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In this paper, we present algorithms to find near-optimal sets of epidemic spreaders in complex networks. We extend the
notion of local-centrality, a centrality measure previously shown to correspond with a node’s ability to spread an epidemic,
to sets of nodes by introducing combinatorial local centrality. Though we prove that finding a set of nodes that maximizes
this new measure is NP-hard, good approximations are available. We show that a strictly greedy approach obtains the best
approximation ratio unless P=NP and then formulate a modified version of this approach that leverages qualities of the
network to achieve a faster runtime while maintaining this theoretical guarantee. We perform an experimental evaluation
on samples from several different network structures which demonstrate that our algorithm maximizes combinatorial local
centrality and consistently chooses the most effective set of nodes to spread infection under the SIR model, relative to
selecting the top nodes using many common centrality measures. We also demonstrate that the optimized algorithm we
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Introduction

In this paper we look to find optimal sets of individuals in a
complex network to initiate an epidemic. Addressing such a
problem will have clear implication in seeding a social network to
ensure a given phenomenon diffuses optimally and may also
provide insight into mitigation strategies against an infection
initiated by a group of individuals. Further, this problem is non-
trivial. For instance, it has previously been noted in [1] that
selecting a second influential node, or ‘spreader,” does not always
significantly increase the spread of the epidemic. In [2], the
authors show that identifying an optimal set of spreaders under a
more generalized epidemic model is NP-hard.

The susceptible-infected-recovered (SIR) model [3] is one of the
most well-studied models of epidemic disease spread in a
population. In this model, individuals in a population are in one
of three states: susceptible individuals can acquire the disease from
infected individuals who after a certain amount of time become
recovered and can no longer transmit or acquire the disease. In
recent studies, there has been much interest in studying this model
on populations structured as a network [4-6].

Throughout this paper, we will assume a population structured
as an undirected network G =(V,E) where V is a set of individuals
(“nodes”) and E<SV x V' where (v,v)eE implies (V',v)eE. The

size of V and E are denoted 1 and m respectively. For other sets of

elements, we shall use the notation |-| to denote the size of that set.
For a given node veV, p, is the set of neighbors, formally
{veV|(v,v)eE}. We will extend this to sets: for set V7,
Ny = U,ep 1,- We will use k, to denote the degree of v which is
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the cardinality of #,. The we denote the average and maximum
degree of any node in the graph as <k) and k* respectively. We
note that, in most real-world social networks, k*<<n. The
quantity N, is the number of neighbors and next-nearest neighbors
of node v and is defined formally as follows:

Nv:va{Uieﬂ,,ni}' (1)

In this paper, we use a the version of the SIR model specified by
Chen et al. [7]. Nodes in the network under this version of the
model are in one of three states: susceptible, infected, or recovered.
Once a node is infected, one of its neighbors then becomes
infected at random (by a uniform probability over the neighbors of
the initially infected node). After infecting a neighbor, the node
then recovers with a probability %

Chen et al. accurately identified individual spreaders with Local
Centrality. For a given node v, its Local Centrality, Cp(v) is
defined as follows:

Crm=>_> N )

ueny, weny,

We extend Local Centrality with a set centrality-based
technique similar to that of [8,9]. We then frame an optimization
problem that seeks to find k of nodes in the network that together
optimize our extended version of local-centrality. For some set
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V' < V with combinatorial local centrality, denoted Crc(V”), is defined
as follows:

CLC(V/): Z ZNW (3)

ueny weny

Figure 1 demonstrates N,, Cr, and Cr¢ on a small, arbitrary
network.

Using this definition, we now present the problems we wish to
study in this paper which deal with finding a set of nodes (of sized
K) that optimizes the above function.

Definition 1. Max Combinatorial Local Centrality Problem (Max
Crc )

INPUT: K <n;

OUTPUT: V'S V, st |V|< Kand =3 V'SV st [V'|<K
where CLC( V/) < CLC( V”)

Definition 2.  Combinatorial Local Centrality Decision Problem (Dec
Cic)

INPUT: K<N; X

OUTPUT: Yes of V'S V, st. |V'|<K and Crc(V')=X; No
otherwise.

Unfortunately, the MAX Cpc problem is also NP-hard and
difficult to approximate as well. However, we demonstrate certain
mathematical properties of the problem (namely sub-modularity
and monotonicity) that allow us to leverage the results of [10] to
prove that a greedy approach achieves the best approximation
ratio unless P = NP. We then create an algorithm that selects nodes
in a manner equivalent to the greedy approach but does so more
efficiently, hence running faster. This second algorithm maintains
the theoretical guarantees of the greedy approach with respect to
approximation and improves upon the theoretical guarantees of
the greedy approach with respect to runtime.

