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Abstract

Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA)
from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in
which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or
whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the
herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and
tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp
open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl
desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA
efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating D6 desaturation activity.
Quantitative real-time PCR showed that highest D6 fad mRNA expression was detected in liver followed by brain, with lower
expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach
and spleen. The expression of D6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with
highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S.
argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and
feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts.
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Introduction

Long-chain polyunsaturated fatty acids (LC-PUFA), PUFA with

chain lengths $C20 and $3 unsaturations, such as the

arachidonic (ARA, 20:4n-6), eicosapentaenoic (EPA; 20:5n-3)

and docosahexaenoic (DHA; 22:6n-3) acids, are essential compo-

nents of biomembranes of all cells and tissues, and have crucial

roles in growth, ontogenesis, reproduction, stress and immune

responses as well as development of the nervous system [1,2]. In

addition, they also have key roles in the inflammatory response

and consequently in several inflammatory and pathological

conditions, including metabolic disorders, cardiovascular and

neurological diseases [3–5]. As fish are the primary source in the

human diet of the physiological-active n-3 LC-PUFA [6–8], the

biosynthesis, metabolism and nutrition of LC-PUFA in fish have

attracted increasing research interest.

The biosynthesis of LC-PUFA from a-linolenic (18:3n-3, LNA)

and linoleic (18:2n-6, LA) acids requires a series of fatty acyl

desaturase (Fads) and elongation of very long-chain fatty acids

(Elovl) enzymes [9]. Fish species vary in their capacity to

biosynthesize LC-PUFA depending on their complement of these

key enzymes [1,10]. Freshwater species, such as carp, tilapia, and

trout, possess the capacity to synthesize LC-PUFA from precursor

C18 PUFA [1,11]. In contrast, marine fish have generally been

regarded as species with limited capability for endogenous

synthesis of LC-PUFA from their C18 precursors, and hence

have a strict dietary requirement for LC-PUFA [1,12]. The high

availability of C20–22 LC-PUFA in marine food webs and the

resultant low selection pressure was speculated to have resulted in

the loss of specific enzymatic activities of the LC-PUFA

biosynthetic pathway in marine fish species [13]. Recently,

however, we reported that the herbivorous marine fish Siganus

canaliculatus, or rabbitfish, could grow well without dietary LC-

PUFA [14,15]. In addition, we recently isolated two desaturases

with D4 and D6/D5 specificities, and two elongases (Elovl4 and

Elovl5) from S. canaliculatus [16,17], which suggested that rabbitfish

would have the ability to endogenously synthesize LC-PUFA.

Thus, rabbitfish became the first marine teleost in which all the
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enzymatic activities required for the production of LC-PUFA from

C18 PUFA were demonstrated. The effect of ‘trophic level’, the

position of an organism in the food web, was thus hypothesized as

a potential further factor influencing the LC-PUFA biosynthetic

capability of teleost fish in addition to the above mentioned

environmental factors.

Scatophagus argus has similar habitat and feeding habits to

rabbitfish, and is distributed widely in freshwater, brackish and

marine habitats of the Indo-Pacific, South and South East Asia,

and is also a herbivore that feeds on largely plant material [18–20].

In order to investigate whether S. argus has an enzymatic

complement for LC-PUFA biosynthesis similar to that of

rabbitfish, we aimed to isolate and characterize genes encoding

Fads and Elovl enzymes with putative roles in the pathways. In the

present study, we report the cloning, functional characterization,

tissue expression and nutritional regulation of a Fads2-like

desaturase from S. argus. The results have increased our knowledge

of the relationships between LC-PUFA biosynthesis pathways and

the habitat and feeding habit of fish species, and provide the basis

for studying the regulatory mechanisms controlling LC-PUFA

biosynthesis pathways in S. argus.

Materials and Methods

Diets, fish, feeding trial and sampling
With casein as protein source, and fish oil (rich in LC-PUFA) or

soy oil and perilla oil (both LC-PUFA-free) as lipid sources, six iso-

proteic and iso-lipidic experimental diets (D1-D6) were formulated

with 32% crude protein and 8% crude lipid. Diet D2 contained

fish oil (FO) as control, and diets D1, D3-D6 contained different

proportions of soybean oil and perilla oil, which resulted in ratios

of LNA: LA of 0.14, 0.57, 0.84, 1.72 and 2.85, respectively. The

dietary formulations, proximate and fatty acid compositions are

shown in Table 1.

