significant increase in JC-1 red/green Astrocytes in normoxic conditions that were incubated for two
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days in 1G showed significant increase of JC-1 red/green
fluorescence ratio when compared to control astrocytes cultivated
for 48 h in hG (one-way ANOVA, 110.8£5.1%, p<<0.01; Fig. 3C).
Astrocytes that were incubated in hG medium and later subjected
to 6 h of OGD also showed significant increase of fluorescence
ratio as compared to normoxic culture conditions (119.2%+7.6%,
p<<0.01). The highest increase in JC-1 red/green fluorescence
ratio was measured in the OGD group that was preconditioned in
IG medium (140.9%£5.0%, p<<0.01 as compared to all other
conditions). In addition, there was a statistically significant
interaction between the effect of incubation media and the effect
of OGD (two-way ANOVA, p<<0.05, accounting for approx. 3%
of the total variance), reflecting different effects of 6 h of OGD
after 2 days of incubation in hG as compared to 1G.

Discussion

Astrocyte resilience to extended exposures to OGD remains
controversial from the aspect of changes in mitochondrial
function, especially in terms of AV,,. Often preceding cell death,
such changes were described for time frame between 45 min and
2 h, as well as during simulated reperfusion. Surprisingly results
include both prolonged depolarization [3] and no apparent
changes in mitochondrial respiratory function [23], with possibility
the latter being followed by altered sensitivity to subsequent
chemical treatments [24]. Taking into account that cell death
gradually increases from 6 to 12 h of exposure [1,5] we investigate
changes in Ay, after 6 h exposure to OGD. We hypothesize that
in those studies cells that survived the OGD insult maintained
their cellular respiration and energy production after reperfusion,
which is in congruence with results of vitality assays used in those
experiments.

In our study there was no significant effect on Ay, within the
first hour after 6 h of OGD in 1G medium. To reveal the effect of
OGD, we applied NaNj to inhibit ETC function during the
reperfusion phase. OGD in 1G partly preserved A\, (i.e. delayed
depolarization) caused by treatment with 5 mM NalNj during
simulated reperfusion. This highly interesting phenomenon may
be related to NaNj inhibition of the hydrolyzing function of the
FoF-ATPase and differences in oxidative mitochondrial metahb-
olism between incubation in normoxia in hG and OGD in 1G.
This should be addressed in further studies. In general, the effect of
NaNj on Ay, has been found transient and reversible [8,25], but
apart from binding to multiple sites on cytochrome ¢ oxidase [26],
NaNj also binds to FoF;-ATPase and its sensitivity to NaNj
increases after bound ATP is hydrolyzed to produce bound ADP
[16]. This leaves an open question whether cell’s reliance on ATP
hydrolysis, when ATP/ADP ratio is high, makes Ay, dissipation
by NaNj quicker as compared to ETC inhibition alone when
ATP/ADP ratio is low. As compared to relative fluorescence
signals in HyOy and ETC inhibition trials, it can be concluded that
NaN; has not affected the plasma membrane organization
allowing at the same time JC-1 to enter the cytoplasm and
mitochondria within. Namely, hydrogen peroxide decreases the
activity of o-ketoglutarate dehydrogenase and NAD(P)H levels
[11,27], but inflicts apoptosis and necrosis at high (0.5-1.0 mM)
and at very high concentrations (5-10 mM), respectively [20].

Similar results were obtained for 8 h of OGD regardless of
whether astrocytes were incubated in 1G or nG media. However,
hyperpolarization was measurable to some extent (~11% increase)
during simulated reperfusion after OGD in nG medium. We were
also able to demonstrate a significant effect of GD in normoxic
conditions in nG vyielding a ~20% increase in AV, during
simulated reperfusion. First, these results corroborate data on the
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enhanced tolerance of astrocytes to extended oxygen and glucose
deprivation (showing unchanged AV, following OGD as com-
pared to normoxic hG (control conditions). Second, we compared
effects of DMEM and Neurobasal-A since the nG medium inhibits
glial growth without usage of antimitotic agents simultaneously
providing sustainable glucose- and serum-free environment, used
commonly e.g. for culturing feeder layer of astrocytes in co-culture
with neurons. On the other hand 1G medium contains some
residual glucose from 1% FBS which translates roughly to >700-
fold reduction in glucose level, considered here as GD as similarly
described elsewhere [28]. Also glucogenic amino acid L-glutamine
provides astrocytes with a modest alternative source of energy.
Therefore, we further compared effects of culturing astrocytes in
these two media.

