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Abstract

In this paper, we present algorithms to find near-optimal sets of epidemic spreaders in complex networks. We extend the
notion of local-centrality, a centrality measure previously shown to correspond with a node’s ability to spread an epidemic,
to sets of nodes by introducing combinatorial local centrality. Though we prove that finding a set of nodes that maximizes
this new measure is NP-hard, good approximations are available. We show that a strictly greedy approach obtains the best
approximation ratio unless P = NP and then formulate a modified version of this approach that leverages qualities of the
network to achieve a faster runtime while maintaining this theoretical guarantee. We perform an experimental evaluation
on samples from several different network structures which demonstrate that our algorithm maximizes combinatorial local
centrality and consistently chooses the most effective set of nodes to spread infection under the SIR model, relative to
selecting the top nodes using many common centrality measures. We also demonstrate that the optimized algorithm we
develop scales effectively.
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Introduction

In this paper we look to find optimal sets of individuals in a

complex network to initiate an epidemic. Addressing such a

problem will have clear implication in seeding a social network to

ensure a given phenomenon diffuses optimally and may also

provide insight into mitigation strategies against an infection

initiated by a group of individuals. Further, this problem is non-

trivial. For instance, it has previously been noted in [1] that

selecting a second influential node, or ‘spreader,’ does not always

significantly increase the spread of the epidemic. In [2], the

authors show that identifying an optimal set of spreaders under a

more generalized epidemic model is NP-hard.

The susceptible-infected-recovered (SIR) model [3] is one of the

most well-studied models of epidemic disease spread in a

population. In this model, individuals in a population are in one

of three states: susceptible individuals can acquire the disease from

infected individuals who after a certain amount of time become

recovered and can no longer transmit or acquire the disease. In

recent studies, there has been much interest in studying this model

on populations structured as a network [4–6].

Throughout this paper, we will assume a population structured

as an undirected network G~(V ,E) where V is a set of individuals

(‘‘nodes’’) and E(V|V where (v,v’)[E implies (v’,v)[E. The

size of V and E are denoted n and m respectively. For other sets of

elements, we shall use the notation D:D to denote the size of that set.

For a given node v[V , gv is the set of neighbors, formally

fv’[V D(v,v’)[Eg. We will extend this to sets: for set V ’,
gV ’~

S
v[V ’ gv. We will use kv to denote the degree of v which is

the cardinality of gv. The we denote the average and maximum

degree of any node in the graph as SkT and k� respectively. We

note that, in most real-world social networks, k�vvn. The

quantity Nv is the number of neighbors and next-nearest neighbors

of node v and is defined formally as follows:

Nv~Dgv|f|i[gv gigD ð1Þ

In this paper, we use a the version of the SIR model specified by

Chen et al. [7]. Nodes in the network under this version of the

model are in one of three states: susceptible, infected, or recovered.

Once a node is infected, one of its neighbors then becomes

infected at random (by a uniform probability over the neighbors of

the initially infected node). After infecting a neighbor, the node

then recovers with a probability 1
SkT.

Chen et al. accurately identified individual spreaders with Local

Centrality. For a given node v, its Local Centrality, CL(v) is

defined as follows:

CL(v)~
X

u[gv

X

w[gu

Nw ð2Þ

We extend Local Centrality with a set centrality-based

technique similar to that of [8,9]. We then frame an optimization

problem that seeks to find k of nodes in the network that together

optimize our extended version of local-centrality. For some set
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V ’(V with combinatorial local centrality, denoted CLC(V ’), is defined

as follows:

CLC(V ’)~
X

u[gV ’

X

w[gu

Nw ð3Þ

Figure 1 demonstrates Nv, CL, and CLC on a small, arbitrary

network.

Using this definition, we now present the problems we wish to

study in this paper which deal with finding a set of nodes (of sized

K ) that optimizes the above function.

Definition 1. Max Combinatorial Local Centrality Problem (Max

CLC ):

INPUT: Kvn;

OUTPUT: V ’( V, s.t. DV ’Dƒ K and ¼ A= V ’’(V s.t. DV ’’DƒK

where CLC(V ’)vCLC(V ’’)
Definition 2. Combinatorial Local Centrality Decision Problem (Dec

CLC )

INPUT: KvN ; X

OUTPUT: Yes if AV ’( V, s.t. DV ’DƒK and CLC(V ’)§X ; No

otherwise.

Unfortunately, the MAX CLC problem is also NP-hard and

difficult to approximate as well. However, we demonstrate certain

mathematical properties of the problem (namely sub-modularity

and monotonicity) that allow us to leverage the results of [10] to

prove that a greedy approach achieves the best approximation

ratio unless P = NP. We then create an algorithm that selects nodes

in a manner equivalent to the greedy approach but does so more

efficiently, hence running faster. This second algorithm maintains

the theoretical guarantees of the greedy approach with respect to

approximation and improves upon the theoretical guarantees of

the greedy approach with respect to runtime.

