
Fast Segmentation of Stained Nuclei in Terabyte-Scale,
Time Resolved 3D Microscopy Image Stacks
Johannes Stegmaier1*, Jens C. Otte2, Andrei Kobitski2,4, Andreas Bartschat1, Ariel Garcia3,

G. Ulrich Nienhaus2,4,5, Uwe Strähle2, Ralf Mikut1

1 Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology, Karlsruhe, Germany, 2 Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of

Technology, Karlsruhe, Germany, 3 Steinbuch Center for Computing (SCC), Karlsruhe Institute of Technology, Karlsruhe, Germany, 4 Institute of Applied Physics (APH) and

Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe, Germany, 5 Department of Physics, University of Illinois at Urbana-Champaign,

Urbana, Illinois, United States of America

Abstract

Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science.
Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data
due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially
suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to
transform the input image based on gradient and normal directions in the proximity of detected seed points such that it
can be handled by straightforward global thresholding like Otsu’s method. We evaluate the quality of the obtained
segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm’s superior
performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times,
allowing us to process large data sets while still providing reasonable segmentation results.
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Introduction

Recent developments of fluorescence microscopy techniques

have revealed unprecedented possibilities for the in vivo analysis of

developing specimens [1,2]. Especially the lately established

selective plane illumination microscopy (SPIM) and the even

more advanced digital scanned laser light-sheet microscopy

(DSLM) enable a detailed and comprehensive analysis of the

early developmental stages of investigated model organisms such

as the zebrafish (Danio rerio) or the fruit fly (Drosophila melanogaster)

[3,4]. The tremendous amount of acquired 3D+t spatio-temporal

image data, however, cannot reasonably be analyzed manually.

Therefore, highly automated procedures for the analysis of such

biological image data have become an increasingly important

component of current research in the life sciences [5–7]. For

example in typical experiments, imaging the development of a

zebrafish embryo within the first ten hours post fertilization (hpf)

results in several thousand of 3D image stacks with file sizes of

multiple Gigabytes per image stack [8,9]. Thus, even a modest

experiment with a single embryo easily accumulates multiple

Terabytes of raw data.

Despite the development of tools for processing and storing

large data sets, it still remains a challenge to accurately analyze

large data sets in a reasonable amount of time. A frequently

emerging task for this type of images is, for instance, the detection

and segmentation of nuclei labeled with a fluorescent marker such

as the green fluorescent protein (GFP) [10]. The properties of

extracted nuclei can be used in a subsequent tracking step to

associate corresponding objects in adjacent time frames. Such

procedures provide insight into cellular ancestry and organogen-

esis of the evolving organism [11]. Current approaches to deal

with the large amount of data are either a dramatic data reduction

by specimen-dependent maximum intensity projections [12] or by

using image compression and highly specialized GPU implemen-

tations [1]. In this contribution, we present a new segmentation

algorithm that is specifically designed to perform a fast,

parallelized extraction of stained nuclei from the raw 3D

microscopy images on a usual desktop computer with the

opportunity to execute it in a cluster environment. We confirm

that our algorithm’s segmentation quality is comparable to other

state-of-the-art nucleus segmentation methods, while also enabling

large-scale data analysis that was impossible with currently

available algorithms and implementations.

A typical analysis pipeline to extract fluorescently labeled nuclei

in microscopy images is comprised of low-pass noise removal, such

as Gaussian or median filtering, followed by a coarse object

detection stage that identifies the objects of interest or the regions

of interest in the images [13–17]. Detected objects, later referred

to as seed points, can subsequently be used to perform a more

thorough analysis of the image material in the segmentation step

[16,17]. Various algorithms for seed detection and segmentation
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have already been presented and were successfully applied for the

detection of labeled nuclei. Seed detection methods range from

relatively simple Euclidean distance map-based methods [18], over

Laplacian-of-Gaussian (LoG) blob detection [13,19] to shrinking

level sets and other partial differential equation (PDE) based

methods [20]. The segmentation step produces a binary mask that

is used to extract meaningful features of the objects of interest and

can be used for further quantitative analysis of the objects [21,22].

Most straightforward segmentation approaches such as Otsu’s

method or the watershed transform yield poor segmentation

results due to the low contrast, relatively low signal-to-noise ratio

and the densely packed objects of interest [23]. More sophisticated

algorithms such as level set [24], graph based formulations such as

graph cut [15,17,25] or gradient flow tracking [16,26] methods

provide good segmentation results but may become infeasible for

high-throughput analyses due to their complexity and the

accompanied high demands on computational resources.

