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Abstract

The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of
viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with
convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary
differential equations using appropriate transformations. The series solutions are developed through a modern technique
known as the homotopy analysis method. The convergent expressions of velocity components and temperature are
derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed
convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A
systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the
skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and
thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl
number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and
Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.
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Introduction

Analysis of non-Newtonian fluids is an active area of research

for the last few years. Such fluids represent many industrially

important fluids including certain oils, shampoos, paints, blood at

low shear rate, cosmetic products, polymers, body fluids, colloidal

fluids, suspension fluids, pasta, ice cream, ice, mud, dough floor

etc. In many fields such as food industry, drilling operations and

bioengineering, the fluids, either synthetic or natural, are mixtures

of different stuffs such as water, particle, oils, red cells and other

long chain molecules. Such combination imparts strong rheolog-

ical properties to the resulting liquids. The dynamic viscosity in

non-Newtonian materials varies non-linearly with the shear rate;

elasticity is felt through elongational effects and time-dependent

effects. The fluids in these situations have been treated as

viscoelastic fluids. Further, all the non-Newtonian fluids in nature

cannot be predicted by single constitutive equation. Hence all the

contributors in the field are using different models of non-

Newtonian fluids in their theoretical and experimental studies (see

[1-11] and several refs. therein). The boundary layer flows of non-

Newtonian fluids in the presence of heat transfer have special

importance because of practical engineering applications such as

food processing and oil recovery. Especially the stretching flows in

this direction are prominent in polymer extrusion, glass fiber and

paper production, plastic films, metal extrusion and many others.

After the pioneering works of Sakiadis [12] and Crane [13],

numerous works have been presented for two-dimensional

boundary layer flow of viscous and non-Newtonian fluids over a

surface subject to linear and power law stretching velocities (see

some recent studies [14-21]). It has been noted by Gupta and

Gupta [22] that stretching mechanism in all realistic situations is

not linear. For instance the stretching is not linear in plastic and

paper production industries. Besides these the flow and heat

transfer by an exponentially stretching surface has been studied by

Magyari and Keller [23]. In this attempt the two-dimensional flow

of an incompressible viscous fluid is considered. The solutions of

laminar boundary layer equations describing heat and flow in a

quiescent fluid driven by an exponentially permeable stretching

surface are numerically analyzed by Elbashbashy [24]. Al- Odat et

al. [25] numerically discussed the thermal boundary layer on an

exponentially stretching surface with an exponential temperature

distribution. Here magnetohydrodynamic flow is addressed.

Nadeem and Lee [26] presented the steady boundary layer flow

of nanofluid over an exponential stretching surface. Sajid and

Hayat [27] examined the thermal radiation effect in the boundary

layer flow and heat transfer of a viscous fluid. The flow is caused

by an exponentially stretching sheet. The thermal radiation effect

in steady hydromagnetic mixed convection flow of viscous

incompressible fluid past an exponentially stretching sheet is

examined by El-Aziz and Nabil [28]. Pal [29] carried out an
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analysis to describe mixed convection heat transfer in the

boundary layer flow on an exponentially stretching continuous

surface with an exponential temperature. Here analysis is given in

the presence of magnetic field, viscous dissipation and internal

heat generation/absorption. Khan and Sanajayand [30] investi-

gated the heat and mass transfer effects of viscoelastic boundary

layer flow over an exponentially stretching sheet in presence of

viscous dissipation and chemical reaction. Bhattacharyya [31]

numerically investigated the heat transfer boundary layer flow

over an exponentially shrinking sheet. Shooting method is

implemented here. Recently, Mukhopadhyay et al. [32] dealt

with the boundary layer flow and heat transfer of a non-

Newtonian fluid over an exponentially stretching permeable

surface. Mustafa et al. [33] studied the boundary layer flow of

nanofluid over an exponentially stretching sheet with convective

boundary conditions. Flow and heat transfer for three-dimensional

viscous flow over an exponentially stretching surface is discussed

by Liu et al. [34]. Bhattacharyya et al. [35] studied the effects of

thermal radiation in the flow of micropolar fluid past a porous

shrinking sheet with heat transfer. The transient free convection

interaction with thermal radiation of an absorbing emitting fluid

along moving vertical permeable plate is discussed by Makinde

[36]. Hayat et al. [37] considered a two-dimensional mixed

convection boundary layer MHD stagnation point flow through a

porous medium bounded by a stretching vertical plate with

thermal radiation.