Astrocytes withstand AV, dissipation and exhibit cell death
upon treatment with complex I inhibitor rotenone regardless of
the presence of glucose. Accordingly, glucose withdrawal for 6 h
does not induce extensive oxidative stress and apoptosis in
astrocytes, while GD is compensated by increased fatty acid
oxidation [28]. Furthermore, a short-term or chronic increase in
the concentration of glucose in culturing media markedly
suppresses astrocytes oxidative mitochondrial metabolism, but
increases the glycogen level and lactate release [29,30]. These data
taken altogther raise the question whether OGD has a different
effect on cells with lower vs. higher oxidative mitochondrial
metabolism. Additionally, hyperpolarization has been observed
during simulated reperfusion after 8 h of GD in the present study.
Therefore, we actually matched the total duration of the GD
preconditioning and OGD treatment to the time known for OD
alone to evoke astrocyte injury. This time is in fact half of the time
needed for GD alone [1,9,31]. When comparing 1G and nG, we
found that the differences between media compositions gave rise to
measurable changes in Ay, after OGD. Both conditions led to an
increase in A, but did not act synergistically. Those differences
between media should be addressed in further studies.

Finally, we exposed astrocytes to even longer incubation (48 h)
in the 1G medium before subjecting them to 6 h of OGD in nG
medium. Preconditioning with 1G medium led to an increase in
AV, during reperfusion affecting both normoxic and OGD group.
Hyperpolarization was also observable after the OGD in nG
medium following culturing in hG medium. These results
suggested that lowering glucose in the culture medium several
hours prior to OGD promotes hyperpolarization during the
simulated reperfusion in astrocytes. Results also point to a
significant interaction between preconditioning with GD and
following OGD, implicating synergistic effects of both conditions
in that sequence on AV, as well as further stressing out the
difference between 1G and nG media.

Although 1G alone didn’t exhibit any effect on AV, (both as GD
and OGD), its effect became apparent when cells were cultured for
48 h in 1G medium and then subjected to 6 h of OGD in nG
medium. This led to the highest mitochondrial hyperpolarization
observed. Such increase in Ay, has been demonstrated following
the lack of either oxygen or glucose as the main substrates of the
ETC [10,11,32]. Hyperpolarization itself stalls the function of
ETC and has been referred to as a mechanism contributing to
resistance to apoptosis [12,33]. This phenomenon is present
interestingly even in damaged mitochondria [34].

In conclusion, in all experiments astrocytes showed tolerance to
extended periods of oxygen and glucose deprivation regardless of
whether 1G or nG medium was used. We confirmed that GD is a
major contributor to the increase in A\, while the effect of OGD
on AV, is limited and, to some extent, reversible. Although latter
finding seams rather peculiar, it is in line with current literature
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data on enhanced astrocytic tolerance to such insult. Only 14% of
cells die after 6 h of OGD and that number increase to 24% after
9 h of OGD (measured 24 h after the insult) [5]. The hyperpo-
larization level during reperfusion phase, within one hour after
exposure to OGD, was related to lowering glucose several hours
prior to OGD. The effects of the two conditions, GD and OGD,
showed significant interaction, while a relative hyperpolarization
of the OGD cells could also be seen during the reperfusion phase
following subsequent application of NaNj. These finding may
contribute to understand the impact of cerebral ischemia on
astroglial populations and to the evaluation of results, related to
the glucose level and glucose deprivation, obtained by studying
ischemic injury m vitro. Astrocyte energy metabolism seems to be
directly influenced by the level of glucose. Ultimately, these results
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