Both algorithms are then experimentally evaluated to demon-
strate a significant speedup of several orders of magnitude with the
improved algorithm. We then analyze the experimental spreading
potential of a set of vertices chosen with our algorithm against the
top k nodes based on several common centrality measures from
the literature. We found our GREEDY-Cy ¢ algorithm identifies
sets of nodes whose corresponding Crc value is consistently

Figure 1. An Example Network. N;;=5, N;;=4, and N;5=7.
Cr(1)=77,Cr(2)=35, and Cr(10)=27. Crc(1,2)=77,Crc(1,10)=104.
Note that although the local-centrality for node 2 is higher than that of
10, the combinatorial local centrality is higher when nodes 1 and 10 are
paired, rather than 1 and 2.

doi:10.1371/journal.pone.0090303.g001
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greater than that found using centrality measures (average increase
as compared to centrality measures was 7%). We also compare our
approach to the centrality measures based on the expected
number of infectees in the aforementioned SIR model. On
average, GREEDY-Cr¢ outperforms the other centrality mea-
sures (average of 1%). Additionally, we also found that both in
terms of optimizing Crc and expected number of infectees,
GREEDY-Cp¢ more consistently picked the well-performing sets
of nodes than any single centrality measure.

After we review related work, the rest of the paper is outlined as
follows. In Algorithms and Analysis, we present the complexity
and approximation results for the MAX-Crc and DEC-Cpc¢
problems. We then show that the a greedy approach obtains the
best possible approximation ratio under currently-accepted
theoretical assumptions. We then refine our greedy algorithm
and produce the theoretical speed-up. Next, our data sets and
experimental set-up are provided, followed by our experimental
results. We conclude with a brief discussion including directions
for future research. Full proofs are contained in the supplemental
information section.

Related Work

Identifying epidemic spreaders in a social network is a very
active area of research. For instance, identifying a single node with
the ability to spread an epidemic effectively has been previously
studied in [1,5-7,11]. This paper focuses on a different problem:
identifying a set of nodes that can optimally spread an epidemic.
We build on the centrality measure and epidemic model of [7]. In
that work, the authors introduce Local Centrality as a centrality
measure which is a trade off between computational complexity
and influence prediction, finding a middle ground between
measures such as betweenness and degree (respectively too
computationally expensive and of little relevance on large
networks).

Identifying sets of epidemic spreaders from a combinatorial
centrality measurement (similar to what is done in this paper) is
discussed in [8] where the authors elegantly discuss the issues with
choosing a set of nodes which either promote or disrupt spreading
(KPP-POS and KPP-NEG). They also find that off the shelf
centrality measures are not well suited to finding such sets. They
describe their own greedy algorithm to find sets of nodes using
their proposed group centrality measures [9]. approaches KPP-
POS and KPP-NEG with an information theory entropy measure
and demonstrate positive results in their simulating environment,
however the authors note the entropy calculation is too
computationally expensive for large networks.

A more generalized epidemic-like model, the independent cascade
(IC) model was introduced in classic work of [2] and later
improved upon in [12] in terms of efficiency (the original work of
[2] had scalability issues due to its dependence on simulation runs).
However, this framework is somewhat different from the epidemic
model introduced in [7] as under the IC model, an infected node
has only one chance to spread a contagion before recovering
where here the infected node recovers probabilistically. Further,
we note that [12] uses a path-based approach where here we use a
neighborhood-based approach (which in our tests outperforms the
related path-based approach of closeness). Developing a combi-
natorial path-based heuristic for the model of [7] and comparing it
to the algorithm presented in this paper is an important direction
for future work.

In [13] they instead focus on a rumor spreading model for social
contagion and information propagation, which is similar to the
SIR Model but includes a dampening effect where nodes are more
likely to become a stifler (similar to recovered nodes) if they are in
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Table 1. Algorithm: GREEDY-C.

Algorithm: GREEDY-C,

INPUT: K<n
OUTPUT: V' C V, s.t. |V'|=K and V' is the greedy solution to Max Cc.
1 V=p

2: bestVal,curVal=0

3:  bestind=null

4:  while |V'|[<K do

5: for icU—V' do

6: curVal =G (V' U {)—C (V')
7: if curVal>bestVal then
8: bestVal = curVal

9: bestind =i

10: end if

11: end for

12: V'=V'U {bestind}

13:  end while

14:  RETURN V'

contact with other spreaders (infectees) or stiflers. They find that k-
core index does not determine the spreading capabilities of the
nodes but rather whether or not a given node prevents the
diffusion of a rumor to a system-wide scale. Additionally [14], and
[2] investigate spreading conditions under a linear threshold
model, where the activity of neighbor nodes activates currently
mnactive nodes [14]. finds a formula for the average size of
activated nodes given the size of the seed set and note that the
existence of cascades are extremely sensitive to small initial sets of
active nodes. The dynamics of these models provide rich new
testing grounds for our algorithm in future work. We believe the
linear threshold model could be particularly conducive to Cr¢
because it tends to avoid clustering in lieu of a more even spread
which may result in more areas with inactive nodes surrounded by
active nodes. The rumor dynamics model also is disadvantageous
for highly clustered infected sets so we may also see positive results
under that model.