Both algorithms are then experimentally evaluated to demon-

strate a significant speedup of several orders of magnitude with the

improved algorithm. We then analyze the experimental spreading

potential of a set of vertices chosen with our algorithm against the

top k nodes based on several common centrality measures from

the literature. We found our GREEDY-CLC algorithm identifies

sets of nodes whose corresponding CLC value is consistently

greater than that found using centrality measures (average increase

as compared to centrality measures was 7%). We also compare our

approach to the centrality measures based on the expected

number of infectees in the aforementioned SIR model. On

average, GREEDY-CLC outperforms the other centrality mea-

sures (average of 1%). Additionally, we also found that both in

terms of optimizing CLC and expected number of infectees,

GREEDY-CLC more consistently picked the well-performing sets

of nodes than any single centrality measure.

After we review related work, the rest of the paper is outlined as

follows. In Algorithms and Analysis, we present the complexity

and approximation results for the MAX-CLC and DEC-CLC

problems. We then show that the a greedy approach obtains the

best possible approximation ratio under currently-accepted

theoretical assumptions. We then refine our greedy algorithm

and produce the theoretical speed-up. Next, our data sets and

experimental set-up are provided, followed by our experimental

results. We conclude with a brief discussion including directions

for future research. Full proofs are contained in the supplemental

information section.

Related Work
Identifying epidemic spreaders in a social network is a very

active area of research. For instance, identifying a single node with

the ability to spread an epidemic effectively has been previously

studied in [1,5–7,11]. This paper focuses on a different problem:

identifying a set of nodes that can optimally spread an epidemic.

We build on the centrality measure and epidemic model of [7]. In

that work, the authors introduce Local Centrality as a centrality

measure which is a trade off between computational complexity

and influence prediction, finding a middle ground between

measures such as betweenness and degree (respectively too

computationally expensive and of little relevance on large

networks).

Identifying sets of epidemic spreaders from a combinatorial

centrality measurement (similar to what is done in this paper) is

discussed in [8] where the authors elegantly discuss the issues with

choosing a set of nodes which either promote or disrupt spreading

(KPP-POS and KPP-NEG). They also find that off the shelf

centrality measures are not well suited to finding such sets. They

describe their own greedy algorithm to find sets of nodes using

their proposed group centrality measures [9]. approaches KPP-

POS and KPP-NEG with an information theory entropy measure

and demonstrate positive results in their simulating environment,

however the authors note the entropy calculation is too

computationally expensive for large networks.

A more generalized epidemic-like model, the independent cascade

(IC) model was introduced in classic work of [2] and later

improved upon in [12] in terms of efficiency (the original work of

[2] had scalability issues due to its dependence on simulation runs).

However, this framework is somewhat different from the epidemic

model introduced in [7] as under the IC model, an infected node

has only one chance to spread a contagion before recovering

where here the infected node recovers probabilistically. Further,

we note that [12] uses a path-based approach where here we use a

neighborhood-based approach (which in our tests outperforms the

related path-based approach of closeness). Developing a combi-

natorial path-based heuristic for the model of [7] and comparing it

to the algorithm presented in this paper is an important direction

for future work.

In [13] they instead focus on a rumor spreading model for social

contagion and information propagation, which is similar to the

SIR Model but includes a dampening effect where nodes are more

likely to become a stifler (similar to recovered nodes) if they are in

Figure 1. An Example Network. N12~5, N11~4, and N15~7.
CL(1)~77,CL(2)~35, and CL(10)~27. CLC(1,2)~77,CLC(1,10)~104.
Note that although the local-centrality for node 2 is higher than that of
10, the combinatorial local centrality is higher when nodes 1 and 10 are
paired, rather than 1 and 2.
doi:10.1371/journal.pone.0090303.g001
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contact with other spreaders (infectees) or stiflers. They find that k-

core index does not determine the spreading capabilities of the

nodes but rather whether or not a given node prevents the

diffusion of a rumor to a system-wide scale. Additionally [14], and

[2] investigate spreading conditions under a linear threshold

model, where the activity of neighbor nodes activates currently

inactive nodes [14]. finds a formula for the average size of

activated nodes given the size of the seed set and note that the

existence of cascades are extremely sensitive to small initial sets of

active nodes. The dynamics of these models provide rich new

testing grounds for our algorithm in future work. We believe the

linear threshold model could be particularly conducive to CLC

because it tends to avoid clustering in lieu of a more even spread

which may result in more areas with inactive nodes surrounded by

active nodes. The rumor dynamics model also is disadvantageous

for highly clustered infected sets so we may also see positive results

under that model.

Materials and Methods

Algorithms and Analysis
Here, we present theoretical results on the CLC problems

defined in the introduction as well as establish algorithms that

obtain certain guarantees. First, we examine the computational

complexity of the optimization and decision problems associated

with maximizing combinatorial local centrality. Unfortunately,

these problems are intractable by an embedding on the Max-K-

Cover problem of [15] which has previously been proved to be

NP-hard.