For subsequent tracking steps that rely on the segmentation

results it is often sufficient to have rough estimates of cell

properties such as mean intensity, bounding volume and exact

shape. Hence, instead of providing yet another high-quality

segmentation algorithm, we focus on a trade-off between

maximizing the quality of the obtained results while maintaining

valuable performance of the calculations to enable high-through-

put experiments. We use a LoG scale-space maximum intensity

projection to identify seed points that correspond to the expected

centroids of the nuclei [17]. This method was specifically chosen

because it can be easily transferred to 3D blob detection and fast

implementations based on recursive Gaussian filtering exist [27].

The fast approximate segmentation uses angular information

between nucleus normals and the smoothed gradient at pixel

locations in the proximity of the seed point. Additionally, the pixels

are weighted according to their distance to the seed point by using

Gaussian-based smoothing kernels. The efficiency of the algorithm

helps to reduce the time needed for the analysis of Terabyte-scale

experiments from several days to a few hours, i.e., by a factor of up

to ten compared to previous methods. Simultaneously, the

segmentation quality is sufficient to perform further statistical

analysis of the specimens. The remainder of this paper covers the

methodology we use to rapidly identify seed points and describes

the method and the fast parallel implementation of our

segmentation algorithm. In the results section we demonstrate

the quality of the introduced method on a suitable 2D benchmark

data set from the Broad Bioimage Benchmark Collection and a

realistic 3D data set based on simulated image material by

Svoboda et al. [28]. To assess the computational efficiency, we

compare the performance of our algorithm to several other well-

established algorithms described in the methods section on

differently scaled 3D image stacks of a zebrafish embryo and

qualitatively compare the achieved 3D segmentation quality.

Methods

Seed Detection
Reliable and reproducible detection of seed points, such as the

identification of approximate centroid positions of stained nuclei in

microscopy images, is a mandatory component of most seed-based

segmentation algorithms. The major benefit of the seed detection

step is to be able to significantly constrain the regions of interest

that are further investigated by the segmentation method and thus

to minimize the memory and processing time consumption of the

automated analysis. Moreover, detected seed points are used to

guide the more complex segmentation methods to the region of

interest. Similar to the work of Al-Kofahi et al. [17], we make use

of the LoG blob detector with different scales to find spherical

objects in the image. The LoG and its approximations Difference-

of-Gaussian (DoG) or Difference-of-Mean (DoM) are well

established edge and blob detection methods in the image analysis

community and can be easily parameterized for the detection of

spherical objects [13]. Scale-space-based interest point detectors

rely on the assumption that points of interest, such as stained

nuclei in this case, are present at multiple scales with an intensity

maximum at a specific size dependent scale. As we deal with 3D

image data, we use a scale-normalized 3D filtering approach that

considers physical spacing of voxels:

LoG(x,s)~s3
X3

i~1

L2G(x,s)

Lx2
i

: ð1Þ

with x~(x1,x2,x3)T and G(x,s) representing a Gaussian filtered

image with standard deviation s. For performance reasons,

however, we skip the Euclidean distance map-based automatic

scale selection performed by Al-Kofahi et al. and restrict the

calculations to a predefined set of scales. Using the relationship

that the radius of detected objects r~
ffiffiffi
2
p

:s, the appropriate set of

scales can be determined by a priori knowledge about the

investigated biological content of the images [17]. Here, we

measured minimal and maximal radii of nuclei in pixels and

directly used these values to attain smin and smax for the LoG

filtering, respectively. Of course, it is important to consider the

physical size of the pixels in the case of anisotropic image

acquisition. The parameters used for the algorithmic validation are

provided in the results section. A common approach to detect

centroids of these objects is to search for intensity maxima in the

spatial neighborhood of each pixel as well as in the neighboring

scales as described in [13,19]. Due to the enormous image size of

several Gigabytes, however, it is not feasible to keep multiple

image stacks of the scale-space simultaneously in memory.

Therefore, we make use of an iteratively calculated LoG scale-

space maximum intensity projection with a predefined discrete

step size, i.e., we calculate an image of the form:

LoGMP(x,smin,smax)~ max
sminƒsƒsmax

LoG(x,s): ð2Þ

The image generated according to Eq. 2 is an additional intensity

image that stores the maximum intensity value attained for

multiple filtering steps with different standard deviations s that

were used for the LoG convolution operation. To preserve the

information, which of the standard deviations used for LoG

filtering was responsible for the maximum value in the image

attained by Eq. 2, we additionally store the scale that yielded the

maximum value at each pixel location:

MS(x,smin,smax)~ arg max
sminƒsƒsmax

LoG(x,s): ð3Þ

The information stored in the maximum scale image described

by Eq. 3 is beneficial for further processing steps as it directly

provides an initial size estimate of the object about to be extracted.