Literature survey indicates that the published studies about

three-dimensional flow by an exponentially stretching surface are

still scarce. To our knowledge, there is only one recent study by

Liu et al. [34] which describes the three-dimensional boundary

layer flow of a viscous fluid over an exponentially stretching

surface. Thus motivation of present research is to venture further

in the regime of three-dimensional mixed convection flow of

viscoelastic fluid over an exponentially stretching surface with

thermal radiation. The surface possess the convective type heat

condition. No doubt the thermal radiation effects are significant in

many environmental and scientific developments, for instance, in

aeronautics, fire research, heating and cooling of channels, etc. It

is found that radiative transport is often comparable and hence

associated with that of convective heat transfer in several real-

world applications. Therefore it is of great worth to the researchers

to study combined radiative and convective flow and heat transfer

aspects. Moreover, the skin friction coefficients for three-dimen-

sional viscoelastic fluid have been computed which has not yet

been available in the literature. This paper is structured into the

following fashion. Section two consists of mathematical formula-

tion and definitions of physical quantities of interest. Convergent

series solutions of the involved nonlinear systems are developed in

section three. The solutions in this section are developed by

homotopy analysis method (HAM) [38-45]. Section four comprises

discussion with respect to seven pertinent parameters involved in

the solutions of velocity components and temperature. Section five

syntheses the main observations.

Mathematical Modelling

We consider three dimensional mixed convection boundary

layer flow of second grade fluid passing an exponentially stretching

surface. The surface coincides with the plane z~0 and the flow is

confined in the region zw0: The surface also possess the

convective boundary condition. Influence of thermal radiation

through Rosseland’s approximation is taken into account. Flow

configuration is given below in Fig. 1.

The governing boundary layer equations for steady three-

dimensional flow of viscoelastic fluid can be put into the forms (see

Nazar and Latip [11]):
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where u, v and w are the velocity components in the x{, y{

and z{ directions respectively, k0 is the material fluid parameter,

m is the dynamic viscosity, n~(m=r) is the kinematic viscosity, T is

the fluid temperature, r is the fluid density, g is the gravitational

acceleration, bT is thermal expansion coefficient of temperature,

cp is the specific heat, k is the thermal conductivity and qr the

radiative heat flux. Note that w-momentum equation vanishes by

applying boundary layer assumptions (see Schlichting [46]).

Figure 1. Geometry of Problem.
doi:10.1371/journal.pone.0090038.g001

ð2Þ

ð3Þ

Three-Dimensional Mixed Convection Flow

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e90038



By using the Rosseland approximation, the radiative heat flux qr

is given by

qr~{
4ss

3ke

LT4

Lz
ð5Þ

Where ssis the Stefan-Boltzmann constant and ke the mean

absorption coefficient. By using the Rosseland approximation, the

present analysis is limited to optically thick fluids. If the

temperature differences are sufficiently small then Eq. (5) can be

linearized by expanding T4 into the Taylor series about T?,

which after neglecting higher order terms takes the form:

T4~4T3
?T{3T4

?: ð6Þ

By using Eqs. (5) and (6), Eq. (4) reduces to

u
LT

Lx
zv

LT

Ly
zw

LT

Lz
~

k

rcp

L2T

Lz2
{

16ssT
3
?

3kercp

L2T

Lz2
, ð7Þ

The boundary conditions can be expressed as

u~Uw, v~Vw, w~0, {k
LT

Lz
~h(Tf {T),atz~0,

u?0, v?0, T?T?asz??, ð8Þ

where subscript w corresponds to the wall condition, kis the

thermal conductivity, Tf is the hot fluid temperature, his the heat

transfer coefficient and T?is the free stream temperature.