Theorem 1. The Max CLC Problem is NP-Hard.

Theorem 2. The Dec CLC Problem is NP-Complete

We will use the notion of approximation introduced in [16] to

analyze the performance of our algorithms. Specifically, we define

an a-approximate algorithm as follows. Let U be a universe of

elements and f be a function that maps subsets of U to real

numbers. Let S,S� be subsets of U and f (S�) obtains an optimal

value and S be a subset returned by approximation algorithm A.

We say that A is an a-approximate algorithm if f (S)§af (S�).

Based on this notion, we are able to leverage another result of [15]

to make the following statement on the limit of our ability to

approximate Max CLC (in polynomial time) under accepted

theoretical assumptions.

Theorem 3. Max CLC cannot be approximated in polynomial time

within 1{
1

e
zE for Ew0 unless P = NP.

Knowing this limit, it is desirable to seek an algorithm that

obtains a matching approximation ratio. Clearly, such an

algorithm would then obtain the best provable approximation

unless P = NP, a currently-accepted assumption in computer

science. In order to provide such a result, we prove a few

important lemmas that we shall require that deal with properties of

the function CLC . First, we show that it is monotonic. Given set U ,

a function f is monotonic iff for any pair of subsets S,S’(U where

S(S’, we have f (S)ƒf (S’).
Lemma 1. CLC(V ’) is monotonic.

The next important property we prove about CLC is that it is

sub-modular. We say a function f is sub-modular iff for i [= S0 and

S(S’, we have f (S|fig){f (S)§f (S’|fig){f (S’).
Theorem 4. CLC is sub-modular.

Using the properties of monotonicity, we are able to show that a

greedy algorithm for approximating CLC obtains the best

approximation ratio unless P = NP. This follows directly from

the results of [23]. We include a basic greedy algorithm

(GREEDY-CLC , show in in Table 1) and a theorem showing it

can run in polynomial time below.

Theorem 5. GREEDY-CLC takes O(K2nk�4) time.

The following theorem leverages our two previously described

lemmas as well as the construction used in the proof of Theorem 1

to show that the algorithm obtains the best approximation ratio

unless P = NP.

Theorem 6. GREEDY-CLC obtains the best possible approximation

ratio in polynomial time unless P = NP

Though polynomial, the result of Theorem 5 is likely

problematic for larger networks. As such is the case we sought

to improve upon this run-time with an improved algorithm -

GREEDY-CLC2 (pseudo-code provided in Table 2). We prove the

following guarantees for this algorithm.

Theorem 7. Any solution produced by algorithm 2 could also be

produced by algorithm 1.

Theorem 8. GREEDY-CLC 2 takes O(K2m) time.

In this improved approach, our first intuition was to pre-

compute the quantity
P

w[gv
Nw for each node v and store it in a

data-structure. Next we decided to keep track of all the first

neighbors of the set we are building, which allows the algorithm to

avoid recalculating that set each loop. This yields a provable

improvement in time complexity by a factor of k�3. Additionally,

we added a practical improvement as well. In a related

submodular problem, Leskovec [17] obtained a 700 percent

increase by ‘‘lazy’’ evaluation of the submodular function (over the

basic greedy approach, based on experiments). We include that in

this approach by altering line 7, correctly avoiding unnecessary

calculations of centrality for poorly-performing nodes. We present

experimental evaluations of how this modification affected our

problem in the next section.

Example 1. Table 3 features the improved algorithm selecting a set of

three vertices from a small network of 35 primates’ relationships. Each column

contains a vertex followed by how much that vertex would increase the CLC of

the set if it were added to the set. For example, as the algorithm runs through

each vertex seeking the first to add to the set, the first vertex is automatically the

first greatest increase found, until the fourth vertex is found to generate a higher

CLC value, and last in the column is vertex 16, which is then becomes first

vertex in the set. In the second and third columns the practical improvement of

Table 1. Algorithm: GREEDY-CLC.

Algorithm: GREEDY-CLC

INPUT: K,n

OUTPUT: V9 # V, s.t. |V9|#K and V9 is the greedy solution to Max CLC.

1: V ’~0=

2: bestVal,curVal = 0

3: bestInd = null

4: while |V9|,K do

5: for iMU2V9 do

6: curVal = CLC(V9 < {i})2CLC(V9)

7: if curVal.bestVal then

8: bestVal = curVal

9: bestInd = i

10: end if

11: end for

12: V9 = V9< {bestInd}

13: end while

14: RETURN V9

Finding Near-Optimal Groups of Epidemic Spreaders
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GREEDY-CLC2 is visible. Each time a XwY appears it signifies that a

vertex was skipped because in the last iteration it increased CLC by less than

whatever is the current best increase for this iteration.