Finally, the actual seed extraction from the LoG scale-space

maximum intensity projection image comes down to a simple local

extrema detection in the direct neighborhood of each pixel (8-

neighborhood and 26-neighborhood for 2D and 3D images,

respectively). Close maxima that are likely to belong to a single
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nucleus are fused, and a noise reduction is performed by applying

an intensity threshold to discard dark seed points on the

background. Fig. 1 exemplarily depicts the processing steps

needed to attain the LoG scale-space maximum intensity

projection for a 2D image and highlights the detected seed points.

Fast Approximate Segmentation of Roundish Objects
The key idea of the proposed fast segmentation method is to

transform the input image or rather regions surrounding the

detected seed points to a representation that can be handled by

straightforward algorithms like Otsu’s method [23]. The first step

of the segmentation algorithm is to homogeneously distribute the

seed points among different threads and independently perform

further calculations in parallel. A region around each seed point is

cropped from the original image, in order to process as few pixels

as possible. The size of this region is determined by the initial size

estimate provided by the preceding seed detection step. Currently,

we use a cuboid with side lengths of (
ffiffiffi
2
p

:3:ss) (: 1
sx

, 1
sy

, 1
sz

)T, whereffiffiffi
2
p

:ss is the radius of the respective seed point at scale ss and

s~(sx,sy,sz)T corresponds to the physical spacing of the voxels.

For each pixel of the cropped region, the Gaussian smoothed

gradient is calculated, i.e.,

g(x)~+G(x,sgrad ): ð4Þ

For the image material considered in this work, a value of

sgrad~3:0 yielded satisfactory results. We calculate the difference

vector of pixel (i,j,k) in the sub-region to the respective seed

position xs~(xs
1,xs

2,xs
3)T as

ds
ijk~s0 xs

1{i,xs
2{j,xs

3{k
� �T

, ð5Þ

with being the Hadamard product, and define the normal ns
ijk at

each pixel location as

ns
ijk~

ds
ijk

Eds
ijkE

: ð6Þ

The normal corresponds to a vector pointing from the seed point

location to the considered pixel. The next step is to calculate the

dot product of each normal in the cropped region with the

corresponding normalized gradient vector

ws
ijk~

1

2
: 1zS

g(x)

Eg(x)E
, ns

ijkT
� �

: ð7Þ

This contrast invariant measure is similar to the one described

by Soubies et al. [29], where it is used in the energy term of an

ellipsoid fit segmentation approach. The transformed dot product

of normalized vectors in Eq. 7 yields only values in the interval

½0,1�, with 1 being identical, 0:5 being perpendicular and 0 being

opposing vectors. As depicted in panels Fig. 2C,D, this property

can be exploited to discard pixels in the vicinity of the seed point

that clearly belong to neighboring cells.

Additionally, we decrease the intensity value of pixels in the sub-

region that are far away from the detected seed location. Based on

the initial radius estimation, i.e., rs~
ffiffiffi
2
p

:ss and a Gaussian kernel

standard deviation skernel , we define the following weighting

function:

ws
ijk~ max

sgn rs{Eds
ijkE

� �

exp {
(rs{Eds

ijk
E)2

2:(skernel )2

 !
0
BBB@ : ð8Þ

The weighted normalized dot product, shown in panel Fig. 2E,

is calculated according to the pixel-wise multiplication ws
ijk
:ws

ijk. To

combine the cropped raw image (Fig. 2A) and the weighted dot

product image (Fig. 2E), the original intensity values are copied

within the seed radius and all remaining raw intensity values are

multiplied with the weighted dot product image. The result of this

operation is shown in Fig. 2F. Applying Otsu’s method on the

weighted and cropped original image depicted in Fig. 2F yields the

final segmentation shown in Fig. 2G. In the present implemen-

tation we used a Gaussian-based smoothing kernel as depicted in

Fig. 3. The plateau in the centre of the kernel is determined by the

initial size estimation of the seed detection stage and corresponds

to regions that are likely to belong to the nucleus of interest. To be

able to adjust the algorithm for different segmentation scenarios,

the weighting kernel plateau region radius rs can optionally be

scaled using a multiplier, which is set to 1:0 by default. Similarly,

the degree of flattening of the kernel for larger distances to the

centre can be controlled using the kernel standard deviation

skernel .