Materials and Methods

Algorithms and Analysis

Here, we present theoretical results on the Crc problems
defined in the introduction as well as establish algorithms that
obtain certain guarantees. First, we examine the computational
complexity of the optimization and decision problems associated
with maximizing combinatorial local centrality. Unfortunately,
these problems are intractable by an embedding on the Max-K-
Cover problem of [15] which has previously been proved to be
NP-hard.

Theorem 1. The Max Crc Problem is NP-Hard.
The Dec Crc Problem is NP-Complete

We will use the notion of approximation introduced in [16] to
analyze the performance of our algorithms. Specifically, we define
an a-approximate algorithm as follows. Let U be a universe of
elements and f* be a function that maps subsets of U to real
numbers. Let S,S* be subsets of U and f(S*) obtains an optimal
value and S be a subset returned by approximation algorithm A.
We say that 4 is an o-approximate algorithm if f(S) > af(S*).

Theorem 2.
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Based on this notion, we are able to leverage another result of [15]
to make the following statement on the limit of our ability to
approximate Max Crc¢ (in polynomial time) under accepted
theoretical assumptions.

Theorem 3. Max Crc cannot be approximated in polynomial time

within 1 —é—l—(ﬁ)r €>0 unless P=NP.

Knowing this limit, it is desirable to seek an algorithm that
obtains a matching approximation ratio. Clearly, such an
algorithm would then obtain the best provable approximation
unless P=NP, a currently-accepted assumption in computer
science. In order to provide such a result, we prove a few
important lemmas that we shall require that deal with properties of
the function Cp¢. First, we show that it is monotonic. Given set U,
a function f is monotonic iff for any pair of subsets S,S" < U where
S8, we have f(S) <f(S").

Cre(V") is monotonic.

The next important property we prove about Crc is that it is
sub-modular. We say a function f is sub-modular iff for i ¢ S” and
S8, we have f(SU{i}) =/ (8) =/ (S"U{i}) —f(S).

Theorem 4. Cj ¢ is sub-modular.

Using the properties of monotonicity, we are able to show that a
greedy algorithm for approximating Crc obtains the best
approximation ratio unless P=NP. This follows directly from
the results of [23]. We include a basic greedy algorithm
(GREEDY-C.c, show in in Table 1) and a theorem showing it
can run in polynomial time below.

GREEDY-Cj ¢ takes O(K*nk*™*) time.

The following theorem leverages our two previously described
lemmas as well as the construction used in the proof of Theorem 1
to show that the algorithm obtains the best approximation ratio
unless P=NP.

Theorem 6. GREEDY-Cyc obtains the best possible approximation
ratio in polynomial time unless P=NP

Though polynomial, the result of Theorem 5 is likely
problematic for larger networks. As such is the case we sought
to improve upon this run-time with an improved algorithm -
GREEDY-Cp 2 (pseudo-code provided in Table 2). We prove the
following guarantees for this algorithm.

Theorem 7. Any solution produced by algorithm 2 could also be
produced by algorithm 1.

Theorem 8. GREEDY-Cy¢ 2 takes O(K*m) time.

In this improved approach, our first intuition was to pre-
compute the quantity Y . N,, for each node v and store it in a

Lemma 1.

Theorem 5.

wen,
data-structure. Next we decided to keep track of all the first
neighbors of the set we are building, which allows the algorithm to
avoid recalculating that set each loop. This yields a provable
improvement in time complexity by a factor of k*3. Additionally,
we added a practical improvement as well. In a related
submodular problem, Leskovec [17] obtained a 700 percent
increase by “lazy” evaluation of the submodular function (over the
basic greedy approach, based on experiments). We include that in
this approach by altering line 7, correctly avoiding unnecessary
calculations of centrality for poorly-performing nodes. We present
experimental evaluations of how this modification affected our
problem in the next section.

Example 1.  Table 3 features the improved algorithm selecting a set of
three vertices from a small network of 35 primates’ relationships. Each column
contains a vertex_followed by how much that vertex would increase the Crc of
the set if it were added to the set. For example, as the algorithm runs through
each vertex seeking the first to add to the set, the first vertex is automatically the
Jurst greatest increase_found, until the fourth vertex is_found to generate a higher
Crc value, and last in the column is vertex 16, which is then becomes first
vertex in the set. In the second and third columns the practical improvement of
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Table 2. Algorithm: GREEDY-C, 2.