The velocities and temperature are taken in the following forms:

Uw~U0e
xzy

L , Vw~V0e
xzy

L , Tw~Tf ~T?zT0e
A(xzy)

2L ð9Þ

in which U0, V0 are the constants, L is the reference length and

Ais the temperature exponent.

The mathematical analysis of the problem is simplified by using

the transformations (Liu et al. [34]):

Figure 2. B{curvesforthefunctionsf (g), g(g)andh(g):
doi:10.1371/journal.pone.0090038.g002

Table 1. K1 ~0:1, A~0:2, Pr ~1:2, a~0:2,
Bf ~{0:5,Bg~{0:6 and Bh~{0:7:

Order of aproximations 1 5 10 15 20 25

-f99(0) 1.06111 1.02482 1.02609 1.02623 1.02618 1.02618

-g99 (0) 0.544444 0.548057 0.548092 0.548043 0.548053 0.548053

-h9 (0) 0.317778 0.305581 0.305729 0.305744 0.305738 0.305738

doi:10.1371/journal.pone.0090038.t001
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Convergence of series solutions for different order of approximations when



u~U0e
xzy

L f 0(g), v~U0e
xzy

L g0(g),

w~{
nU0

2L

� �1=2

(f zgf
’
zgzgg0),

T~T?zT0e
A(xzy)

2L h(g), g~
U0

2nL

� �1=2

e
xzy
2L z:

ð10Þ

Incompressibility condition is now clearly satisfied whereas Eqs.

(2)–(7) give

f 000z(f zg)f 00{2(f 0zg0)f 0z

K
6f 000f 0z(3g00{3f 00zgg000)f 00

z(4g0z2gg00)f 000{(f zgzgg0)f ’’’’

 !
z2lh~0,

ð11Þ
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6g000g0z(3f 00{3g00zgf 000)g00

z(4f 0z2gf 00)g000{(f zgzgf 0)g’’’’

 !
~0,

ð12Þ

(1z
4

3
R)h00z Pr (f zg)h0{ Pr A(f 0zg0)h~0, ð13Þ

f ~0, g~0, f ’~1, g’~a,h’~{c(1{h(0)) at g~0, ð14Þ

f ’?0, g’?0, h?0 as g?? ð15Þ

in whichK is the viscoelastic parameter, a is the ratio parameter,

Pris the Prandtl number, Grxis the local Grashof number, Ris the

radiation parameter, Ais the temperature exponent, c is the Biot

number, Rex is the local Reynold number, l is the mixed

convection parameter and prime denotes the differentiation with

respect to g. These can be defined as

Figure 6. Influence of c on the velocity f ’(g):
doi:10.1371/journal.pone.0090038.g006

Figure 4. Influence of K on the velocity f ’(g).
doi:10.1371/journal.pone.0090038.g004

Figure 3. Influence of a on the velocity f ’(g)
doi:10.1371/journal.pone.0090038.g003

Figure 5. Influence of l on the velocity f ’(g):
doi:10.1371/journal.pone.0090038.g005

Three-Dimensional Mixed Convection Flow

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e90038



K~
k0Uw

2mL
, a~

V0

U0
, Pr ~

mcp

k
, R~

4s�T3
?

kek

� �
, c~

h

k

ffiffiffiffiffiffiffiffi
2nL

Uw

s
,

Rex~
U0L

n
e

xzy

L , l~
Grx

Re2
x

, Grx~
gbT (Tf {T?)x3

u2
:

ð16Þ

The skin-friction coefficients in the x and y directions are given

by
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w

,
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,

ð17Þ
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By using Eq. (18) in Eq. (17) the non-dimensional forms of skin

friction coefficients are as follows:

Cfx~
Re

2

� �{1=2

f ’’zK {(f zg)f ’’’z5(f ’zg’)f ’’z2f ’f ’’z2g’g’’ð Þ½ �g~0, ð19Þ
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2

� �{1=2

g’’zK {(f zg)g’’’z5(f ’zg’)g’’z2f ’f ’’z2g’g’’ð Þ½ �g~0: ð20Þ

Further the local Nusselt number has the form

Nu~

{
16s�T3

?