Datasets
We examined five different networks in our analysis. They

include an a sexual interaction network [18], email network [19],

an academic collaboration network [20], a protein interaction

network [21], and a social network [22]. Each network is both

unweighted and undirected. Our intuition was to utilize networks

from a variety of domains in our evaluations.

The sexual interaction, email, academic collaboration, and

protein interaction networks are denoted A, B, C, and D

(respectively) in Figures 2 and 3. We provide some details on

these networks in Table 4. The social network was primarily used

for run-time analysis (Table 5). These networks are described in

more detail below.

The sexual interaction network is an online sex community in

Brazil in which a link represents that one of the individuals posted

online about a sexual experience with the other individual,

resulting in a bipartite graph. The data was extracted from

September of 2002 to October of 2008 Luis E. C. Rocha & Holme

[18].

The email network is derived from the communications of

members of the University Rovira i Virgili. It was extracted in

2003 [19].

The academic collaboration network is derived from the arXiv

pre-print server and covers scientific collaborations between

authors papers submitted to the General Relativity and Quantum

Cosmology category from Jan. 1993–Apr. 2003 [20].

The protein interaction network is a network consisting of

protein-protein interactions in yeast [21].

The social network is derived from YouTube, the video-sharing

website that allows users to establish friendship links [22]. The

sample was extracted in Dec. 2008. Links represent two

individuals sharing one or more subscriptions to channels on

YouTube.

The Douban network was mined from Douban.com, launched

on March 6, 2005, which is a Chinese Web 2.0 website providing

user review and recommendation services for movies, books, and

music. It is also the largest online Chinese language book, movie

and music database and one of the largest online communities in

China [23].

Experimental Set-Up
The runtime experiments on the Douban social media network

were conducted on a platform with an Intel X5677 Xeon

Processor operating at 3.46 GHz with a 12 MB Cache and

288 GB of physical memory. The machine was running Red Hat

Enterprise Linux version 6.1. Only one core was used for

experiments. All other experiments were run on a computer

equipped with an Intel Core i7 M620 equipped with two cores at

2.67 GHz with 4.00 GB of RAM (only one core was utilized). The

machine was running Windows 7. GREEDY-CLC and GREEDY-

CLC2 were written using Python 2.7.3 in 75 and 80 lines of code,

respectively, that leveraged the NetworkX library available from

http://networkx.lanl.gov/. The SciPy library from http://www.

scipy.org/ was also used for the experimental setup.

We compared our improved algorithm to choosing the top K

vertices from many common centrality measures. Top-LC refers

to choosing the top K vertices using Local Centrality, rather than

trying to optimize Combinatorial Local Centrality. Degree is

simply the number of edges a node has. Shell number refers to the

greatest core to which a node belongs (see [1] for details).

Betweenness measures how many shortest paths, of all vertex pairs

in the network, run through a vertex. Closeness is defined as the

inverse of farness, where a node’s farness is the sum of distances to

every other node along shortest paths. Eigenvector centrality and

PageRank are recursive measures which take into account both

how many neighbors a vertex has and the Eigenvector centrality/

Pagerank of those neighbors.

Table 2. Algorithm: GREEDY-CLC2.

Algorithm: GREEDY-CLC2

INPUT: K,N; G = (V, E)

OUTPUT: V9 # V, s.t. |V9|#K and V9 is the greedy solution to Max CLC.

1: V ’~0=

2: bestVal,curVal = 0

3: bestInd = null

4: firstNeighbors~0=

5: for iMV do

6: for jMNeighbors(i) do

7: NW = NW+j

8: for kMNeighbors(j) do

9: if k 1 NW then

10: NW = NW+k

11: end if

12: end for

13: end for

14: Nv[i] = |NW|

15: end for

16: for iMV do

17: for jMNeighbors(i) do

18: N2v[i] = N2v[i]+Nv[j]

19: end for

20: end for

21: lastVal[0..n] = ‘

22: while |V9|,K do

23: firstNeighbors = firstNeighbors+newNeighbors(firstNeighbors,bestInd)
(see note1)

24: CLC(V9) = CLC(firstNeighbors)

25: for iMU2V9 do

26: if lastVal[i].bestVal then

27: lastVal[i], curVal = CLC(V9 < {i})2CLC(V9)

28: curVal = CLC(V9 < {i})2CLC(V9)

29: if curVal.bestVal then

30: bestVal = curVal

31: bestInd = i

32: end if

33: end if

34: end for

35: V9 = V9< {bestInd}

36: end while

37: RETURN V9

1The function newNeighbors(V; v) takes a set of nodes and a new node and adds
any neighbors of the new node that are not already in the set.
doi:10.1371/journal.pone.0090303.t002
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Results

Runtime
We first examined the run time of our improved algorithm as

opposed to the simple greedy algorithm. Using small subsets of the

email network, we prompted each algorithm to select 5% of the

subgraph. Table 5 displays the speed-up of the improved

algorithm over the simple greedy algorithm even on these very

small graphs. The difference is multiple orders of magnitude,

aligning with our theoretical results.