As the properties of segmented regions are immediately

extracted from the cropped image, a final labeling step becomes

redundant. Another benefit of this direct information extraction is

that literally no merged nuclei appear, which is a frequent problem

Figure 1. Processing steps for the generation of a LoG scale-space maximum intensity projection used for 2D seed detection.
Original image (A), LoG filtered image with s~5 and s~8 (B, C), LoG scale-space maximum intensity projection with smin~5, smax~8 and sstep~1
(D) and the detected seeds plotted on the original image (E).
doi:10.1371/journal.pone.0090036.g001
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of other segmentation algorithms. A subsequent watershed

transform to separate merged nuclei can therefore also be omitted.

In the remainder of this paper we refer to our new algorithm as

TWANG (Threshold of Weighted intensity And seed-Normal

Gradient dot product image).

Implementation Details
In the following section, we compare our algorithm (TWANG)

to Otsu’s method (OTSU) [23], Otsu’s method with a watershed-

based splitting of merged blobs (OTSUWW) [23,30], a geodesic

active contours method (GAC) [31], a gradient flow tracking

segmentation (GFT) [16,26] and a graph cut-based segmentation

(GC) [17]. We selected Otsu’s method to demonstrate that the

image material could not sufficiently be analyzed using straight-

forward adaptive thresholding. The remaining algorithms repre-

sent a variety of reasonable approaches for the segmentation of

fluorescently labeled nuclei, as described in the respective

publications [16,17,26,30]. For OTSU and OTSUWW we used

an additional Gaussian low-pass filter to reduce high frequency

noise. The level set function of the GAC pipeline, was initialized

using the LoG-based seed detection method described earlier.

The algorithms OTSU, OTSUWW, GAC and TWANG were

implemented in a custom built C++ application using the Insight

Toolkit SDK (http://www.itk.org/) [32]. We thoroughly ensured

that all involved image processing operators were optimally

exploiting modern hardware architecture, i.e., making use of

parallel implementations where possible and reducing the memory

footprint of the large image data sets to a minimum. Besides our

own ITK-based implementations, we used the C++ implementa-

tion provided by Liu et al. (http://www.cbi-tmhs.org/ZFIQ/

download.htm) and Li et al. (http://www.biomedcentral.com/

1471-2121/8/40) for gradient flow tracking segmentation in 2D

and 3D, respectively [16,26]. For the graph cut segmentation we

used the implementation shipped with the FARSIGHT Toolkit

(http://www.farsight-toolkit.org/) [17]. The parameters for all

algorithms were manually optimized to fit the different image sets

and are summarized in Table 1. The entire source code of the

proposed TWANG segmentation, installation instructions and an

example data set are publicly available for download and can be

obtained from the online supplementary material at the journal’s

website.

Figure 2. Processing steps that are performed in parallel for each detected seed point. Cropped raw image (A), Gaussian smoothed left-
right derivative image (B), dot product of the normalized gradient with the seed normal (C), raw image with smoothed gradient and normal vector
field overlay (D), weighted version of the previously calculated dot product (E), resulting intensity image (F) and the final segmentation result (G).
doi:10.1371/journal.pone.0090036.g002

Figure 3. Exemplary weighting kernel for rs~4 depicted in 1D (A) and 2D (B). The kernel should be chosen such that the region of interest
yields high weights.
doi:10.1371/journal.pone.0090036.g003
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Evaluation Criteria and Benchmark Images
To verify the quality of achieved segmentation results we

compared our new algorithm to multiple well established

segmentation algorithms. The evaluation was based on the criteria

described by Coelho et al. in [33], namely the Rand Index (RI), the

Jaccard Index (JI), the Normalized Sum of Distances (NSD) and

the Hausdorff Metric (HM). The RI is defined as the fraction of

index pairs that have the same labeling in reference and

segmentation versus all possible pixel pairs and is given as a

percentage (100% for perfect agreement). The JI is similar to the

RI and is determined by the fraction of matching pixel pairs versus

all cases of non-matching pairs. JI is not upper-bound (higher

values are better). The HM is defined as the maximum of the set of

minimal distances of two compared shapes (lower values are

better) [34]. The NSD reflects the average distance of labeled

pixels that do not agree in reference and segmentation (lower

values are better) [33]. Furthermore, the number of added,

missing, erroneously split and merged segments are compared. For

a detailed description of the criteria refer to [33].

