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Abstract

Background: Meta-analysis of gene expression array databases has the potential to reveal information about gene function.
The identification of gene-gene interactions may be inferred from gene expression information but such meta-analysis is
often limited to a single microarray platform. To address this limitation, we developed a gene-centered approach to analyze
differential expression across thousands of gene expression experiments and created the CO-Regulation Database (CORD)
to determine which genes are correlated with a queried gene.

Results: Using the GEO and ArrayExpress database, we analyzed over 120,000 group by group experiments from gene
microarrays to determine the correlating genes for over 30,000 different genes or hypothesized genes. CORD output data is
presented for sample queries with focus on genes with well-known interaction networks including p16 (CDKN2A), vimentin
(VIM), MyoD (MYOD1). CDKN2A, VIM, and MYOD1 all displayed gene correlations consistent with known interacting genes.

Conclusions: We developed a facile, web-enabled program to determine gene-gene correlations across different gene
expression microarray platforms. Using well-characterized genes, we illustrate how CORD’s identification of co-expressed
genes contributes to a better understanding a gene’s potential function. The website is found at http://cord-db.org.
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Background

More than one million gene microarray expression samples are

available in the public domain through the Gene Expression

Omnibus (GEO) and ArrayExpress databases. Such array

databases include information regarding changes in gene expres-

sion that vary not only with the tissue or cell type being addressed

but also specific to the conditions under which it was examined.

Tools are available to group or organize gene expression results,

most of which rely on comparing results across a limited number

of samples and/or organizing the differentially expressed genes

into biological groups to help interpret the findings. Such network

analysis is broadly useful to determine how an experimental

condition is acting.

‘‘Added-value databases’’ process and analyze gene expression

data to provide meta-analyses to extend what can be learned from

the primary data. Most typically, such added-value databases

utilize web-based approaches to make these additional analyses

readily available [1]. Such tools permit gene-centered queries, e.g.

identifying the experimental conditions under which a gene may

be differentially expressed, or experiment-centered queries, in which the

results are compared across experimental conditions [2,3,4]. The

gene-centered databases generally focus on either identifying in

which experiments a gene is differentially regulated or determining

gene-gene correlation using expression value across a defined

microarray platform. Several gene-centered added-value databas-

es are freely assessable including GeneChaser and the Gene

Expression Atlas [5,6]. Both these tools allow the operator to assess

in which experiments a gene may be differentially expressed.

COXPRESdb and the Multi-experiment Matrix are two addi-

tional, freely accessible applications that can determine gene-gene

associations [7,8]. Commercially available value-added databases

such as Nextbio and Genevestigator each have similar capabilities

but offer additional analytics and generally more in-depth curation

[9,10].

Missing from currently available added-value database is an

approach to allow for gene specific queries across different

microarray platforms to determine what genes are coordinately

expressed with a given gene. Such information is highly

informative since its highlights potential gene-gene interactions.

Current gene-gene associations are often determined by finding

the correlation between the expression values across every

microarray sample for each gene pair. Although these approaches

provide valid information, the usefulness in determining gene-gene

associations is limited since genes can be correlated even though

they are not differentially regulated. Such analyses will include

microarray experiments where the gene of interest is not

differentially regulated which may diminish correlation values

and, importantly, the analysis is limited to only one microarray

platform. We now devised the CO-Regulation Database (CORD)

database, an alternative approach that allows an investigator to
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query and identify in which gene expression datasets a given gene

is differentially expressed, and then secondly to identify what genes

are coordinately expressed with the gene of interest. Gene-gene

correlations are determined using the fold-change expression for

each gene pair using these experiments instead of raw expression

values. To demonstrate the functionality of CORD, we queried

genes with known expression partners. We also created a web

application to make CORD readily available (http://cord-db.org).