Next we wanted to demonstrate that our improved algorithm

also performs well with respect to computing other common

centrality measures. Taking four of the datasets, the email, sexual

interaction, social network, and the Douban network, we

generated initial seed sets with GREEDY-CLC2 and compared

this time to how long it took for the NetworkX built in functions

for Closeness and Betweenness dictionaries to be calculated,

shown in Table 6. Our improved algorithm relies on pre-

computation of the value Nw, the number of first and second

neighbors of each vertex in the graph, so the time it takes to

calculate Nw is also included in Table 6. Once the dictionaries for

Closeness and Betweenness are found, they must be sorted to

deliver the top K nodes, but that time is negligible next to the time

required to build the dictionaries and therefore is not included.

The NetworkX implementations for both Closeness and Between-

ness are of complexity O(nm) [24,25]. Recall that the time

complexity of GREEDY-CLC2 is O(K2m), therefore when K is

relatively small compared to n we should expect GREEDY-CLC2

to outperform Closeness and Betweenness.

Finally, we demonstrated that our GREEDY-CLC2 algorithm

could also deliver results on a larger datasets - which is a more

typical need in practical applications dealing with social media site.

Here we used a social network extracted from the Douban social

media site [23], which consisted of 154,907 nodes and 654,188
edges. For this experiment, we evaluated the runtime of our

algorithm as a function of the cardinality of the solution (Figure 4).

We found that a quadratic relationship was maintained (R2~0:99)

which reflects our complexity result of Theorem 8. Finding a set of

4% of the population (6200 nodes) took 18:25 hours, which

significantly outperformed other measures. Currently, we are

exploring means to further scale this approach, including

additional heuristic approximations and parallelization.

CLC Optimization
To test the efficacy of GREEDY-CLC2, we examined five

different 500 node subgraphs of four separate networks. On each

subgraph, we chose the top 1, 3, 5, and 8 percent of vertices based

on several common centrality measures and using GREEDY-

CLC2. First we needed to demonstrate that GREEDY-CLC2 does

in fact optimize CLC better than other measures. This is difficult to

show definitively, because we do not have other algorithms which

aim to maximize CLC to use as a comparison, but the contrast with

common centrality measures is still helpful. In Figure 2 we present

the averages of the CLC value over those five subgraphs for the

subsets chosen by GREEDY-CLC2 versus each of the subsets

chosen by selecting the top X percent of nodes using other

centrality measures. Figure 2 shows both that sets that have a high

CLC are in practice very different from other measures (i.e. we did

not develop a trivially new definition), and then that seeking sets

with other centrality measures is not good shortcut to finding sets

that have a high CLC . In all cases, GREEDY-CLC2 chose the set

with the highest CLC , and was an average of 7% greater than the

top performer for each percent and data set pair. On every dataset

an analysis of variance (ANOVA) reveals that there is a significant

difference in the performance among our algorithm and the

centrality measures with respect to increase or decrease in CLC (p-

value less than 0:04556 calculated with R version 3.01) except

academic collaboration network, which had a p-value between

0:8949 and 0:9977 for each percentage trial. Some of the

uncertainty in the statistical analysis is attributable to the variance

between the random subgraphs, as in many cases average CLC

values across all centrality measures differed between two

subgraphs as much as 20%.

In some trials, particularly in sexual interaction and academic

collaboration (A and C in Figure 2), GREEDY-CLC2 reached a

maximum CLC value before selecting 8% of the graph, at which

point the averages of other centrality measures begin to approach

GREEDY-CLC2. However, as CLC has already been maximized

in this case (because the first neighbors of the seed set cover the

entire graph), they will never surpass the CLC of the smaller set. In

a real world scenario, this may be taken advantage of as a way to

save advertising costs or focus on a smaller set of the population for

epidemic evaluation.

Epidemic Evaluation
Next the same sets as chosen in the previous section were the

initial infectees for 1000 simulation runs over the SIR model. In

this paper, to remain consistent with the work of [7], we mimicked

their experimental model. After setting our initial infectees to the

infected state, we run the SIR model for ten time steps and then

Table 3. Example GREEDY-CLC2 Run.