We used a selection of thirty representative images of the image

set BBBC006v1 from the Broad Bioimage Benchmark Collection

(http://www.broadinstitute.org/bbbc) for 2D segmentation eval-

uation. The data set is similar to our target application of

quantifying images of developing specimens and provides a

complete set of labeled segmentation images that serve as a

reliable ground truth. Moreover, we used a set of thirty 3D

benchmark images containing simulated nuclei of a HL60 cell line

with a low signal-to-noise ratio and a clustering probability of

75%, which were generated using the CytoPacq simulation

toolbox by Svoboda et al. (http://cbia.fi.muni.cz/images/stories/

user_images/david/datasets/HL60_HighNoise_C75_3D_TIFF.

zip) [35]. The simulated image data was accompanied with a

labeled ground truth and was therefore perfectly suited to perform

the segmentation evaluation in 3D. Unfortunately, up to date no

Table 1. Parameterization of the Algorithms.

Algorithm Parameter 2D Benchmark 3D Benchmark 3D DSLM Images

OTSU [23] Gaussian Std. Dev. 1.0 1.0 1.0

OTSUWW [23,30] Gaussian Std. Dev. 1.0 1.0 1.0

Watershed Level 1.0 1.0 1.0

GFT [16] Fusion Threshold 3.0 3.0 3.0

Minimum Region 100 3000 50

Diffusion Iterations 30 10 15

Sigma 3.0 0.0 1.0

GAC [31] sstepsmin , smax , 8,11,1 10,13,1 6,9,3

Propagation Scaling 0.8 0.8 0.5

Curvature Scaling 0.55 0.55 0.05

Advection Scaling 5.0 8.0 1.0

Iterations 250 100 110

TWANG sstepsmin , smax , 8,11,1 10,13,1 6,9,3

Gradient Image Std. Dev. 3.0 3.0 3.0

Kernel Size Multiplier 1.5 1.2 1.5

Kernel Std. Dev. 3.0 1.0 3.0

The parameter sets that were used to perform the segmentation comparisons of OTSU, OTSUWW, GFT, GAC, GC and TWANG. For a detailed description of the respective
parameters refer to the original papers of the algorithms. The graph cut segmentation (GC) implemented in the FARSIGHT Toolkit worked out of the box with automatic
parameter selection and therefore used individual parameters for each image.
doi:10.1371/journal.pone.0090036.t001

Table 2. Comparison of the 2D segmentation quality.

Algorithm RI JI HM NSD(610) Split Merged Added Missing t [s] t [s]*

OTSU 92.60 2.48 7.97 2.11 0.57 10.00 6.30 0.47 0.10 0.09

OTSUWW 92.54 2.48 6.20 1.70 3.13 1.57 6.67 0.53 0.25 0.25

GFT 92.58 2.48 6.70 1.54 4.03 0.03 4.27 1.70 0.45 –

GAC 90.41 2.36 6.60 1.43 0.10 5.13 0.20 16.03 1.64 0.54

GC 96.71 2.58 6.18 1.54 8.70 0.10 5.17 0.03 0.42 –

TWANG 92.27 2.48 6.15 1.32 1.10 1.03 3.30 7.17 0.35 0.15

Comparison of the segmentation quality on 2D benchmark images from the Broad Bioimage Benchmark Collection (BBBC006v1). For quality assessment we used the
Rand Index (RI), the Jaccard Index (JI), the Hausdorff Metric (HM) and the Normalized Sum of Distances (NSD) as defined in [33]. Besides correct segmentations, nuclei
can be split, merged, erroneously added or are missing. The listed values are the arithmetic mean values of 30 processed 2D benchmark images. Performance of the
algorithms was tested without using threads and with 8 threads where possible (indicated by *).
doi:10.1371/journal.pone.0090036.t002
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reliably annotated 3D microscopy images of labeled nuclei exist.

Due to a missing gold standard algorithm and the enormous effort

needed for manual segmentation of 3D images, we can only

present qualitative segmentation results for this use case.

All calculations were performed on a desktop PC equipped with

an Intel Core i7–2600 CPU @ 3.4 GHz and 32 GB of memory

installed. Processing times were measured in seconds.

Results

The results of the quality comparison for the 2D benchmark are

listed in Table 2 and Fig. 4. OTSU as well as the GAC exhibited

many merged regions and may require post-processing steps to

split merged objects. One such post-processing method using a

watershed-based splitting of merged blobs was implemented in the

OTSUWW pipeline, which showed a significantly reduced

number of merged nuclei. GFT and GC worked properly for this

set of images. Our proposed method seemed to be positioned on a

good average position in the quality comparison and yielded the

best values for HM and NSD. Additionally, the fact that very few

merged regions were present in the segmentation results of the

TWANG segmentation make it well suited for subsequent tracking

tasks. An exemplary segmentation outcome of the investigated

algorithms is depicted in Fig. 4. Except OTSU, all segmentation

results were adequate. Problems that occurred even for such

relatively easy images, were merged regions (Fig. 4B), split nuclei

(Fig. 4E, F) and too large image regions (Fig. 4G). For the cropped

region depicted in Fig. 4, OTSUWW (Fig. 4C) offered the best

segmentation quality. Although the fastest algorithm in this case

was OTSU, it could not reasonably be applied without the post-

processing step. OTSUWW and TWANG segmentation offered

the best trade-off between speed and quality.