Algorithm: GREEDY-(C; 22

INPUT: K<N; G=(V, E)
OUTPUT: V' C V, sit. [V'|=K and V' is the greedy solution to Max C;c.
1 V=p
bestVal,curVal =0
bestind = null
firstNeighbors =
for icV do
for jeNeighbors(i) do
NW = NW-j
for keNeighbors(j) do
if k ¢ NW then
NW = NW+k
end if

Of © FNN o puml B paen N

N =9

end for

G

end for
NIl = [NW|

RARNEE

: end for

: for ieV do

N o

for jeNeighbors(i) do
N2,[i] = N2,[i+N,[j]

%

end for

o —
Qw0

. end for

N

: lastVal[0..n] =
: while |V'|<K do

NN
w N

firstNeighbors = firstNeighbors+newNeighbors(firstNeighbors,bestind)
(see note")

24:  Cc(V') = C firstNeighbors)
25: for ieU—V' do

26: if lastVal[i]>bestVal then

27: lastVallil, curVal=C (V' U {i)—C,(V)
28: curVal =G (V' U {D)—C (V')
29: if curVal>bestVal then

30: bestVal = curVal

31: bestind =i

32 end if

33: end if

34:  end for

35: V' =V'U {bestInd}

36: end while

37: RETURN V'

"The function newNeighbors(V; v) takes a set of nodes and a new node and adds
any neighbors of the new node that are not already in the set.
doi:10.1371/journal.pone.0090303.t002

GREEDY-Cy 2 is visible. Each time a X > Y appears it sigmifies that a
vertex was skipped because in the last iteration it increased Cpc by less than
whatever is the current best increase for this iteration.

Datasets

We examined five different networks in our analysis. They
include an a sexual interaction network [18], email network [19],
an academic collaboration network [20], a protein interaction
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network [21], and a social network [22]. Each network is both
unweighted and undirected. Our intuition was to utilize networks
from a variety of domains in our evaluations.

The sexual interaction, email, academic collaboration, and
protein interaction networks are denoted A, B, C, and D
(respectively) in Figures 2 and 3. We provide some details on
these networks in Table 4. The social network was primarily used
for run-time analysis (Table 5). These networks are described in
more detail below.

The sexual interaction network is an online sex community in
Brazil in which a link represents that one of the individuals posted
online about a sexual experience with the other individual,
resulting in a bipartite graph. The data was extracted from
September of 2002 to October of 2008 Luis E. C. Rocha & Holme
[18].

The email network is derived from the communications of
members of the University Rovira 1 Virgili. It was extracted in
2003 [19].

The academic collaboration network is derived from the arXiv
pre-print server and covers scientific collaborations between
authors papers submitted to the General Relativity and Quantum
Cosmology category from Jan. 1993-Apr. 2003 [20].

The protein interaction network is a network consisting of
protein-protein interactions in yeast [21].

The social network is derived from YouTube, the video-sharing
website that allows users to establish friendship links [22]. The
sample was extracted in Dec. 2008. Links represent two
individuals sharing one or more subscriptions to channels on
YouTube.

The Douban network was mined from Douban.com, launched
on March 6, 2005, which is a Chinese Web 2.0 website providing
user review and recommendation services for movies, books, and
music. It is also the largest online Chinese language book, movie
and music database and one of the largest online communities in

China [23].

Experimental Set-Up

The runtime experiments on the Douban social media network
were conducted on a platform with an Intel X5677 Xeon
Processor operating at 3.46 GHz with a 12 MB Cache and
288 GB of physical memory. The machine was running Red Hat
Enterprise Linux version 6.1. Only one core was used for
experiments. All other experiments were run on a computer
equipped with an Intel Core 17 M620 equipped with two cores at
2.67 GHz with 4.00 GB of RAM (only one core was utilized). The
machine was running Windows 7. GREEDY-Cr¢ and GREEDY-
Crc2 were written using Python 2.7.3 in 75 and 80 lines of code,
respectively, that leveraged the NetworkX library available from
http://networkx.lanl.gov/. The SciPy library from http://www.
scipy.org/ was also used for the experimental setup.