3k�
zk

� �
LT

Lz

k(Tw{T?)=x
~{

x

L

Re

2

� �1=2

(1z
4

3
R)h’(0): ð21Þ

Series Solutions
The initial guesses and auxiliary linear operators in the desired

HAM solutions are

f0(g)~ 1{e{gð Þ, g0(g)~a 1{e{gð Þ, h0(g)~ exp ({g) ð22Þ

Lf ~f ’’’{f ’, Lg~g’’’{g’, Lh~h’’{h ð23Þ

Figure 7. Influence of R on the velocity f ’(g):
doi:10.1371/journal.pone.0090038.g007

Figure 8. Influence of a on the velocity g’(g):
doi:10.1371/journal.pone.0090038.g008

Figure 9. Influence of K on the velocity g’(g):
doi:10.1371/journal.pone.0090038.g009

ð19Þ

ð20Þ
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subject to the properties

Lf (C1zC2egzC3e{g)~0, Lg(C4zC5egzC6e{g)~0,

Lh(C7egzC8e{g)~0
ð24Þ

in which Ci (i~1{8) are the arbitrary constants, Lf ,Lg and Lh

are the linear operators and f0(g), g0(g) and h0(g) are the initial

guesses.

Following the idea in ref. [38] the zeroth order deformation

problems are

1{pð ÞLf f̂f (g; p){f0(g)
h i

~pBf Nf f̂f (g; p), ĝg(g; p)
h i

, ð25Þ

1{pð ÞLg ĝg(g; p){g0(g)½ �~pBgNg f̂f (g; p), ĝg(g; p)
h i

, ð26Þ

1{pð ÞLh ĥh(g; p){h0(g)
h i

~pBhNh f̂f (g; p), ĝg(g; p), ĥh(g, p)
h i

, ð27Þ

f̂f (0; p)~0, f̂f ’(0; p)~1, f̂f ’(?; p)~0, ĝg(0; p)~0,

ĝg’(0; p)~a, ĝg’(?; p)~0, ĥh’(0, p)~{c½1{h(0, p)�,

ĥh(?, p)~0,

ð28Þ

For p~0 and p~1 one has

f̂f (g; 0)~f0(g), ĝg(g; 0)~g0(g),

ĥh(g, 0)~h0(g), andf̂f (g; 1)~f (g),

ĝg(g; 1)~g(g), ĥh(g, 1)~h(g):

ð29Þ

Note that when p increases from 0 to 1 then f (g, p), g(g, p) and

h(g, p) vary from f0(g), g0(g) and h0(g) to f (g), g(g)andh(g): So

as the embedding parameter p[½0, 1� increases from 0 to 1, the

solutions f̂f (g; p), ĝg(g; p) and ĥh(g; p) of the zeroth order defor-

mation equations deform from the initial guesses f0(g), g0(g) and

h0(g)to the exact solutionsf (g), g(g)and h(g)of the original

nonlinear differential equations. Such kind of continuous variation

is called deformation in topology and that is why the Eqs. (26-28)

are called the zeroth order deformation equations. The values of

the nonlinear operators are given below:
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Figure 10. Influence of a on the temperature h(g):
doi:10.1371/journal.pone.0090038.g010

Figure 11. Influence of K on the temperature h(g).
doi:10.1371/journal.pone.0090038.g011

Figure 12. Influence of l on the temperature h(g):
doi:10.1371/journal.pone.0090038.g012

ð30Þ
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Ng ½ĝg(g, p), f̂f (g, p)�~ L3 ĝg(g, p)
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zĝg(g, p)

 !
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Here Bf ,Bgand Bh are the non-zero auxiliary parameters and

Nf ,Ngand Nh the nonlinear operators. Taylor series expansion

gives

f (g, p)~f0(g)z
X?
m~1

fm(g)pm, fm(g)~
1

m!