In Table 3, the quality comparison on the simulated 3D

benchmark data is listed. For this data set, the optimal values are

Figure 4. Comparison of the segmentation quality achieved by the investigated algorithms on 2D benchmark images from the
Broad Bioimage Benchmark Collection (BBBC006v1). Original image (A), adaptive thresholding using Otsu’s method [23] (B), Otsu’s method
combined with watershed-based blob splitting [23,30] (C), geodesic active contours [31] (D), gradient vector flow tracking [16] (E), graph-cuts
segmentation [17] (F), TWANG segmentation (G) and a false colored original image (H). The symbols indicate segmentation errors for nuclei that are
either split (#), merged (+), missing (o) or spurious (,).
doi:10.1371/journal.pone.0090036.g004

Table 3. Comparison of the 3D segmentation quality.

Algorithm RI JI HM NSD(x10) Split Merged Added Missing t [s] t [s]*

OTSU 97.35 6.00 22.82 5.72 0.00 3.27 0.87 0.00 0.49 0.44

OTSUWW 97.57 6.03 3.80 1.12 0.13 0.00 0.00 0.00 2.57 2.48

GFT 88.06 3.57 6.81 6.25 0.10 1.57 6.53 1.87 15.51 –

GAC 95.06 6.40 7.41 2.52 0.00 1.13 0.00 0.77 5.92 –

GC 97.78 6.37 5.66 1.69 1.34 0.07 0.00 0.00 5.92 –

TWANG 93.82 4.94 6.62 2.41 0.00 0.00 0.00 1.37 3.72 1.08

Comparison of the segmentation quality on simulated 3D benchmark images by Svoboda et al. (HL60 cell line, low SNR, 75% clustering probability) [35]. For quality
assessment we used the Rand Index (RI), the Jaccard Index (JI), the Hausdorff Metric (HM) and the Normalized Sum of Distances (NSD) as defined in [33]. Besides correct
segmentations, nuclei can be split, merged, erroneously added or are missing. The listed values are the arithmetic mean values of 30 processed 3D benchmark images.
Performance of the algorithms was tested without using threads and with 8 threads where possible (indicated by *).
doi:10.1371/journal.pone.0090036.t003
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distributed quite heterogeneously and most algorithms produce

acceptable results. OTSU performed poorly again and yielded

many merged regions (Fig. 5B), which could be perfectly corrected

by the watershed-based post-processing (Fig. 5C). GAC failed to

nicely extract the shape of the nuclei due to poor edge information

and GFT tended to produce segments that were too large.

Different parameterizations resulted in heavy under- or over-

segmentation in both cases. The graph cut implementation

provided good segmentation results and although regions may

not be captured as accurately as with the watershed-corrected

adaptive thresholding, the splitting of single nuclei was performed

properly in most cases. The time needed to process the images

significantly varied between the algorithms. GFT, for example,

was up to one order of magnitude slower than OTSU, OTSUWW

and TWANG. At the same time, GFT did not deliver a more

convincing segmentation quality that would justify the slower

execution. Fig. 5 shows 3D volume renderings of the false-colored

segmentation results. Highlighted errors correspond to merged

regions (Fig. 5B), split regions (Fig. 5E) and missing objects

(Fig. 5G). TWANG and OTSUWW again seemed to offer the best

compromise of speed vs. quality.

The quantitative comparison of the achieved segmentation

quality that was presented in the previous paragraphs confirmed

the comparable segmentation quality achieved by our algorithm.