S. argus juveniles (body mass around 4.3 g) were purchased from

a local hatchery, and reared in floating cages (0.660.663.0 m)

located on the coast near Nan Ao Marine Biology Station

(NAMBS), Shantou University and fed an equal mix of the six

experimental diets for two weeks before the start of feeding trial.

The feeding trial was conducted in 18 floating cages

(0.660.663.0 m) at ambient temperature, salinity and photope-

riod, with each cage containing 25 fish that were allocated

randomly. Fish in triplicate cages were fed one of the experimental

diets twice a day (at 9:00 and 16:00 h) at 1–2% of body weight for

8 weeks. At the end of the feeding trial, fish were anaesthetized

with 0.01% 2-phenoxyethanol (Sigma-Aldrich Inc., USA), and

livers were collected from six fish per dietary treatment (2 fish per

replicate cage) to investigate the effects of dietary fatty acid

composition on gene expression. Livers were immediately frozen

in liquid nitrogen and stored at 280uC prior to the analysis of

desaturase mRNA expression by quantitative PCR (qPCR). In

order to determine the tissue distribution of S. argus putative

desaturase, eye, brain, liver, muscle, heart, gills, spleen, kidney and

intestine were collected from six S. argus individuals (80–90 g)

captured from the coast near NAMBS, after the fish were

anaesthetized with 0.01% 2-phenoxyethanol. Tissue samples were

frozen in liquid nitrogen immediately after collection and stored at

280uC until RNA extraction. All experiments and procedures

were carried out according to the ‘‘Regulations for the Admin-

istration of Affairs Concerning Experimental Animals’’ established

by the Guangdong Provincial Department of Science and

Technology on the use and care of experimental animals. The

study was reviewed and approved by the Ethics Committee of

Animal Experiments of Shantou University.

Molecular cloning of Scatophagus argus desaturase cDNA
Total RNA was extracted from S. argus liver using Trizol reagent

(Invitrogen, USA) and reverse transcribed into cDNA using

random primers and an appropriate RT-PCR kit (Invitrogen,

USA). Degenerate primers (SaF1 and SaR1) were designed on the

basis of highly conserved regions of desaturase genes of other fish

species available in the GenBank database including rabbitfish

(ABR12315), zebrafish (Danio rerio) (AAG25710) and gilthead

seabream (Sparus aurata) (ADD50000), and used for amplifying

partial fragments of S. argus putative desaturase cDNA (Table 2).

PCR consisted of an initial denaturation at 94uC for 3 min, 35

cycles of denaturation at 94uC for 30 s, annealing at 57uC for 30 s

Table 1. Formulation and composition of the experimental
diets.

D1 D2 D3 D4 D5 D6

Dietary prescription(g/100 g diet)

Casein 40.00 40.00 40.00 40.00 40.00 40.00

a- starch 5.00 5.00 5.00 5.00 5.00 5.00

Starch 34.40 34.40 34.40 34.40 34.40 34.40

Cellulose 9.00 9.00 9.00 9.00 9.00 9.00

Mineral premix1 1.00 1.00 1.00 1.00 1.00 1.00

Vitamin premix2 1.00 1.00 1.00 1.00 1.00 1.00

Others3 1.60 1.60 1.60 1.60 1.60 1.60

Fish oil 0.00 8.00 0.00 0.00 0.00 0.00

Perilla oil 0.00 0.00 5.68 3.84 5.84 8.00

Soybean oil 8.00 0.00 2.32 4.16 2.16 0.00

Proximate composition (%, dry matter basis)

Moisture 11.49 12.39 11.38 9.89 10.29 12.07

Protein 33.21 32.59 31.92 32.83 32.74 32.63

Lipid 8.46 8.61 7.94 8.20 8.75 8.32

Ash 5.75 5.36 4.97 5.29 5.18 5.42

Main fatty acids (% area)