1) 481 1) 160 1) 160

4) 1441 4) 685 2) 160.160

5) 1592 5) 826 3) 160.160

10) 1885 7) 826.703 4) 240

12) 2259 8) 826.279 11) 240.0

13) 2298 9) 826.279 19) 240.69

16) 2727 12) 987 20) 240.0

18) 987.606 34) 240.80

23) 987.899 35) 240.80

24) 987.533

25) 987.306

26) 987.445

27) 987.759

28) 987.690

29) 987.690

30) 987.445

31) 987.708

32) 987.250

33) 987.245

34) 987.80

35) 987.80

Each column represents the algorithm choosing a vertex to add to the set;
vertices 16, 12, and 4 were chosen and in that order. Vertices only appear if they
are the maximum addition when considered or if they are ignored (represented
by the inequalities). The format is as follows: the vertex considered appears first,
followed by a parenthesis, and then either a value or an inequality. The
inequality represents that the considered node had a lower addition to the CLC

of the set last iteration than the current best addition now, and therefore does
not need to be computed this round. A single value represents the addition to
CLC that vertex would contribute.
doi:10.1371/journal.pone.0090303.t003
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sum the recovered and infected vertices to determine the total

number of infected vertices. The results, again averaged over the

five subgraphs from each network, are shown in Figure 3. The sets

chosen by GREEDY-CLC2 spread on average to 1% more vertices

than the maximum spreader from the rest of the centrality

measures over each percent and dataset pair. Furthermore,

although occasionally another centrality measure will outperform

GREEDY-CLC2 on a single cardinality and dataset pair, which

measure does so is highly inconsistent. Particularly visible in the

sexual interaction network (panel A of Figure 3), GREEDY-CLC2

did not produce a set as big as 5% or 8% of the graph on every

subgraph, so other centrality measures gained an advantage in that

they began with more infectees. Interestingly though, CLC still

remained in the top half of the centrality measures, suggesting

again a certain threshold after which it is inefficient to continue

seeding a graph and a way to conserve real world resources. An

analysis of variance (ANOVA) on every dataset reveals that there

is a significant difference in the performance among sets chosen by

our algorithm and the other centrality measures with respect to

increase or decrease in total vertices infected (p-value less than

0:0003426 calculated with R version 3.01), except the sexual

interaction which had a p-value between 0:9572 and 0:9985 for

each percentage trial. However, we also note that this may be a

somewhat degenerate case as this particular sexual interaction

network consisted of only heterosexual interactions - which leads

to a bipartite structure. This may account for the CLC measure

covering the entire network without using all of the resources -

which in turn led to inconsistent performance against the centrality

measures in the simulation trials.

Discussion

In this paper, we explored the problem of identifying a set of

nodes that will cause an epidemic to spread under the SIR model

of [7]. To do so, we extended the centrality measure of [7] for sets

rather than individual nodes. Though we found that finding a set

of nodes that maximizes this combinatorial centrality measure-

ment is NP-hard, we develop a polynomial-time heuristic that we

prove to provide the best approximation ratio unless P = NP. We

then further improve the performance, both theoretically and

practically in a modified version of the algorithm that provides the

same theoretical guarantee. We implemented our algorithms and

evaluated them on real-world datasets in terms of runtime, ability

to maximize the combinatorial centrality measure, and the ability

to find sets of nodes that encourage spreading in the SIR model.

We found our algorithms to outperform standard approaches in all

of these evaluations. Further, we show our approach to scale to

networks of 105 nodes.

Future work could include a modified version of CLC which

produces a disease spread mitigation strategy. In such a scenario,

Figure 2. CLC of Sets Chosen with Various Centrality Measures. The CLC of sets chosen by various centrality measures. Sexual interaction,
email, collaboration, and protein interaction networks are respectively graphs A, B, C, and D.
doi:10.1371/journal.pone.0090303.g002
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we would attempt to find nodes that, if ‘‘inoculated’’ would

minimize the maximum value for CLC with respect to a given

cardinality constraint. Additionally, further evaluation of CLC

based on different diffusion models, such as those raised in the

related work section, is another important direction for further

research. In particular, an evaluation of the metric under a classic

SIR Model, rather than the variant described in this paper and in

[9], would be a good first step.

Appendix

Proof of Theorem 1
The Max CLC Problem is NP-Hard.

Proof.

Definition 3. Max K-Cover [15]

INPUT: Universe U , a set of subsets C, and natural number K ’
OUTPUT: C’(C, DC’DƒK ’ s.t. D|iCi D is maximized.

Embedding: Given Max K Cover as defined in definition 2.4,

we create an instance of the Max CLC as follows. Form a bipartite

graph G by creating a vertex for each ci[C and each ei[U . Create

a directed edge from ci to ei if ei[ci. For each vertex corresponding

to an element ei create two additional nodes, ei,a and ei,b. Also add

a directed edge from ei to ei,a and from ei,a to ei,b. Each node

corresponding to a subset ci now has a path length of three to

some ei,b.

Figure 3. Spreading Impact of Sets Chosen with Various Centrality Measures. The number of vertices infected after 1000 simulation runs to
10 steps in the SIR model, averaged over five subgraphs for each datum. Sexual interaction, email, academic collaboration, and protein interaction
networks are respectively graphs A, B, C, and D.
doi:10.1371/journal.pone.0090303.g003

Table 4. Dataset Information.