We compared our improved algorithm to choosing the top K
vertices from many common centrality measures. Top-LC refers
to choosing the top K vertices using Local Centrality, rather than
trying to optimize Combinatorial Local Centrality. Degree is
simply the number of edges a node has. Shell number refers to the
greatest core to which a node belongs (see [1] for details).
Betweenness measures how many shortest paths, of all vertex pairs
in the network, run through a vertex. Closeness is defined as the
inverse of farness, where a node’s farness is the sum of distances to
every other node along shortest paths. Eigenvector centrality and
PageRank are recursive measures which take into account both
how many neighbors a vertex has and the Eigenvector centrality/
Pagerank of those neighbors.
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Table 3. Example GREEDY-C; 2 Run.

1) 481 1) 160 1) 160

4) 1441 4) 685 2) 160>160

5) 1592 5) 826 3) 160>160

10) 1885 7) 826>703 4) 240

12) 2259 8) 826>279 11) 240>0

13) 2298 9) 826>279 19) 240>69

16) 2727 12) 987 20) 240>0
18) 987>606 34) 240>80
23) 987>899 35) 240>80

24) 987>533
25) 987>306
26) 987>445
27) 987>759
28) 987>690
29) 987>690
30) 987>445
31) 987>708
32) 987>250
33) 987>245
34) 987>80

35) 987>80

Each column represents the algorithm choosing a vertex to add to the set;
vertices 16, 12, and 4 were chosen and in that order. Vertices only appear if they
are the maximum addition when considered or if they are ignored (represented
by the inequalities). The format is as follows: the vertex considered appears first,
followed by a parenthesis, and then either a value or an inequality. The
inequality represents that the considered node had a lower addition to the Cy¢
of the set last iteration than the current best addition now, and therefore does
not need to be computed this round. A single value represents the addition to
Cc that vertex would contribute.

doi:10.1371/journal.pone.0090303.t003

Results

Runtime

We first examined the run time of our improved algorithm as
opposed to the simple greedy algorithm. Using small subsets of the
email network, we prompted each algorithm to select 5% of the
subgraph. Table 5 displays the speed-up of the improved
algorithm over the simple greedy algorithm even on these very
small graphs. The difference is multiple orders of magnitude,
aligning with our theoretical results.

Next we wanted to demonstrate that our improved algorithm
also performs well with respect to computing other common
centrality measures. Taking four of the datasets, the email, sexual
interaction, social network, and the Douban network, we
generated initial seed sets with GREEDY-Cr¢2 and compared
this time to how long it took for the NetworkX built in functions
for Closeness and Betweenness dictionaries to be calculated,
shown in Table 6. Our improved algorithm relies on pre-
computation of the value N,,, the number of first and second
neighbors of each vertex in the graph, so the time it takes to
calculate N,, is also included in Table 6. Once the dictionaries for
Closeness and Betweenness are found, they must be sorted to
deliver the top K nodes, but that time is negligible next to the time
required to build the dictionaries and therefore is not included.
The NetworkX implementations for both Closeness and Between-
ness are of complexity O(nm) [24,25]. Recall that the time
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complexity of GREEDY-Cy¢2 is O(K*m), therefore when K is
relatively small compared to 7 we should expect GREEDY-Cy 2
to outperform Closeness and Betweenness.

Finally, we demonstrated that our GREEDY-Cy¢2 algorithm
could also deliver results on a larger datasets - which is a more
typical need in practical applications dealing with social media site.
Here we used a social network extracted from the Douban social
media site [23], which consisted of 154,907 nodes and 654,188
edges. For this experiment, we evaluated the runtime of our
algorithm as a function of the cardinality of the solution (Figure 4).
We found that a quadratic relationship was maintained (R* = 0.99)
which reflects our complexity result of Theorem 8. Finding a set of
4% of the population (6200 nodes) took 18.25 hours, which
significantly outperformed other measures. Currently, we are
exploring means to further scale this approach, including
additional heuristic approximations and parallelization.

Cp¢ Optimization

To test the efficacy of GREEDY-Cr¢2, we examined five
different 500 node subgraphs of four separate networks. On each
subgraph, we chose the top 1, 3, 5, and 8 percent of vertices based
on several common centrality measures and using GREEDY-
Crc2. First we needed to demonstrate that GREEDY-Cr 2 does
in fact optimize Cpc better than other measures. This is difficult to
show definitively, because we do not have other algorithms which
aim to maximize Cr ¢ to use as a comparison, but the contrast with
common centrality measures is still helpful. In Figure 2 we present
the averages of the Cpc value over those five subgraphs for the
subsets chosen by GREEDY-Crc2 versus each of the subsets
chosen by selecting the top X percent of nodes using other
centrality measures. Figure 2 shows both that sets that have a high
Cyc are in practice very different from other measures (i.e. we did
not develop a trivially new definition), and then that seeking sets
with other centrality measures is not good shortcut to finding sets
that have a high Crc. In all cases, GREEDY-Cpc2 chose the set
with the highest Crc, and was an average of 7% greater than the
top performer for each percent and data set pair. On every dataset
an analysis of variance (ANOVA) reveals that there is a significant
difference in the performance among our algorithm and the
centrality measures with respect to increase or decrease in Cr¢ (p-
value less than 0.04556 calculated with R version 3.01) except
academic collaboration network, which had a p-value between
0.8949 and 0.9977 for each percentage trial. Some of the
uncertainty in the statistical analysis is attributable to the variance
between the random subgraphs, as in many cases average Cr¢
values across all centrality measures differed between two
subgraphs as much as 20%.