18:2n6 43.09 2.87 37.47 25.24 22.39 16.53

18:3n6 0.79 0.26 0.73 0.94 0.88 0.90

18:3n3 7.40 1.41 21.67 21.92 39.72 59.75

20:4n6 /4 0.30 / / / /

20:4n3 / 0.10 / / / /

20:5n3 / 2.97 / / / /

22:5n3 / 0.14 / / / /

22:6n3 / 3.56 / / / /

gSaturated 24.13 55.93 19.02 28.07 21.90 23.28

gMonoenes 24.32 27.96 20.04 22.61 22.04 19.54

gn-6 PUFA 43.88 4.25 38.2 26.18 23.27 17.43

gn-3 PUFA 7.40 8.19 21.67 21.92 39.72 49.75

LNA/LA 0.14 0.49 0.57 0.84 1.72 2.85

1The amounts of following ingredients in per kg of premix are: iron, 8 g;
molybdenum, 1 g; zinc, 30 g; manganese, 2 g; cobalt, 1 g; iodine, 500 mg;
selenium, 40 mg.
2The amounts of following vitamins in per kg of premix are: A, 46106 IU; D3,
26106 IU; E, 60 g; K3, 6 g; B1, 7.5 g; B2, 16 g; B6, 12 g; B12, 100 mg; nicotinic
acid, 88 g; pantothenic acid, 36 g; folic acid, 2 g; biotin, 100 mg; inositol, 100 g;
C-monophopholipid, 200 g.
3The amounts of following ingredients in per 100 g of diet are: CaHPO4, 0.05 g;
Methionine, 0.05 g; Lycine, 0.05 g; Choline chloride, 0.08 g; Vitamin C, 0.02 g.
4Undetectable.
doi:10.1371/journal.pone.0090200.t001
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and extension at 72uC for 1 min, followed by a final extension at

72uC for 10 min. The gel purified PCR products were cloned into

the pMD18-T vector (Takara) for further sequencing (Sangon

Biotechnology Company, Shanghai, China). Gene-specific prim-

ers (SaF2 and SaF3, SaR2 and SaR3) were then designed to

produce the full-length desaturase cDNA by 59 and 39 rapid

amplification of cDNA ends (RACE) PCR (GeneRacer kit,

Invitrogen, USA) (Table 2).

Sequence and phylogenetic analysis of S. argus
desaturase

The deduced amino acid (aa) sequence of the newly cloned

putative desaturase gene from S. argus was aligned with other

orthologues from human (Homo sapiens) (AAD20018), mouse (Mus

musculus) (AAD20017), zebrafish (AAG25710), and rabbitfish

(ABR12315) using Clustal W (www. ebi.ac.uk/tools/msa/clus

talW2) [21]. The aa sequence identities of S. argus putative

desaturase was compared to those of orthologues from other fish

and mammals using the EMBOSS Needle Pairwise Sequence

Alignment tool (http://www.ebi.ac.uk/Tools/psa/emboss_needle/).

Phylogenetic analysis of desaturase polypeptides was performed by

constructing a tree using the neighbor-joining method [22].

Confidence in the resulting phylogenetic tree branch topology

was measured through bootstrapping through 10000 iterations.

Functional characterization of putative desaturase by
heterologous expression in yeast

Functional characterization of S. argus putative desaturase gene

was conducted by expressing the PCR fragment corresponding to

the open reading frame (ORF) in the yeast Saccharomyces cerevisiae.

Primers SaF4 and SaR4 containing restriction sites for BamHI and

XbaI, respectively (underlined in Table 2), were designed for

amplification of ORF from liver cDNA using the high fidelity Pfu

DNA polymerase (TianGen, Beijing, China) under the following

conditions: initial denaturation at 95uC for 3 min, followed by 35

cycles of denaturation at 95uC for 30 s, annealing at 68uC for 30 s

and extension at 72uC for 90 s, with a final extension at 72uC for

10 min. The DNA fragment was purified and digested with the

corresponding restriction endonucleases (New England Biolabs,

UK) and ligated into the yeast episomal plasmid pYES2

(Invitrogen, USA). The plasmid construct pYES2-fads was used

to transform S. cerevisiae (strain INVSc1, Invitrogen) using the S.C.