Dataset Nodes Edges

Brazil Sexual Interaction Network 16730 39044

University Rovira i Virgili Email Network 1133 5451

Academic Collaboration Network 5242 14484

Yeast Protein Interaction Network 1870 2203

Youtube Social Network 13723 76765

Douban Social Network 154907 654188

doi:10.1371/journal.pone.0090303.t004

Table 5. Runtime of GREEDY-CLC vs GREEDY-CLC2.

Graph Size Simple Run Time Fast Run Time

100 80.37 0.03

200 1502.95 0.19

300 9784.2 0.74

400 35610.68 1.90

Runtimes are in seconds. Each algorithm selected 5% of the given graphs,
which are random samples of the email dataset.
doi:10.1371/journal.pone.0090303.t005

Finding Near-Optimal Groups of Epidemic Spreaders

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e90303



Claim 1. Embedding of Max K-Cover into Max CLC can be

accomplished in polynomial time, as graph G has DCDz3DU D vertices and

3DU D edges, whose creation takes constant time.

Claim 2. Given set V ’ returned by the an instance of Max CLC with

KvDCD, the set C�~fcDvc[V ’g is the solution to the Max K-Cover

problem.

Suppose by way of contradiction that there exists some set

C��(C such that DC��DƒK and the number of elements covered

by C�� is greater than the number of elements covered by C�. Let

V ’’~fvcDc[C��g.
The number of distinct nearest neighbors for C�� is greater than

the number of distinct nearest neighbors of C�. Note that for all

vertices corresponding to elements i,
P

w[gi
Nw~1 by the

construction, and CLC(V1) is simply the count of distinct nearest

neighbors of set V1. Therefore CLC(V ’’)wCLC(V ’), which is a

contradiction.

Claim 3. Given set C� returned by Max K-Cover, the set

V ’~fvcDc[C�g is a solution to Max CLC .

Suppose by way of contradiction that there exists some V ’’
where DV ’’DƒDCD and CLC(V ’’)wCLC(V ’). Let C��~fcDvc[V ’’g.

CLC(V ’’)~
P

u[gV ’’

P
w[gu

Nw, which under the construction is

DgV ’’D. Similarly CLC(V ’)~DgV ’DvCLC(V ’’). This is equivalent to

saying that the number of nearest neighbors covered by set C�� is

greater than that of C�, which is a contradiction.

Proof of Theorem 2
The Dec CLC Problem is NP-Complete.

Proof. Given an oracle that produces a solution V ’, we can

clearly check if CLC(V ’)§X in polynomial time by Theorem 1.

Proof of Theorem 3
Max CLC cannot be approximated within e{1

e
zE for Ew0

unless P = NP.

Proof. Embedding: We use the same embedding as in Theorem

2.1 above.

Let x~ the number of sets covered by some set C� of Max K-

Cover.

Let y~CLC(V ’) where V ’ is the set of vertices for Max CLC .

Claim 4. x§y.

Suppose by way of contradiction that xvy. If C� covers fewer

neighbors than CLC(V ’) then at least one of those neighbors u
must have a Q(u)w1. However under the construction all vertices

ei associated with elements have Q(i)~1 as they each have only

one next nearest neighbor eib and no neighbors to that vertex, and

we have a contradiction.

Claim 5. xƒy.

Suppose by way of contradiction that xwy. If C� covers more

neighbors than CLC(V ’) then at least one of those neighbors u
must have a Q(u)v1. However under the construction all vertices

ei associated with elements have Q(i)~1 as they each have only

one next nearest neighbor eib and no neighbors to that vertex, and

we have a contradiction.

By the embedding, Claims 1.4 and 1.5, and Thm 4.4 of [15]

concerning the limit of approximating set cover, the Max CLC

cannot be approximated within e{1
e

zE for Ew0 unless P = NP.

Proof of Lemma 1
CLC(V ’) is monotonic.

Proof. Suppose by way of contradiction there exists S(S’ s.t.

CLC(S)wCLC(S’). ThenP
u[gS

P
w[gu

Nww

P
x[gS’

P
y[gx

Ny which impliesP
w[gu

Nww

P
y[gx

Ny.

However, because S(S’ we know gS(gS’ and gu(gx.

Because the total neighbors of a subset is necessarily less than

the total neighbors of its superset, we have a contradiction.

Proof of Theorem 4
CLC is sub-modular.

Proof. Setup: S(S’(V ; V is the set of vertices in graph G;

vertex i [= S’;
Suppose by way of contradiction CLC(S|fig){CLC(S)v

CLC(S’|fig){CLC(S’).
ThenP
a[g(S|fig)

P
w[ga

Nw{
P

a[gS

P
w[ga

Nwv

P
b[g(S’|fig)

P
w[gb

Nw{
P

b[gS’

P
w[gb

Nw

If we let a’~g(S|fig){gS and b’~g(S’|fig){gS’ the inequality

above becomes:

Table 6. Runtime of GREEDY-CLC2, Closeness, and Betweenness.