In some trials, particularly in sexual interaction and academic
collaboration (A and C in Figure 2), GREEDY-Cy 2 reached a
maximum Cr¢ value before selecting 8% of the graph, at which
point the averages of other centrality measures begin to approach
GREEDY-Cy 2. However, as Cr¢ has already been maximized
in this case (because the first neighbors of the seed set cover the
entire graph), they will never surpass the Cy¢ of the smaller set. In
a real world scenario, this may be taken advantage of as a way to
save advertising costs or focus on a smaller set of the population for
epidemic evaluation.

Epidemic Evaluation

Next the same sets as chosen in the previous section were the
initial infectees for 1000 simulation runs over the SIR model. In
this paper, to remain consistent with the work of [7], we mimicked
their experimental model. After setting our initial infectees to the
infected state, we run the SIR model for ten time steps and then
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B
300000 900000
800000
250000
700000 - —4—GREEDY-CLC2
200000 600000 - —8—Top-LC

o ¢ 500000 —#—Shell Number

21 150000 ]

o © 400000 =>=Degree
100000 300000 =*=PageRank
s0000 200000 =0-Closeness

100000 -+ Betweeness
Eigenvector
0 . ; 0 , . . ; ;
2 3 0 1 2 3 4 5
Percent Selected Percent Selected
D
500000 45000
450000 40000
400000 35000
350000 30000
300000 —

g 250000 g
200000 S
150000 15000
100000 10000
50000 5000

0 T T T T 1 0
0 1 2 3 4 5 0 1 2 3 4 5

Percent Selected

Percent Selected

Figure 2. C; ¢ of Sets Chosen with Various Centrality Measures. The C, ¢ of sets chosen by various centrality measures. Sexual interaction,
email, collaboration, and protein interaction networks are respectively graphs A, B, C, and D.

doi:10.1371/journal.pone.0090303.g002

sum the recovered and infected vertices to determine the total
number of infected vertices. The results, again averaged over the
five subgraphs from each network, are shown in Figure 3. The sets
chosen by GREEDY-Cy¢2 spread on average to 1% more vertices
than the maximum spreader from the rest of the centrality
measures over each percent and dataset pair. Furthermore,
although occasionally another centrality measure will outperform
GREEDY-C 2 on a single cardinality and dataset pair, which
measure does so is highly inconsistent. Particularly visible in the
sexual interaction network (panel A of Figure 3), GREEDY-Cyc2
did not produce a set as big as 5% or 8% of the graph on every
subgraph, so other centrality measures gained an advantage in that
they began with more infectees. Interestingly though, Crc still
remained in the top half of the centrality measures, suggesting
again a certain threshold after which it is inefficient to continue
seeding a graph and a way to conserve real world resources. An
analysis of variance (ANOVA) on every dataset reveals that there
is a significant difference in the performance among sets chosen by
our algorithm and the other centrality measures with respect to
increase or decrease in total vertices infected (p-value less than
0.0003426 calculated with R version 3.01), except the sexual
interaction which had a p-value between 0.9572 and 0.9985 for
each percentage trial. However, we also note that this may be a
somewhat degenerate case as this particular sexual interaction
network consisted of only heterosexual interactions - which leads
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to a bipartite structure. This may account for the Crc measure
covering the entire network without using all of the resources -
which in turn led to inconsistent performance against the centrality
measures in the simulation trials.

Discussion

In this paper, we explored the problem of identifying a set of
nodes that will cause an epidemic to spread under the SIR model
of [7]. To do so, we extended the centrality measure of 7] for sets
rather than individual nodes. Though we found that finding a set
of nodes that maximizes this combinatorial centrality measure-
ment is NP-hard, we develop a polynomial-time heuristic that we
prove to provide the best approximation ratio unless P=NP. We
then further improve the performance, both theoretically and
practically in a modified version of the algorithm that provides the
same theoretical guarantee. We implemented our algorithms and
evaluated them on real-world datasets in terms of runtime, ability
to maximize the combinatorial centrality measure, and the ability
to find sets of nodes that encourage spreading in the SIR model.
We found our algorithms to outperform standard approaches in all
of these evaluations. Further, we show our approach to scale to
networks of 10° nodes.