Easy Comp Transformation kit (Invitrogen, USA). A single colony

containing the desaturase construct was grown on S. cerevisiae

minimal medium minus uracil (SCMM-uracil). Each culture was

supplemented with one of the following fatty acid substrates: LNA

(18:3n-3), LA (18:2n-6), eicosatetraenoic acid (20:4n-3), dihomo-c-

linolenic acid (20:3n-6), docosapentaenoic acid (22:5n-3), or

docosatetraenoic acid (22:4n-6) obtained from Cayman Chemicals

Co (Ann Arbor, MI, USA). The PUFA substrates were added at

final concentrations of 0.5 (C18), 0.75 (C20) and 1.0 (C22) mM as

uptake efficiency decreases with increasing chain length [16]. After

culture for two days, yeast cells were harvested and washed as

described previously for lipid extraction [16].

Lipid extraction and fatty acid analysis
Yeast samples were homogenized in chloroform/methanol (2:1,

v/v) containing 0.01% 2,6-butylated hydroxytoluene (BHT) as

antioxidant, and total lipid was extracted according to Folch et al.

[23]. Fatty acid methyl esters (FAME) were prepared by

transesterification with boron trifluoride etherate (ca. 48%, Acros

Organics, NJ, USA) as described previously [14]. FAME were

purified by TLC, resuspended in hexane [24], and separated using

a gas chromatograph (GC2010-plus, Shimadzu, Japan) as

described in detail previously [16]. Desaturase activity was

calculated as the proportion of substrate fatty acid converted to

desaturated fatty acid product as follows: 1006 [product area/

(product area + substrate area)].

Analysis of desaturase expression by quantitative PCR
The mRNA levels of cloned putative desaturase gene in

different tissues of S. argus or in livers of fish fed with diets D1–

D6 for eight weeks were measured by quantitative real-time PCR

(qPCR). Total RNA was extracted from tissues using Trizol

reagent (Invitrogen, USA), and 1 mg total RNA was reverse

transcribed into cDNA using AMV First-Strand cDNA Synthesis

Kit (Invitrogen, USA). The mRNA levels of S. argus putative

desaturase and the reference gene 18S rRNA in tissues were then

quantified by qPCR (SYBR Green II) with primer-pairs fadF-fadR

and 18SF-18SR, respectively (Table 2). Assays were run on an ABI

Prism 7300 sequence detection system (PE Applied Biosystems,

Foster City, CA) under the following conditions: samples were

heated for 10 s at 95uC, and amplified for 40 cycles at 90uC for

5 s, and with a final step at 60uC for 31 s. The mRNA levels of S.

argus putative desaturase in each sample were normalized relative

to the expression of 18S rRNA calculated by the comparative

threshold cycle (Ct) method [25].

Statistics
Comparisons amongst treatments were analyzed by one-way

analysis of variance (ANOVA) at a significance level of 0.05

following confirmation of normality and homogeneity of variance

tests. The statistical analyses were computed using SPSS v17.0

(SPSS Inc., Chicago, IL, USA).

Table 2. Sequences of primers used for cDNA cloning or
determining mRNA content of S. argus fads2.

Primers for partial cDNA cloning

SaF1 59-ACCTGGGCCACATCCTGCT-39

SaR1 59-CCAGGCCAGATCCACCCAGT-39

Primers for 59RACE

SaR2 59-TGCTTGCGTAAAGTGCGGAAATCCTGTA-39

SaR3 59- AGCAAGATCGCACACAGAAGCGTCAG-39

Primers for 39RACE

SaF2 59-CGCTTCTGTGTGCGATCTTGCTGAC-39

SaF3 59-TTCCAGCATCACGCTAAACCCAACATCT-39

Primers for ORF cloning

SaF4 59-CCCGGATCCAGGATGGGAGGTGGAGGCCAC-39

SaR4 59-CCGTCTAGATCATTTATGGAGATATGC-39

Primers for real-time quantitative PCR

fads2

fadF 59-GCTTCTGTGTGCGATCTTGC-39

fadR 59-GATGTTGGGTTTAGCGTGATGC-39

18S rRNA

18SF 59-CGCCGAGAAGACGATCAAAC-39

18SR 59-TGATCCTTCCGCAGGTTCAC-39

doi:10.1371/journal.pone.0090200.t002
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Results

Sequence and phylogenetic analyses of S. argus putative
desaturase

The cloned S. argus putative desaturase cDNA was 1972 bp in

full-length, which contained a 1338 bp ORF specifying a peptide

of 445 aa. The sequence was deposited in GenBank database

under the accession number KC508796. The deduced polypeptide

sequence contained all the characteristics of microsomal fatty acyl

front-end desaturases including two trans-membrane regions,

three histidine-rich boxes, and an N-terminal cytochrome b5

domain containing the heme-binding motif HPGG (Figure 1).