Lmf (g; p)

Lpm

����
p~0

, ð33Þ
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hm(g)pm, hm(g)~
1

m!
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Lpm

����
p~0

, ð35Þ

where the convergence of above series strongly depends upon

Bf ,Bgand Bh: Considering that Bf , Bg and Bhare chosen in such a

manner that Eqs. (33)-(35) converge at p~1 then

f (g)~f0(g)z
X?
m~1

fm(g), ð36Þ

g(g)~g0(g)z
X?
m~1

gm(g), ð37Þ
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hm(g): ð38Þ

Figure 13. Influence of c on the temperature h(g):
doi:10.1371/journal.pone.0090038.g013

Figure 15. Influence of R on the temperature h(g):
doi:10.1371/journal.pone.0090038.g015

Figure 14. Influence of A on the temperature h(g).
doi:10.1371/journal.pone.0090038.g014

ð31Þ
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The corresponding problems at mth order deformations satisfy

Lf ½fm(g){xmfm{1(g)�~Bf Rm
f (g), ð39Þ

Lg½gm(g){xmgm{1(g)�~BgRm
g (g), ð40Þ

Lh½hm(g){xmhm{1(g)�~BhRm
h (g): ð41Þ

fm(0)~f ’
m(0)~f ’

m(?)~0, gm(0)~g’
m(0)~g’

m(?)~0,

h’m(0){chm(0)~hm(?)~0,
ð42Þ
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The mth order deformation problems have the solutions

fm(g)~f �m(g)zC1zC2egzC3e{g, ð46Þ

gm(g)~g�m(g)zC4zC5egzC6e{g, ð47Þ

hm(g)~h�m(g)zC7egzC8e{g, ð48Þ

where the special solutions are f �m, g�m and h�m.

Convergence Analysis

We recall that the series (36-38) contain the auxiliary

parameters Bf , Bg and Bh. These parameters are useful to adjust

and control the convergence of homotopic solutions. Hence the

B{ curves are sketched at 15th order of approximations in order

to determine the suitable ranges for Bf , Bg and Bh. Fig. 2 denotes

that the range of admissible values of Bf , Bg and Bh are

{0:7ƒBf ƒ{0:2, {0:7ƒBgƒ{0:1 and {0:8ƒBhƒ{0:2:
Table 1 shows that the series solutions converge in the whole

region of g when Bf ~{0:5,Bg~{0:6 and Bh~{0:7:

Figure16. Influence of Pr on the temperature h(g)
doi:10.1371/journal.pone.0090038.g016

ð43Þ

ð44Þ

Table 2. Comparative values of {f ’’(0), {g’’(0) and f (?)zg(?) for different values a when K1~l~c~R~0:

Liu et al. [34] Present results

a -f999 (0) -g99 (0) f(‘)+g(‘) -f99 (0) -g99 (0) f(‘)+g(‘)

0.0 1.28180856 0 0.90564383 1.28181 0 0.90564

0.50 1.56988846 0.78494423 1.10918263 1.56989 0.78494 1.10918

1.00 1.81275105 1.81275105 1.28077378 1.81275 1.81275 1.28077

doi:10.1371/journal.pone.0090038.t002
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Discussion of Results