Methods

Microarray Database Curation and Analyses
9490 microarray datasets from Homo sapiens, Mus musculus, and

Rattus novegicus experiments were downloaded and analyzed from

the Gene Expression Omnibus (GEO) datasets and Affymetrix

datasets in the Array Express database. From the GEO database,

only datasets manually curated by the GEO staff were used. From

the ArrayExpress database, we only analyzed datasets with factors

defined according to MIAME standards. Because these datasets

were curated by respective staffs, the factors could be reliably

extracted from the experimental descriptions and used for setting

up group by group comparison for differential gene expression

analysis. For example, E-MEXP-3167 in the ArrayExpress

database is a study on activity-driven neuronal gene expression

in mice with three factors: genotype, compound, and time. In a

subset of E-MEXP-3167, the genotype, compound, and time

factors have 2, 3, and 2 variables respectively (Figure 1A). To

generate microarray groups for differential gene expression

analysis, microarray samples were group by individual or grouped

factors. Using a part of E-MEXP-3167 as an example, all samples

were grouped by only the variables in one factor (‘‘Individual

Factor Method’’’) irrespective of the other factors that resulted in

five comparisons (Figure 1A). To create subsets using the

‘‘Grouped Factor Method’’, microarray samples with the same

variables across all the factors were grouped resulting in three

comparisons (Figure 1B). Using the Individual Factor Method, a

total of 67169 comparisons were made. Using the ‘‘Grouped

Variable Method’’ resulted in 64537 comparisons. Normalized

data were obtained for all GEO datasets. The raw data from

Affymetrix microarrays in the ArrayExpress database were

normalized using the robust multi-array average (rma) method.

Differentially expressed transcripts were determined by the

empirical Bayes method in ‘‘limma’’ package in R/Bioconductor

[11]. All p-values were adjusted using Benjamini and Hochberg’s

method to control the false discovery rate and a p value ,0.01 was

considered significant [12]. An example R script used for

automated analysis is provided (Code S1). All orthologous human,

mouse, and rat genes were linked to the human gene symbol to

ensure gene symbol uniformity across species. Orthologous gene

information was retrieved using the Mouse Genome Informatics

(MGI) ortholog database (http://www.informatics.jax.org/

orthology.shtml).

Microarrays are often designed with multiple probesets to a

single transcript and some probes can distinguish multiple

transcripts from a single gene locus. To simplify meta-analysis

across different microarray platforms, the probesets to each gene

locus were condensed to the average fold change for all the

differentially expressed probesets (Figure 1C). If probesets to the

same gene locus were found to differentially express in opposite

directions, all probes to that gene locus were removed from the list

of differentially expressed genes. For instance, the study E-TABM-

877 from the ArrayExpress database was done with the Affymetrix

GeneChip Mouse Genome 430 2.0. Probes 1440770_at and

1437122_at show a fold change of -1.95 and 1.09 respectively

when comparing the adipose to muscle tissue. Since both probes

target the same Refseq transcript, NM_009741, for the Bcl2 gene,

Bcl2 was omitted as a gene that is differentially regulated in this

comparison since the probe results gave opposite results. This

situation had an occurrence rate of 2.74% among every analyzed

gene. The 35654 and 42648 comparisons derived from the

Individual and Grouped Factor methods had at least one

differentially expressed gene. Using an adjusted p-value of 0.05,

the number of differentially expressed genes averaged 1348617

and 1014613 using the Individual or Grouped Factor methods,

respectively.

Co-regulated gene ranking algorithms
To identify genes were co-expressed with a given target gene, all

the experiments in which the target gene was differentially

regulated were collected. Following that the Pearson correlation

of log2 fold change of the target gene to every gene that was

differentially regulated in those experiments was determined.

Generating a final list of correlated genes is challenged by the lack

of an agreed upon consensus threshold for p-value or correlation

coefficient significance. Weak, although statistically significant,

correlations often occur between variables when working with

large datasets that are not informative. Illustrating this point was

the observation that random gene lists were shown to correlate

with breast cancer outcome [13]. Therefore, to refine the list of

correlated genes, we choose to measure the robustness of each

gene’s correlation to the target gene by comparing the gene lists

using the Individual and Grouped Variable methods. To estimate

how the co-regulated gene lists differed between each method, the

co-regulated gene lists for 1000 random target genes were

generated using both methods. First all the co-regulated genes

were rank ordered by its Pearson Correlation value for each

method. Next, the percentage of common genes between the two

gene lists (% overlap) was determined using the top 10 to 1000

genes in both lists (Equation 1). The co-regulated gene lists from

the Individual and Grouped Factor method are represented by

variables A and B respectively.