When compared to other vertebrate desaturase sequences, the S.

argus putative desaturase showed 65% and 90–95% identity to

those of mammals, and zebrafish and rabbitfish, respectively.

Phylogenetic analysis comparing a variety of desaturases from fish,

mammals, fungus and nematode, showed that all fish desaturase

genes, including that for S. argus, clustered together and closer to

mammalian D6 desaturases (Fads2) rather than to D5 desaturases

(Fads1). In addition, the S. argus desaturase clustered most closely

Figure 1. Alignment of Scatophagus argus D6 desaturase peptide sequence with those of Siganus canaliculatus (Fads2) (ABR12315),
Danio rerio (Fads2) (AAG25710), Mus musculus (Fads2) (AAD20017) and Homo sapiens (Fads2) (AAD20018) using ClustalW. Identical
and similar residues are marked with ‘*’ and ‘:’, respectively. The cytochrome-b5 like domain is underlined with a fine line and the heme-binding
motifs with a short bold lines. The long bold underlines denote the trans-membrane regions, and the three histidine boxes are highlighted with
frames.
doi:10.1371/journal.pone.0090200.g001
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to gilthead sea bream and European sea bass (Dicentrarchus labrax)

desaturases with D6 desaturation activity (Figure 2).

Fatty acyl substrate specificity of the S. argus putative
desaturase

The fatty acid specificity of the newly cloned S. argus putative

desaturase was identified by heterologous expression in yeast S.

cerevisiae. Fatty acid profiles of control yeast transformed with

pYES2 vector alone were characterized by having only the four

main endogenous fatty acids, namely 16:0, 16:1n-7, 18:0 and

18:1n-9 (peaks 1-4 in Figure 3), together with any exogenously

added substrate fatty acid (data not shown). This is in agreement

with S. cerevisiae having limited PUFA metabolism, including

completely lacking endogenous enzymatic capabilities for PUFA

substrates [16]. In the yeast transformed with pYES2-fads,

however, additional peaks in yeast grown in the presence of LA

(18:2n-6) and LNA (18:3n-3) were identified as 18:3n-6 (Figure 3A)

and 18:4n-3 (Figure 3B), respectively, on the basis of GC retention

time. These results indicated that the S. argus putative desaturase

was a Fads2 with D6 desaturation activity. The conversion rates of

18:2n-6 to 18:3n-6 and 18:3n-3 to 18:4n-3 were approximately of

61% and 82%, respectively (Table 3). Transgenic yeast expressing

the S. argus putative desaturase were unable to desaturate any of

the other fatty acid substrates assayed (namely, 20:3n-6, 20:4n-3,

22:4n-6 and 22:5n-3), indicating it was unable to perform

desaturations at the D5 and D4 positions (Figure 3, panels C–F).

Tissue distribution of the S. argus fads2
The expression of S. argus desaturase (fads2) was detected in all

tissues examined with significantly highest expression in liver

(P,0.05), followed by brain. Other tissues including intestine, eye,

muscle, adipose, heart and gill showed relatively low expression

levels, with stomach and spleen having the lowest expression

signals (Figure 4).

Effects of dietary fatty acid composition on expression of
fads2 mRNA in liver of S. argus

In comparison with the expression level in liver of fish fed the

control diet D2 with fish oil (FO), the mRNA levels of fads2 were

significantly higher in livers of fish fed diets D1, D3–D6

formulated with vegetable oil (VO), which suggested that the

expression of fads2 was up-regulated in fish fed diets containing

reduced levels of LC-PUFA (Figure 5). More specifically, the

highest expression level was detected in liver of fish fed diet D5,

where the LNA/LA ratio was 1.72. Those in livers of fish fed diets

D1 (LNA/LA = 0.14), D6 (LNA/LA = 2.85) and D4 (LNA/

LA = 0.84) were all significantly higher compared to fish fed diet

Figure 2. Phylogenetic tree comparing the deduced amino acids of Scatophagus argus D6 desaturase with mammals and other
teleost homologs. The tree was constructed using the neighbor-joining method [55] with MEGA4. The horizontal branch length is proportional to
the substitution rate per site. Numbers represent the frequencies with which the tree topology presented was replicated after 10000 bootstrap
iterations.
doi:10.1371/journal.pone.0090200.g002
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D2. In contrast, no significant difference was found between D3

(LNA/LA = 0.57) and D2 dietary group.