All following evaluations were performed on our main target

image material, i.e., 3D image stacks of a zebrafish embryo that

were acquired using DSLM. As a major motivation for our

algorithm was to provide a significant reduction of processing

times, we next investigated the computational efficiency of the

different algorithms. Owing to the fact that OTSU proved to

perform poorly without the watershed-based post-processing step,

we omitted it for further performance tests. Table 4 and Fig. 6

summarize the measured processing times that were required to

segment differently sized 3D image stacks by OTSUWW, GAC,

GFT, GC and TWANG. The image stacks were cropped from a

single time point of a zebrafish data set and had resolutions of

2566256650, 51265126100, 1024610246200, 2048620486400

voxels for sizes S, M, L and XL, respectively. Processing times

represent the time needed to process a single stack of the respective

image sizes. The proposed method clearly dominated the other

algorithms for all investigated image sizes and was up to ten times

faster. Even using a non-threaded implementation, the performance

benefit of TWANG held true. Although the 2D and 3D benchmark

images suggested to prefer OTSUWW, it was 3-fold slower than

TWANG for larger 3D images. Furthermore, our method benefited

heavily from threaded processing and achieved an up to 10-fold

decrease of processing time, compared to OTSUWW. The XL

image category could only be processed by TWANG, as the other

algorithms exceeded the memory limitation of 32 GB. Concurrent-

ly, the quality of obtained segmentations was comparable to the

Figure 5. Comparison of the segmentation quality achieved by the investigated algorithms on simulated 3D benchmark images by
Svoboda et al. (HL60 cell line, low SNR, 75% clustering probability) [35]. Simulated original image (A), adaptive thresholding using Otsu’s
method [23] (B), Otsu’s method combined with watershed-based blob splitting [23,30] (C), geodesic active contours [31] (D), gradient vector flow
tracking [16] (E), graph-cuts segmentation [17] (F), TWANG segmentation (G) and the simulated ground truth image (H). The symbols indicate
segmentation errors for nuclei that are either split (#), merged (+), missing (o) or spurious (,).
doi:10.1371/journal.pone.0090036.g005

Table 4. Comparison of 3D Processing Times in Seconds and Segmentation Quality.

Algorithm S S* M M* L L* XL XL* Quality

GFT [16] 14.80 – – – – – – – 0

GAC [31] 5.16 4.07 28.43 16.41 197.23 91.15 – – –

GC [17] 3.31 – 26.35 – 246.26 – – – ++

OTSUWW [23,30] 2.40 2.37 19.19 19.08 164.92 162.75 – – ++

TWANG 1.31 0.44 8.22 2.48 66.98 18.22 795.25 243.8 +

Processing time in seconds and subjective quality measure of five algorithms implemented in C/C++ with respect to the image size. Missing values indicate either
memory consumption of more than 32 GB (OTSUWW, GAC, GC) or incapabilities of the software (GFT). Tiled processing was disabled for our implementations to ensure
comparable memory limitations. Performance of the algorithms was tested without using threads and with 8 threads where possible (indicated by *). Due to a lack of
3D ground truth for the DSLM images, we provide a qualitative evaluation using five categories ({{,{,0,z,zz).
doi:10.1371/journal.pone.0090036.t004
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results of the more complex algorithms. In Fig. 7, a maximum

intensity projection of three neighbouring z-slices are shown for the

segmentation results of each algorithm, which confirms our

approach is comparable to other segmentation routines. In addition

to the fast parallelized processing of small image regions, the

memory footprint was kept small and did not increase with the

image size. Due to a lack of 3D ground truth, however, the

segmentation quality could only be subjectively rated on the basis of

selected slices, such as the ones depicted in Fig. 7.

An exemplary segmentation result for two time points of a

developing zebrafish embryo that illustrate our target application

are depicted in Fig. 8. The properties of the investigated specimen

are well described and may serve as a basis for further processing

steps such as tracking and cell lineage reconstruction. None of the

other discussed algorithms was able to process images of such a

size with the given implementation and memory constraints.

Discussion

In this contribution we present a new segmentation method that

is suitable for rapid extraction of information from large

volumetric image data. It was shown that the proposed algorithm

Figure 6. Bar plot of the measured processing times in seconds (lower values are better). Image sizes correspond to 2566256650 (S),
51265126100 (M), 1024610246200 (L) and 2048620486400 (XL) voxels. Missing bars indicate that the respective algorithms failed to process the
given image size. TWANG segmentation turned out to be the fastest algorithm in all tested categories and was the only method that was able to
process the XL images with the given memory constraint of 32 GB.
doi:10.1371/journal.pone.0090036.g006

Figure 7. Comparison of the segmentation quality achieved by the investigated algorithms on a 3D image of labeled nuclei of a
zebrafish embryo acquired using DSLM. The panels show the maximum intensity projection of 3 neighbouring z-slices. Original image (A),
adaptive thresholding using Otsu’s method [23] (B), Otsu’s method combined with watershed-based blob splitting [23,30] (C), geodesic active
contours [31] (D), gradient vector flow tracking [16] (E), graph-cuts segmentation [17] (F), TWANG segmentation (G) and a false colored original image
(H). The symbols indicate segmentation errors for nuclei that are either split (#), merged (+), missing (o) or spurious (,).
doi:10.1371/journal.pone.0090036.g007
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performed up to ten times faster than other established methods

while still providing sufficient segmentation quality for subsequent

analysis steps. We compared five well known methods for nucleus

segmentation to our new algorithm both quantitatively and

qualitatively on a 2D and a 3D benchmark data set. Additionally,

we applied all algorithms on our target image material and showed

that TWANG was the only method capable of providing a good

trade-off between segmentation quality and fast performance.