Equation 1:

%overlaplist size~
Alist size

0

T
Blist size

0

�
�

�
�

list size

Equation 2:

L2 %overlapð Þ
L list sizeð Þ2

~0

The % overlap increased asymptotically followed by a linear

increase in relationship to gene list size (Figure 2A). For instance,

when examining the top 50 genes in the co-regulated gene list

from each method, the gene lists had 39.3% of genes in common.

When examining the top 400 genes in the co-regulated gene list

from each method, the gene lists had 52.1% of genes in common.

A random overlap between two gene lists will always occur since

the number of genes is finite. To quantitate the probability of

random association, the ranked ordered gene lists generated from

the Individual and Grouped Factor method for each tested gene

were scrambled and the % overlap vs. gene list size relationship

was similarly determined (Figure 2C). The % overlap displayed a

small linear increase vs. gene list size similar to the second phase of

Figure 2A. Taking the first derivative of the % overlap of the
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actual vs. random gene lists (Figure 2B, D), the linear phase of the

% overlap in the actual gene list is most likely attributed to random

overlap and is non-informative. The informative gene list size was

taken as the gene list size where the % overlap curve becomes

linear, similar to the random gene lists, or where the second

derivate reaches 0 which was ,400. Therefore the final

informative correlated gene list was defined as the overlapping

genes from top 400 genes from the gene lists generated by

Individual and Grouped Variable methods.

To determine the final Pearson correlation value for each gene,

the strength of correlations for the Individual and Grouped

Variable methods was determined from the histogram of the log2

ratio of the Individual vs. Grouped Factor method Pearson

correlation for each overlapping gene. If each method shows equal

correlation for each gene, then a normalize distribution centered

at 0 would be expected. However, since the plot shows a normal

distribution centered at 20.42, the Grouped Variable method on

average found more robust correlations than the Individual

Variable method (Figure 2E). Therefore the overlapping genes

were rank ordered by the Pearson correlation value from the

Grouped Variable method.

Results and Discussion

To demonstrate the functionality of CORD, we examined

whether CORD could document expected gene partners for three

genes with known gene networks and function. We applied

CORD to p16 (CDKN2A), a cell cycle protein, vimentin (VIM), a

cytoskeletal protein important for epithelial to mesenchymal

transition (EMT), and the transcription factor, myogenic differen-

tiation 1 (MYOD1), a master regulator of myogenesis. The CORD

output files for CDKN2A, VIM, and MYOD1 are included as File

S1, File S2, and File S3.

p16 encoded by the CDKN2A gene plays a central role in the

regulation of cell cycle events [14]. Generally, cellular proliferation

is inhibited by p16, which prevents the G1 to S transition by

inhibiting cyclin-dependent kinase 4 (CDK4). Promoter methyla-

tion, homozygous deletion, single nucleotide polymorphisms, and

up/down regulation of CDKN2A are prevalent in a wide array of

Figure 1. Construction of CORD database using a gene-centric approach. A) A part of the microarray study E-MEXP-3167 from the
ArrayExpress database. B) The samples were grouped together by either the Individual or Grouped Factor Method and all the groups were compared
to one another. C) The differentially genes for each comparison was determined. Genes with multiple probes were reduced to one entry by averaging
the fold change for the multiple probes. If the multiple probes for a gene were differentially regulated in the opposite direction, the gene was
removed from the list of differentially expressed genes.
doi:10.1371/journal.pone.0090408.g001

Figure 2. Determination of co-regulated genes. A) The list of co-regulated genes was determined for each gene using the Individual and
Grouped Factor Method. The two gene lists were then compared to one another by determining the % overlap (similarity) of the lists for the top 10 to
top 1000 most correlated genes. The % overlap reached a plateau at 47%. B) The first derivative of the % overlap vs. the gene list size shows that on
average, after comparing the top 400 genes the lists are no longer similar. C, D) This analysis was repeated for randomly generated gene lists and
showed no change in the rate of % overlap vs. gene list size. E) To determine how using the Individual or Grouped Factor method effected gene-
gene correlation co-efficients, we analyzed the ratio of the correlation co-efficient for each gene-gene pair. A histogram of this data shows that on
average, the Grouped Factor method yielded higher correlation co-efficients.
doi:10.1371/journal.pone.0090408.g002
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cancers such as oropharyngeal, gastrointestinal, hepatic, skin, and