The effects of ratio parameter a, viscoelastic parameter K ,
mixed convection parameter l, Biot number c and radiation

parameter R on the velocity component f ’(g) are shown in the

Figs. 3-7. It is observed from Fig. 3 that velocity component f ’(g)
and thermal boundary layer thickness are decreasing functions of

ratio parameter a: This is due to the fact that with the increase of

ratio parameter a, the x-component of velocity coefficient

decreases which leads to a decrease in both the momentum

boundary layer and velocity component f ’(g): Fig. 4 illustrates the

influence of viscoelastic parameter K on the velocity component

f ’(g): It is clear that both the boundary layer and velocity

component f ’(g) increase when the viscoelastic parameter

increases. Influence of mixed convection parameter l on the

velocity component f ’(g) is analyzed in Fig. 5. Increase in mixed

convection parameter l shows an increase in velocity component

f ’(g). This is due to the fact that the buoyancy forces are much

more effective rather than the viscous forces. Effects of Biot

number c and the radiation parameter R on the velocity

component f ’(g) can be predicted from Figs. 6 and 7. These

Figs. depict that the influences of c and R on both the velocity

component f ’(g) and thermal boundary layer thickness are similar

i.e. there is increase in these quantities. Figs. 8 and 9 illustrate the

variations of ratio parameter a and viscoelastic parameter K on

the velocity component g’(g): Variation of ratio parameter ais

analyzed in Fig. 8. Through comparative study with Fig. 3 it is

noted that f ’(g) decreases while g’(g) increases when a increases.

Physically, when a increases from zero, the lateral surface starts

moving in y-direction and thus the velocity component g’(g)
increases and the velocity component f ’(g) decreases. Fig. 9 is

plotted to see the variation of viscoelastic parameter K on the

velocity component g’(g): It is found that both the velocity

component g’(g) and momentum boundary layer thicknesses are

increasing functions of K . It is revealed from Figs. 4 and 9 that the

effect of K on both the velocities are qualitatively similar. Figs. 10-

16 are sketched to see the effects of ratio parameter a, viscoelastic

parameter K , the temperature exponent A, Biot number c, mixed

convection parameter l, Radiation parameter and Prandtl

number Pr on the temperature h(g): Fig. 10 is drawn to see the

impact of ratio parameter a on the temperature h(g). It is noted

that the temperature h(g) and also the thermal boundary layer

thickness decrease with increasinga. Variation of the viscoelastic

parameter K on the temperature h(g) is shown in Fig. 11. Here

both the temperature and thermal boundary layer thickness are

decreasing functions of K . Variation of mixed convection

parameter l is analyzed in Fig.12. It is seen that both the

temperature h(g) and thermal boundary layer thickness are

decreasing functions of mixed convection parameter l: Fig.13

presents the plots for the variation of Biot number c: Note that

h(g) increases when c increases. The thermal boundary layer

thickness is also increasing function of c. It is also noted that the

fluid temperature is zero when the Biot number vanishes.

Influence of temperature exponent A is displayed in Fig. 14. It

is found that both the temperature h(g) and thermal boundary

layer thickness decrease when A is increased. Also both the

temperature h(g) and thermal boundary layer thickness are

increasing functions of thermal radiation parameter R (see

Fig. 15). It is observed that an increase in R has the ability to

increase the thermal boundary layer. It is due to the fact that when

the thermal radiation parameter increases, the mean absorption

coefficient ke will be decreased which in turn increases the

divergence of the radiative heat flux. Hence the rate of radiative

heat transfer to the fluid is increased and consequently the fluid

temperature increases. Fig. 16 is plotted to see the effects of Pr on

h(g). It is noticed that both the temperature profile and thermal

boundary layer thickness are decreasing functions of Pr. In fact

when Pr increases then thermal diffusivity decreases. This

indicates reduction in energy transfer ability and ultimate it results

in the decrease of thermal boundary layer.

Table 1 presents the numerical values of {f ’’(0), {g’’(0) and

{h’(0) for different order of approximations when

Bf ~{0:5,Bg~{0:6 and Bh~{0:7: It is seen that the values of

{f ’’(0) and {g’’(0) converge from 20th order of deformations

whereas the values of {h’(0) converge from 25th order

approximations. Further, it is observed that we have to compute

less deformations for the velocities in comparison to temperature

for convergent series solutions. Table 2 includes the values for

Table 4. Values of local Nusselt number {h’(0) for different
values of the parameters K , a, l, R, A, Pr and c.