Future work could include a modified version of Crc which
produces a disease spread mitigation strategy. In such a scenario,
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Figure 3. Spreading Impact of Sets Chosen with Various Centrality Measures. The number of vertices infected after 1000 simulation runs to
10 steps in the SIR model, averaged over five subgraphs for each datum. Sexual interaction, email, academic collaboration, and protein interaction

networks are respectively graphs A, B, C, and D.
doi:10.1371/journal.pone.0090303.9003

we would attempt to find nodes that, if “inoculated” would
minimize the maximum value for Crc with respect to a given
cardinality constraint. Additionally, further evaluation of Crc¢
based on different diffusion models, such as those raised in the
related work section, is another important direction for further
research. In particular, an evaluation of the metric under a classic
SIR Model, rather than the variant described in this paper and in
[9], would be a good first step.

Appendix

Proof of Theorem 1
The Max Cr¢ Problem is NP-Hard.

Table 4. Dataset Information.

Dataset Nodes Edges
Brazil Sexual Interaction Network 16730 39044
University Rovira i Virgili Email Network 1133 5451
Academic Collaboration Network 5242 14484
Yeast Protein Interaction Network 1870 2203
Youtube Social Network 13723 76765
Douban Social Network 154907 654188

doi:10.1371/journal.pone.0090303.t004
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Proof.

Definition 3. Max K-Cover [15)]

INPUT: Universe U, a set of subsets C, and natural number K’

OUTPUT: C'<C, |C'| <K' s.t. |\U; Gyl is maximized.

Embedding: Given Max K Cover as defined in definition 2.4,
we create an instance of the Max Cp ¢ as follows. Form a bipartite
graph G by creating a vertex for each ¢;eC and each e;eU. Create
a directed edge from ¢; to ¢; if e;ec;. For each vertex corresponding
to an element ¢; create two additional nodes, ¢;, and ¢; ;. Also add
a directed edge from e; to e;, and from e;, to e;;. Each node
corresponding to a subset ¢; now has a path length of three to
some €;p.

Table 5. Runtime of GREEDY-C; ¢ vs GREEDY-Cj 2.

Graph Size Simple Run Time Fast Run Time
100 80.37 0.03
200 1502.95 0.19
300 9784.2 0.74
400 35610.68 1.90

Runtimes are in seconds. Each algorithm selected 5% of the given graphs,
which are random samples of the email dataset.
doi:10.1371/journal.pone.0090303.t005
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Table 6. Runtime of GREEDY-C} 2, Closeness, and Betweenness.

Nodes Edges CLC Size N_w Time CLC Time Betweenness Closeness
1133 5451 249 0.61 239 8.64 2.60

16730 39044 1000 16.58 383.89 2307.14 561.54
13723 76765 1000 66.13 407.93 252592 693.55
154907 654188 2000 249.22 7129.11 >24 hrs >24 hrs

doi:10.1371/journal.pone.0090303.t006

Claim 1. Embedding of Max K-Cover into Max Crc can be
accomplished in polynomial time, as graph G has |C|+3|U| vertices and
3|U| edges, whose creation takes constant time.

Claim 2.  Given set V' returned by the an instance of Max Crc with
K<|C|, the set C*={c|v.€V'} is the solution to the Max K-Cover
problem.

Suppose by way of contradiction that there exists some set
C** < C such that |C**|< K and the number of elements covered
by C** is greater than the number of elements covered by C*. Let
V" ={v.|ceC*}.

The number of distinct nearest neighbors for C** is greater than
the number of distinct nearest neighbors of C*. Note that for all
vertices corresponding to elements i, Zwem Ny=1 by the
construction, and Crc(V7) is simply the count of distinct nearest
neighbors of set V. Therefore Crc(V"")> Crc(V’), which is a
contradiction.

Claim 3. Given set C* vreturned by Max K-Cover, the set
V' ={vc|ceC*} is a solution to Max Cpc.

Suppose by way of contradiction that there exists some V"
where [V"|<|C| and Crc(V")> Crc(V"). Let C* ={c|v.eV"}.

Cre(V'")= Zueﬂw Zwem N,,, which under the construction is
[#y|. Similarly Cre(V')=1|ny|<Crc(V"). This is equivalent to
saying that the number of nearest neighbors covered by set C** is
greater than that of C*, which is a contradiction.

Proof of Theorem 2

The Dec Crc Problem is NP-Complete.

Progf. Given an oracle that produces a solution V', we can
clearly check if Cre(V”)=X in polynomial time by Theorem 1.

Proof of Theorem 3

Max Cpc cannot be approximated within
unless P=NP.