ovarian cancers and emphasize its role as a tumor-suppressor gene

[15,16,17,18]. Using the factor method of CORD, CDKN2A was

differentially regulated in 669 experiments using the default

settings. CDKN2A role in cancer was evident by its inclusion of

several cancer related experiments such as cervical (GDS3233),

melanoma (GDS1375; GDS3012), prostate (GDS1439), and

lymphatic (E-GEOD-29986; GDS 3516) cancers. CDKN2A

displayed a maximal log2 fold change of 9.8 with an average

value of 2.761.6. CORD of genes expressed with a similar pattern

to CDKN2A supported its role in cell cycle regulation, as 18 of the

top 20 co-expressed genes are genes known to be important for cell

Figure 3. CORD results for CDKN2A. A) CDKN2A encoding p16 plays a significant role in the cell cycle by regulating the initiation of DNA
replication. A simplified diagram shows select genes that play a major role in the cell cycle. CORD identifies many genes known to play major roles in
the cell cycle by determining genes co-regulated with CDKN2A (bolded text.) B) The CDKN2A-correlated genes were over representative for several
KEGG pathways in cancer and the cell cycle including ‘‘DNA replication’’, ‘‘p53 signaling’’, and ‘‘cell cycle.’’
doi:10.1371/journal.pone.0090408.g003

Figure 4. CORD results for VIM. A) The epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial transitions are important oncogenic
pathways where vimentin (VIM) plays a central role. Twelve of the top 20 most correlated VIM genes affect the EMT transition. B) The EMT transitions
depend heavily on cell adhesion. The VIM-correlated genes were over representative for several KEGG pathways in cell adhesion and cancer pathways
such as ‘‘ECM-receptor interaction’’, ‘‘Focal adhesion’’, and ‘‘Pathways in cancer.’’
doi:10.1371/journal.pone.0090408.g004
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cycle or cancer (Figure 3A). Genes encoding p15 (CDKN2B) and

cyclin E1 (CCNE1), and Rac GTPase activating protein 1

(RACGAP1) also regulate the G1-S transition and were the first,

second, and eight most correlated genes of co-expressed genes with

CDKN2A. Genes playing a central role in DNA replication

including proliferating cell nuclear antigen (PCNA) and mini-

chromosome maintenance complex component 4 (MCM4), and

the mitotic check point, CSAG family, member 2 (CSAG2) and

budding uninhibited by benzimidazoles 1 homolog beta (BUB1B),

were also highly co-regulated with CDKN2A. Several other genes

in the top 20 were also related to cancer. For example,

methylthioadenosine phosphorylase (MTAP), which is only sepa-

rated from CDKN2A by 100kB, is often co-deleted with CDKN2A

in several cancers [19]. Melanoma antigen family C1 (MAGEC1)

was also correlated with CDKN2A and is associated with several

cancers [20,21]. The KEGG pathways enriched in the list of all

co-regulated genes were also examined (Figure 3B). As expected,

genes involved in the cell cycle pathway (KEGG entry: hsa04110)

Table 1. Top 20 Genes Co-expressed with vimentin (VIM) identified by CORD.

Gene symbol Description EMT References

ANXA1 annexin A1 x [34]

S100A6 S100 calcium binding protein A6 x [35]

ANXA2 annexin A2 x [36]

CAPG capping protein (actin filament), gelsolin-like x [37]

LGALS1 lectin, galactoside-binding, soluble, 1

SPARC secreted protein, acidic, cysteine-rich (osteonectin) x [38]

S100A4 S100 calcium binding protein A4 x [39]

EMP3 epithelial membrane protein 3 x [40]

AXL AXL receptor tyrosine kinase x [41]

SERPINH1 serpin peptidase inhibitor, clade H, member 1

TIMP1 TIMP metallopeptidase inhibitor 1 x [42]

COL1A1 collagen, type I, alpha 1 x

calponin 2

LGALS3 lectin, galactoside-binding, soluble, 3

FSTL1 follistatin-like 1 x [43]