K l a c R Pr A {h’(0)

0.0 0.5 0.5 0.5 0.3 1.2 0.2 0.297492

0.3 0.308234

0.5 0.311853

0.2 0.0 0.303062

0.3 0.304775

0.5 0.305738

0.2 0.5 0.0 0.282007

0.3 0.297135

0.5 0.305738

0.1 0.0885730

0.3 0.216850

0.5 0.305738

0.2 0.5 0.5 0.5 0.0 0.329701

0.3 0.305738

0.5 0.292750

0.2 0.5 0.5 0.5 0.3 1.0 0.292152

1.2 0.305738

1.5 0.321826

0.2 0.5 0.5 0.5 0.3 1.2 0.0 0.288530

0.2 0.305738

0.5 0.325492

doi:10.1371/journal.pone.0090038.t004

Table 3. Values of skin friction coefficients for different values
of K and a when l= c= 0.5, R = 0.3, Pr = 1.2 and A = 0.2.

K a - Re
2

� 	1=2
Cfx - Re

2

� 	1=2
Cfy

0.0 0.5 4.95289 4.37363

0.2 5.16586 3.97055

0.3 5.42622 3.96130

0.3 0.0 3.72170 1.65409

0.2 4.30247 2.34617

0.5 5.42622 3.96130

doi:10.1371/journal.pone.0090038.t003
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comparison of existing solutions with the previous available

solutions in a limiting case when K1~l~c~R~0 and a varies.

This Table presents an excellent agreement with the previous

available solutions. Table 3 is computed to see the influences of

viscoelastic parameter K and ratio parameter a on skin friction

coefficients in the x and y directions. It is noted that K has quite

opposite effect on skin friction coefficients while quite similar effect

is seen within the increase of ratio parameter a. Table 4 examines

the impact of viscoelastic parameter K , mixed convection

parameter l, ratio parameter a, Biot number c, radiation

parameter R, Prandtl number Pr and temperature exponent A
on the local Nusselt number (rate of heat transfer at the wall). It is

noted that the value of rate of heat transfer increases for larger

viscoelastic parameter K , mixed convection parameter l, ratio

parameter a, Biot number c, Prandtl number Pr and temperature

exponent A while it decreases through an increase in radiation

parameter R.

Table 2. Comparative values of {f ’’(0), {g’’(0) and

f (?)zg(?) for different values a when K1~l~c~R~0:

Conclusions

Three-dimensional mixed convection flow of viscoelastic fluid

over an exponentially stretching surface is analyzed in this study.

The analysis is carried out in the presence of thermal radiation

subject to convective boundary conditions. The main observations

can be summarized as follows:

N Influence of ratio parameter a on the velocities f ’(g) and g’(g)
is quite opposite. However the effect of viscoelastic parameter

K on the velocities f ’(g) and g’(g) is qualitatively similar.

N Momentum boundary layer thickness increases for g’(g) when

ratio parameter a is large. Effect of a on f ’(g) is opposite to

that of g’(g):

N Velocity component f ’(g) is increasing function of mixed

convection parameter l: However h(g) decreases with an

increase of mixed convection parameter l. The impact of Biot

number c and radiation parameter R on f ’(g) and h(g) are

qualitatively similar.

N Momentum boundary layer is an increasing function of mixed

convection parameter l while thermal boundary layer is

decreasing function of mixed convection parameter l:

N Increase in Prandtl number decreases the temperature h(g).

N Thermal boundary layer thickness decreases when ratio

parameter a, viscoelastic parameter K , mixed convection

parameter l, Prandtl number Pr and temperature exponent A
are increased.

N Influence of viscoelastic parameter K on the x and y direction

of skin friction coefficients is opposite.

N Both components of skin friction coefficient increase through

an increase in ratio parameter a:

N Local Nusselt number is an increasing function of Prandtl

number Pr , ratio parameter a, viscoelastic parameter K ,

mixed convection parameter l, Biot number c and temper-

ature exponent A while it decreases for radiation parameterR.
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