Nodes Edges CLC Size N_w Time CLC Time Betweenness Closeness

1133 5451 249 0.61 2.39 8.64 2.60

16730 39044 1000 16.58 383.89 2307.14 561.54

13723 76765 1000 66.13 407.93 2525.92 693.55

154907 654188 2000 249.22 7129.11 .24 hrs .24 hrs

Runtimes are in seconds. Nw must be precomputed and stored once before GREEDY-CLC 2 can be run.
doi:10.1371/journal.pone.0090303.t006

Figure 4. Run Time of GREEDY-CLC 2 on the Douban Social
Network. The run time in hours for GREEDY-CLC2 to build sets
between 100 and 7100 nodes.
doi:10.1371/journal.pone.0090303.g004
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X

i[a’

X

w[gi

Nwv

X

i[b’

X

w[gi

Nw ð4Þ

Note that a’ and b’ are the sets of neighbors added to sets S and

S’, respectively, with the addition of vertex i.
Claim 6. a’(b’

a’~gS|i{gS~gS|gi{(gS\gi){gS~gi{(gS\gi)

Similarly, b’~gi{(gS’\gi). Since S(S’, (gS\gi)((gS’\gi),
therefore a’(b’.

However, with a’(b’, inequality 4 cannot be true, therefore

CLC is sub-modular.

Proof of Theorem 6
GREEDY-CLC obtains the best approximation ratio unless

P~NP.

Proof.
Claim 7. GREEDY-CLC is a Greedy Algorithm.

We build set V ’ by adding one element at each iteration of the

while loop. A new element is chosen by analyzing the increase CLC

for each node not in V ’ and picking the maximal node. Using a

local heuristic to make each choice in a set of decisions is a greedy

approach.
Claim 8. CLC( )~0:

CLC( )~
X

u[g

X
w[gu

Nw~
X X

w[gu
Nw~0

Proof of Theorem: For any monotonic, sub-modular function

f (S) where f ( )~0, a greedy algorithm guarantees an

a~(1{1=e) approximation [23]. By Theorems 1 and 4, and

Claims 7 and 8, GREEDY-CLC gives an a~(1{1=e) approxi-

mation.

By Theorem 2.1 of [2] and the approximation ratio a above, a
is the best approximation if P=NP.

Proof of Theorem 5
GREEDY-CLC takes O(K2nk�4) time.

Proof.
Claim 9. CLC takes O(DV ’Dk�4)
To compute CLC(V ’), first we iterate through each vertex in V ’.

For each vertex, we consider each neighbor, and barring repeated

vertices in the set we add those neighbors to a set of first neighbors

for set V ’, which takes DV ’Dk�. For each vertex in the first neighbor

set we count the first and second neighbors, which is no worse than

k�4. Therefore the time complexity is O(DV ’Dk�4).

GREEDY-CLC utilizes two looping control structures. The first

is a while loop that runs K times, and the second is a nested for

loop that runs for at most n times, for each vertex in the graph.

Inside that loop the CLC algorithm, O(DV ’Dk�4), is called twice.

The time complexity is then O(K2nk�4).

Proof of Theorem 7
Any solution produced by algorithm 2 could also be produced

by algorithm 1.

Proof. Suppose by way of contradiction the condition that

lastVal[i].bestVal caused us to omit the maximal node, j, or that

the maximal node’s last recorded marginal increase in CLC was

lower than the current best value. As CLC is sub-modular by Thm

2.5, an updated marginal increase of CLC would have to be lower

than lastVal[j]. However if the new marginal increase is lower

than lastVal[j], it must also be lower than bestVal, and therefore j

could not be optimal.

Proof of Theorem 8
Proof. GREEDY-CLC2 takes O(K2m) time.

Given that we store Nw for all vertices and a list N2v which

contains the sum of Nw for all neighbors w of a node v, and an

alternate form of computing CLC(V ’) which takes the first

neighbors of set V ’, fn(V ’):
To compute CLC(V ’), now we simply iterate through the fn(V ’)

and sum N2v for each, which takes O(Dfn(V ’)D). Updating fn(V ’)
requires adding all new neighbors whenever a new vertex is

appended to the set, which takes O(k�) (fn(V ’) can take multiple

vertices, but in the algorithm’s implementation it only takes one).

The improved algorithm must also loop until it reaches K

vertices, and considers each vertex in the graph when choosing a

new vertex. To choose a new vertex, it must update fn(V ’) with

the potential new neighbors of a possible vertex and calculate

CLC(V ’), so the complexity is KnDfn(V ’)D. But Dfn(V ’)D is bound by

Kk� because it is the total number of neighbors of a set of at most

K elements, so the complexity may be reduced to O(K2nk�).
Finally we simplify the factors nk� to m.
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