Discussion

In the present study, the cDNA for a fads2 gene was cloned from

S. argus. In mammals, Fads2 catalyzes the first (D6) desaturation

step in the LC-PUFA biosynthesis pathway from the C18 PUFA,

LNA and LA, and it has been regarded as the rate-limiting enzyme

in the pathway to EPA and ARA, respectively [26]. Mammalian

Fads2 is entirely associated with D6 specificity, however, Fads2 in

teleost species display considerable functional diversification

having evolved to have a wide range of substrate specificities

[27]. To date, Fads2 enzymes with D6 desaturase activities have

been identified from freshwater fish including common carp

(Cyprinus carpio var. Jian) [11] and Nile tilapia (Oreochromis niloticus)

[28], diadromous species such as Atlantic salmon (Salmo salar) [29],

masu salmon (Oncorhynchus masou) [30] and meagre (Argyrosomus

regius) [31], and marine fish including gilthead seabream [32],

Atlantic cod (Gadus morhua) [33], cobia (Rachycentron canadum) [34],

European sea bass [35], Asian sea bass (Lates calcarifer) [36], nibe

croaker (Nibea mitsukurii) [37], Atlantic bluefin tuna (Thunnus

thynnus) [38], striped snakehead fish (Channa striata) [39] and black

seabream (Acanthopagruss chlegeli) [40]. In addition, a further Fads2

from Atlantic salmon was shown to be a monofunctional D5

desaturase [41], and bifunctional D6/D5 Fads2 enzymes were

reported in the freshwater species zebrafish (Danio rerio) [42] and

marine species rabbitfish [16]. Thus, in addition to expressing a

D4-desaturase, rabbitfish was the first marine fish in which a

capability for D5-desaturation was demonstrated, as this enzymatic

activity was previously believed to be generally absent in marine

teleosts [13]. With respect to the noteworthy differences in

desaturation activities among teleost Fads2, Castro et al [27]

hypothesized that the losses and diversifications of crucially

important genes in fatty acid metabolism during fish evolution

might be linked to habitat-specific food web characteristics, such as

LC-PUFA availability, in different environments.

The rabbitfish S. canaliculatus was the first marine teleost species

reported to have the capability of LC-PUFA biosynthesis from

C18 PUFA precursors and all the genes encoding key enzymes for

LC-PUFA biosynthesis have been characterized including Fads2

desaturases with both D4 and D6/D5 activities, and Elovl5 and

Elovl4 elongases capable of elongating C18, C20 and C22 PUFA

[14,16,17]. To a large extent S. argus shares similar feeding habits

(naturally feeding on algae and other plant material) and habitats

(marine and brackish waters) to those of rabbitfish. However, as it

has a monofunctional D6 desaturase, it does not appear to possess

Figure 3. Functional characterization of Scatophagus argus putative desaturase in yeast Saccharomyces cerevisiae. FAME were extracted
from yeast transformed with the pYES2-fads, and grown in the presence of FA substrates (*) 18:2n-6 (A), 18:3n-3 (B), 20:3n-6(C), 20:4n-3 (D), 22:4n-6 (E)
and 22:5n-3 (F). Peaks 1–4 represent the main endogenous FAs of S. cerevisiae, namely 16:0, 16:1 isomers, 18:0 and 18:1n-9, respectively. Based on
retention times, additional peaks (arrowed) were identified as 18:3n-6 (A) and 18:4n-3 (B). Vertical axis, FID response; horizontal axis, retention time.
doi:10.1371/journal.pone.0090200.g003

Table 3. Substrate conversions of pYES-fads transformed
yeast grown in presence of D6 (18:3n-3 and 18:2n-6), D5
(20:4n-3 and 20:3n-6) and D4 (22:5n-3 and 22:4n6) fatty acid
(FA) substrates.