GPX8 glutathione peroxidase 8 (putative)

RBMS1 RNA binding motif, single stranded interacting protein 1

COL5A2 collagen, type V, alpha 2

NOTCH2 notch 2 x

CMTM3 CKLF-like MARVEL transmembrane domain containing 3

doi:10.1371/journal.pone.0090408.t001

Figure 5. CORD results for MYOD1. A) The differentiation of muscle stem cells (satellite cells) to myoblasts and ultimately to skeletal muscle is
under the control of muscle regulatory factors including the transcription factor MyoD. CORD output for MYOD1 demonstrates co- expression of
other muscle regulatory factors like myogenin (MYOG) and many genes implicated in muscle differentiation. B) The MyoD1 correlated genes were
over representative for several KEGG pathways relating to muscle such as ‘‘Cardiac muscle contraction’’ and ‘‘Dilated cardiomyopathy.’’
doi:10.1371/journal.pone.0090408.g005
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were the most significant and followed by p53 signaling (KEGG

entry: hsa04115), DNA replication (KEGG entryhsa03030),

Oocyte meiosis (KEGG entry: hsa04114), PPAR signaling

pathway (KEGG entry: hsa03320), pathways in cancer (KEGG

entry: hsa05200), and cysteine and methionine metabolism

(KEGG entry: hsa00270). The identification of known CDKN2A-

interacting genes and the overrepresentation of cell cycle and

cancer pathways demonstrated that CORD correctly identified

the CDKN2A gene network.

The epithelial-mesenchymal transition (EMT) is a reversible

process where epithelial cells loss cell polarity and gain migratory

capacity. A major part of the EMT process is the reorganization of

the cytoskeletal especially focal adhesions. EMT occurs during

development, wound healing, fibrosis, and cancer metastasis [22].

Vimentin is an intermediate filament protein that is critical for

EMT through its role in focal adhesion formation and cell motility

[23,24]. Vimentin is also implied in tumor growth and metastasis

by upregulating AXL receptor tyrosine kinase (AXL) [24,25]. In

the CORD database, vimentin was differentially expressed in 1531

different experiments. The previously identified role of vimentin in

cancer was evident due to its upregulation in several cancer

experiments including colon (E-GEOD-34053; GDS756;

GDS2609; GDS2947), cervical (GDS3233), and breast (E-

GEOD-22865) cancers. Of the top 20 most correlated genes with

vimentin, 13 are known to play a direct role in EMT (Figure 4A;

Table 1). Figure 4B shows the top 7 KEGG pathways that were

enriched in the 239 VIM correlated genes. Several functional

pathways involved in EMT such as ‘ECM-receptor interaction’,

‘Focal adhesion’, ‘regulation of the actin cytoskeleton’, and ‘TGFb
signaling’ were overrepresented. Additionally, the identification of

the colorectal cancer pathway was expected since vimentin is a

recently identified therapeutic target [26,27]. The identification of

known EMT interacting genes with vimentin and the overrepre-

sentation of vimentin associated genes in EMT processes further

demonstrates the utility of CORD.

CORD analysis was also conducted using MYOD1, which plays

a coordinated role in myogenic specification [28,29,30,31,32].

The myogenesis gene network, where MYOD1 plays a central role,

displays a complex temporal and spatial morphology [30]

(Figure 5A). Using the Factor method, CORD extracted 397

comparisons where MYOD1 was differentially expressed. MYOD1

displayed a large variation of differential expression ranging 2.0

fold (set at default) to 99.0 fold (average fold change 7.768.9)

(Figure 3A). The overexpression of MYOD1 in MyoD1- overex-

pressing fibroblasts vs. normal fibroblasts (GEO: GDS2854)

validated the specificity of the batch data retrieval and analysis

used in CORD. As anticipated, developmental and damage-

induced myogenesis experiments showed an increase in MYOD1

expression (GDS586; E-GEOD-16992; GDS2158; GDS2158).