Proof. Embedding: We use the same embedding as in Theorem
2.1 above.

Let x= the number of sets covered by some set C* of Max K-
Cover.

Let y=Cprc(V’) where V' is the set of vertices for Max Cpc.

Claim 4. x2>}.

Suppose by way of contradiction that x <y. If C* covers fewer
neighbors than Cpc(V”) then at least one of those neighbors u
must have a Q(u) > 1. However under the construction all vertices
e; associated with elements have Q(i)=1 as they each have only
one next nearest neighbor e and no neighbors to that vertex, and
we have a contradiction.

Claim 5. x<y.

Suppose by way of contradiction that x>y. If C* covers more
neighbors than Crc(V”) then at least one of those neighbors u
must have a Q(u) < 1. However under the construction all vertices
e; associated with elements have Q(i)=1 as they each have only

el ¢ for €>0

e
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Runtimes are in seconds. N,, must be precomputed and stored once before GREEDY-C/ 2 can be run.

one next nearest neighbor ¢;, and no neighbors to that vertex, and
we have a contradiction.

By the embedding, Claims 1.4 and 1.5, and Thm 4.4 of [15]
concerning the limit of approximating set cover, the Max Cpc¢
cannot be approximated within e:—l +¢€ for €>0 unless P=NP.
Proof of Lemma 1

Crc(V’) is monotonic.

Progf. Suppose by way of contradiction there exists SES’ s.t.
CLc(S) > CLc(S/). Then

Zuens Zwenu N, w > erqy Zyenx N, ¥
Zwenu N‘V > Zyenx N,V'

However, because S<S” we know g Sng and 1, <9,

Because the total neighbors of a subset is necessarily less than
the total neighbors of its superset, we have a contradiction.

which implies

Proof of Theorem 4

Cy ¢ is sub-modular.

Progf. Setup: S=S'=V; V is the set of vertices in graph G;
vertex [ & S';

Suppose by way of contradiction Crc(SU{i})— Crc(S)<
Cre(S"ULiH) — Cre(S).

Then
Zaen(sum) Zwenu Ny — Zaer]s Zwenu Ny < Zherhsrum, Zwenb Ny —

Zbensr Zwenh NW
If we let @' =nes gy —ns and ' =ng () —Ns the inequality
above becomes:

w
o

N
(S}

N
o

(8}

-
o

Run Time in Hours
-

3000 4000 5000 6000 7000 8000

Nodes Selected

1000 2000

Figure 4. Run Time of GREEDY-C;c2 on the Douban Social
Network. The run time in hours for GREEDY-C;c2 to build sets
between 100 and 7100 nodes.

doi:10.1371/journal.pone.0090303.9004
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iea’ wen; ieb’ wen;

Note that @' and b’ are the sets of neighbors added to sets S and

§’, respectively, with the addition of vertex i.
Claim 6. da' <)

a =nsyi—ns=nsUn;—sNn)—ns=n;—MmsMNn,)

Similarly, b'=n; —(ngMn;). Since SSS', (nsMn;) (Mg MKy,
therefore @' <b'.

However, with @' b, inequality 4 cannot be true, therefore
Crc is sub-modular.

Proof of Theorem 6

GREEDY-Cy¢ obtains the best approximation ratio unless
P=NP.

Proof.

Claim 7. GREEDY-Cyc is a Greedy Algorithm.

We build set V'’ by adding one element at each iteration of the
while loop. A new element is chosen by analyzing the increase Cr¢
for each node not in V" and picking the maximal node. Using a
local heuristic to make each choice in a set of decisions is a greedy
approach.

Claim 8. CLC(@) =0:

CLC((Z)) = Zuem]) Zwenu Nw = Z@ Zwer]“ Nw =0

Proof of Theorem: For any monotonic, sub-modular function
f(S) where f(())=0, a greedy algorithm guarantees an
a=(1—1/e) approximation [23]. By Theorems 1 and 4, and
Claims 7 and 8, GREEDY-Cy¢ gives an a=(1—1/¢) approxi-
mation.

By Theorem 2.1 of [2] and the approximation ratio « above, o
is the best approximation if P# NP.

Proof of Theorem 5

GREEDY-C; ¢ takes O(K2nk**) time.

Proof.

Claim 9. Cy¢ takes O(|V'|k**)

To compute Crc(V"), first we iterate through each vertex in V.
For each vertex, we consider each neighbor, and barring repeated
vertices in the set we add those neighbors to a set of first neighbors
for set V’, which takes |V'|k*. For each vertex in the first neighbor
set we count the first and second neighbors, which is no worse than
k**. Therefore the time complexity is O(|V'[k**).
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