FA substrate Product Conversion (%) Activity

18:3n-3 18:4n-3 82.25 D6

18:2n-6 18:3n-6 61.18 D6

20:4n3 20:5n-3 0.00 D5

20:3n6 20:4n-6 0.00 D5

22:5n3 22:6n-3 0.00 D4

22:4n6 22:5n-6 0.00 D4

Results are expressed as a percentage of total FA substrate converted to
desaturated products.
doi:10.1371/journal.pone.0090200.t003
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a similar LC-PUFA biosynthesis system with rabbitfish, which has

a bifunctional D6/D5 desaturase and a monofunctional D4

desaturase [16]. Attempts have been made to clone further

desaturases from S. argus and, although these have so far been

unsuccessful, it is not possible to unequivocally discount the

possibility that other fatty acyl desaturases, with activities other

than D6, exist in the S. argus genome.

The S. argus Fads2, like the majority of Fads2 desaturases

isolated from marine fish [32–40], has been characterized as

displaying monofunctional D6 desaturation activity. Although

phylogenetic analysis showed that the S. argus desaturase clustered

closely with desaturases from carnivorous S. aurata and D. labrax,

which was consistent with their measured activities, phylogeny and

functionality do not necessarily correlate, at least when compar-

isons are made within teleosts. Atlantic salmon desaturases (Fads2)

Figure 4. Relative expression levels of fads2 mRNA in different tissues of Scatophagus argus. Expression values were normalized to those
of 18S rRNA. Data are means 6 SEM (n = 6). Bars with different superscripts are significantly different (P,0.05, one-way ANOVA test). L, liver; B, brain; I,
intestine; E, eye; M, muscle; A, adipose; H, heart; G, gill; St, stomach; Sp, spleen.
doi:10.1371/journal.pone.0090200.g004

Figure 5. Relative expression levels of fads2 mRNA in livers of Scatophagus argus fed six experimental diets. Expression values were
normalized to those of 18S rRNA. Data are means 6 SEM (n = 6). Bars with different superscripts are significantly different (P,0.05, one-way ANOVA
test). D2: control diet with fish oil as lipid source; D1, D3–D6: diets with blended vegetable oils as lipid source with dietary LNA/LA ratios of 0.14, 0.57,
0.84, 1.72, and 2.85, respectively.
doi:10.1371/journal.pone.0090200.g005
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with D6 and D5 activities have only a few aa differences and thus

cluster closely together, as do rabbitfish D6/D5 and D4

desaturases. Thus, sequence and phylogenetic analyses are only

indicators of whether desaturases are Fads1 or Fads2, but not of

function. Although we have so far failed to isolate a Fads with D5

activity from S. argus, the feeding trial provided circumstantial

evidence that LNA and LA can satisfy EFA requirements for

normal growth and survival (unpublished data), which suggested S.

argus may have the ability to synthesize LC-PUFA from C18

PUFA. Similarly, only D6 desaturase specificity was reported from

the freshwater common carp Fads2, and this species also can

effectively utilize VO (without LC-PUFA) to meet the essential

fatty EFA requirement for normal growth and survival [11,43].

However, as with S. argus, it is not clear whether or not other

desaturases could be present in carp. Although both S. argus and

rabbitfish are classed as marine herbivorous species, they are in

fact euryhaline. Rabbitfish usually inhabit seawater but can

tolerate salinity as low as 10 ppt [13], whereas S. argus can live

in seawater, but normally inhabit estuaries, mangrove swamps,

and even the lower reaches of rivers [18]. Therefore, the ecology

of these ‘‘marine’’ teleosts, albeit similar, is different and may

contribute to the apparent differences in LC-PUFA biosynthesis.

Further research is required to elucidate the complete pathways

and regulatory mechanisms of LC-PUFA biosynthesis in S. argus.