Since MyoD1 is a transcription factor, we compared the MYOD1

correlated genes from CORD to UCSC MyoD1 Chip-Seq dataset

from muscle cells. MyoD1 was shown to bind to 63% of the

promoters in the MYOD1 gene list. Several of the genes that play a

prominent role in myogenesis were strongly correlated with

MYOD1. Myogenin (MYOG), myogenic factor 5 (MYF5), and

myogenic factor 6 (MYF6; herculin) are other transcription factor

critical for myogenesis [33] and were on the list of correlated genes

demonstrating the utility of CORD.

Conclusion

The large collection of gene expression microarrays in public

data repositories offers a wealth of information for exploring and

generating novel hypotheses. Using a gene-centered approach, we

developed a method to extract experiments where a gene is

differentially regulated and then determine which genes are

similarity co-regulated. Both the GEO and ArrayExpress data-

bases allow an investigator to query in which experiments a gene

of interest is expressed. We now amplified this capacity in order to

identify co-expressed genes sampling multiple gene expression

datasets simultaneously. By sampling multiple gene sets, the list of

co-expressed genes can inform significantly about the biological

function of a given gene. The gene lists generated from CORD are

influenced by the expected variables that contribute to co-

expression such as tissue specificity and shared biological roles.

It is for this reason that these results can prove highly useful when

analyzing a gene whose function is not well known. Furthermore,

the list of co-expressed genes may provide valuable information

about previously unappreciated biological connections for known

genes.

There are a number of limitations that derive from querying

thousands of datasets from the GEO and ArrayExpress databases

simultaneously. For example, different microarray platforms often

utilize different probesets that may target different isoforms of the

same gene. To address this issue, we condensed each list of

differentially regulated genes for each experiment down to one

entry per gene locus. Although we lose the ability to probe

different gene isoforms, we gain the ability to use multiple

microarray platforms, greatly increasing sample sizes. This

capacity could be adapted in future releases in order to more

carefully examine gene splicing changes. As RNAseq analysis and

databases develop further, this capacity will prove more relevant.

In summary, CORD is a meta-analysis tool that queries gene

expression databases in the public domain to identify lists of

coordinately expressed genes. This tool will provide useful

information that can then be combined with other tools such as

those directed at gene ontology to provide information about the

potential biological function of genes whose function is not well

known. Knowledge of coordinately expressed genes can also point

towards previously unappreciated roles for known genes. CORD is

available as a freely available web application for wide use. By

allowing open access to CORD, it is anticipated to aid in finding

novel functions and correlated partner genes of a target gene

Availability and Requirements
Cord is available at http://cord-db.org with a web interface for

ease of use. To retrieve results for a gene of interest, enter the gene

name into the ‘Target Gene(s)’ field. Multiple genes separate by a

space character may also be entered and CORD will analyze only

those experiments where entered genes were differentially

regulated in the same manner. For instance, entering ‘MyoD1’

or ‘MyoD1 MyoG Myf7’ can be entered to look at a specific

network of genes. Once a gene(s) of interest has been entered and

filter set selected, CORD emails an Microsoft Excel file with 6

tabs. Tab 1 contains the information for each experiment where

the gene(s) was differentially regulated. Tabs 2 and 3 contain genes

with the most similar or dissimilar fold change differential

expression in all the experiments listed in Tab 1. Tabs 4-6

delineates which KEGG pathways (Tab 4), COG (Tab 5), and

tissues (Tab 6) are enriched in the gene list in Tab 2.

Supporting Information

Code S1 A file (analyze_AE_dataset.R) containing the R source

code for analyzing an ArrayExpress experiment using an

Affymetrix array.

(R)
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File S1 An Excel file (CDKNA2.xls) containing the CORD

results for CDKNA2 using the following settings: human and mouse

experiments used, p value of less than 0.01, fold change threshold

of greater than 2, tissue comparisions included, and the minimum

number of samples per experiment is 3.

(XLS)

File S2 An Excel file (VIM.xls)containing the CORD results for

VIM using the following settings: human and mouse experiments

used, p value of less than 0.01, fold change threshold of greater

than 2, tissue comparisions included, and the minimum number of

samples per experiment is 3.

(XLS)

File S3 An Excel file (MYOD1.xls)containing the CORD results

for MYOD1 using the following settings: human and mouse

experiments used, p value of less than 0.01, fold change threshold

of greater than 2, tissue comparisions included, and the minimum

number of samples per experiment is 3.

(XLS)
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