The expression of S. argus fads2 was greatest in liver followed by

brain, possibly reflecting the importance of fatty acid metabolism

and LC-PUFA biosynthesis in these tissues [13,44]. This is similar

to the tissue expression pattern obtained in freshwater species like

common carp [11], salmonids including rainbow trout [45], and

Atlantic salmon [29,46,47], and the rabbitfish [14], in which the

expression of a fads2 was greatest in liver, followed by intestine/

brain. In contrast, studies on marine fish showed that the

expression of D6 desaturases was substantially higher in brain

than all other tissues [33–36,38,48]. This has led to the hypothesis

that the retention of D6 desaturase activity in marine teleost

species has been to ensure sufficient 22:6n-3 in neural tissue

through conversion of EPA via the so-called Sprecher shunt

pathway [13].

Other than species differences, nutritional factors also affect LC-

PUFA biosynthesis in teleosts through modulation of desaturase

and elongase gene expression and subsequent effects on enzymatic

activity. Many studies in freshwater and diadromous teleost fish

species have shown that replacing FO by VO in diets resulted in

increased expression of desaturase and, in some cases, elongase

genes consistent with similarly increased enzymatic activity

[29,45–47,49–53]. Similar results were also observed in marine

fish [12,33]. The results of the present study showed that dietary

fatty acid composition affected the expression of fads2 in S. argus,

with higher expression levels detected in livers from fish fed diets

with VO compared with the FO dietary group. As mentioned

above, this was consistent with previous reports that replacing FO

by VO resulted in increased D6 fads mRNA expression level in fish

such as Atlantic salmon [29,45,46,53,54], Atlantic cod [33],

gilthead seabream [55] and common carp [11]. Furthermore, a

previous study also showed that the ratio of LNA/LA influenced

the expression of key enzymes involved in LC-PUFA biosynthesis

in rabbitfish [14]. The present results also showed that highest D6

fads mRNA expression was detected in liver of S. argus fed a diet

with an LNA/LA ratio of around 1.72. As LNA and LA are

substrates that compete for the D6 desaturase, this result may be

related to the differential activity that the enzyme may have for

these fatty acid substrates as suggested by the yeast expression

assay.

However, the precise molecular mechanism involved in the

nutritional modulation of LC-PUFA synthesis is unclear. Tocher

et al [52] argued that a likely mechanism was based on classical

feedback inhibition, with expression of LC-PUFA biosynthesis

genes being suppressed by dietary LC-PUFA. In fish fed dietary

VO, which lack LC-PUFA, this feedback inhibition is reduced and

so suppression of gene expression is reduced leading to increased

expression of the desaturase genes and consequently increased

enzyme activity. Other authors have suggested that high levels of

substrate C18 PUFA may also play a role as ligands involved in the

activation of transcription factors that can enhance gene

expression and thus promote the synthesis of LC-PUFA [56,57].

Therefore, it appears that gene expression, fatty acid specificity,

and dietary ratio of LNA/LA can combine to influence D6 Fads2

enzyme activity and that maximal efficiency of n-3 LC-PUFA

biosynthesis could be obtained with particular levels of C18 PUFA

[49,55,58]. This competition has been demonstrated as Eurasian

perch showed higher ARA synthesis when the dietary ratio of

LNA/LA was 0.64 than when it was 0.03 [59] and, consistent with

this, an excess of 18:3n-3 inhibited D6 fads enzymatic activity and

prevented the desaturation of 18:2n-6 in salmon [60]. Similarly,

studies in salmonids showed that too high level of 18:2n-6 in VO

may also inhibit the desaturation of 18:3n-3 [51,61]. However, it

has also been suggested that a dietary excess of 18:3n-3 could

block D6 fads gene transcription [55]. Therefore, in addition to the

LC-PUFA/C18 PUFA ratio, it is also important to maintain an

appropriate LNA/LA ratio in diets to meet the requirements of

essential fatty acids for normal life.

In conclusion, the present study has described the successful

cloning and characterization of a fads2 cDNA with D6 desaturase

activity from the euryhaline herbivorous teleost S. argus. The

predicted protein contained all the typical features of Fads-like

proteins, and shared high homology with other teleost Fads.

Highest mRNA expression level of S. argus fads2 was detected in

liver followed by brain, reflecting a pattern more associated with

freshwater and salmonid fish than marine species. Replacing FO

with a VO blend with a dietary ratio of LNA/LA of 1.72 resulted

in greatest up-regulation of fads2 expression in liver of S. argus. The

results indicated that S. argus may have a different LC-PUFA

biosynthetic pathway from rabbitfish although they share largely

similar habitats and feeding habits.
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