Otsu’s method turned out to be the fastest of the considered

algorithms. Due to it’s high tendency to produce merged segments,

however, it was of no practical use without post-processing. Using

a watershed-based splitting of the blobs attained by OTSU as

performed with the OTSUWW implementation, the segmentation

quality could be significantly raised. Regarding the segmentation

quality, OTSUWW and GC provided the most convincing results.

OTSUWW will presumably fail as soon as the blurring of the

image material increases (e.g. in the axial direction of a 3D

volume) or when nuclei are more clustered. Owing to the fact that

OTSUWW, GFT, GAC and GC have a very high memory

consumption and very limited possibilities for parallelization, none

were appropriate for large 3D image stacks. While the memory

limitation could be defeated using tiled processing of the images,

this would dramatically decrease the performance of the

algorithms due to an increased number of required read and

write operations to the hard disk drive.

A general problem of seeded segmentation algorithms such as

TWANG and GAC, though, is that the quality and reliability of

extracted seeds directly influences the outcome of the segmenta-

tion. Especially, in regions close to the image border, our seed

detection method missed some nuclei due to filtering artifacts that

occurred if the convolution mask of a box filter did not completely

fit into the processed image region. This behaviour was responsible

for the increased number of missing nuclei observed for GAC and

TWANG in the 2D segmentation benchmark. In most real

Figure 8. Results of the TWANG segmentation pipeline applied on two images of a developing zebrafish embryo. The images were
captured at the 7 hpf stage with &8000 cells (A,B) and at the 11 hpf stage with &12000 cells (C,D), respectively. The panels show maximum intensity
projections of the raw images (A,C) and the resulting segmentation using our TWANG segmentation pipeline (B,D). Each 3D image stack has a file size
of *5GB and comprises 2560621606500 voxels with a dynamic range of 16 bits. Processing one image stack takes approximately 10{20 minutes
on a common desktop machine, depending on the developmental stage of the embryo. Typical experiments may be comprised of up to 2000 z-
stacks (*10TB) for the spatio-temporal analysis of a single embryo.
doi:10.1371/journal.pone.0090036.g008
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applications this could simply be compensated by imaging the

probe with sufficient padding in the border regions. In live

specimens, observed nuclei are frequently dividing and therefore

undergo changes in shape. As indicated, for instance, in Fig. 4G,

our algorithm successfully extracts two separated smaller nuclei in

the case of these events. The scale-space approach used for the

seed detection is therefore well suited to identify seed points at

different sizes and to provide this information to the segmentation.

For our target image data that was captured using DSLM

microscopy, we recognized an increased amount of false positive

seed detections upon reduced image quality caused by light

scattering and absorption in image regions farther from the

detection objective [36]. This problem mainly has to be solved at

the acquisition stage, by using optimizations such as double-sided

illumination, specimen rotation or optimally a more sophisticated

multi-view acquisition [1,37]. In addition, the extracted properties

of segmented regions can be used to refine the results and to

discard false positive detections based on criteria such as the

integrated region intensity, seed intensity, volume, foreground vs.

background ratio and the like. If subsequent tracking of detected

nuclei is performed, the absence of a good matching partner in

multiple neighbouring frames provides an additional indicator of

having a false positive detection.

As confirmed by the quantitative and qualitative assessment of

the segmentation quality, our algorithm produces comparable

labeled images to other established methods. One problem that

remains to be solved is the segmentation of strongly elongated

structures. Due to the nature of the spherical weighting kernel, the

algorithm tends to clip the tips of strongly elongated nuclei. In the

current implementation, this can be compensated by adjusting the

kernel size multiplier and the kernel standard deviation properly.

In upcoming versions of the algorithm, this might be solved by

estimating the elongation properties of nuclei directly at the seed

detection stage in order to adapt the weighting kernels accord-

ingly. The segmentation quality sacrificed by the high-perfor-

mance implementation as well as the false positive rate for the seed

detection stage may also be compensated by uncertainty

propagation between all involved pipeline steps as described in

[38].

All in all, the provided method represents a reasonable choice

for a fast initial analysis of the data or for applications where it

becomes infeasible to use methods such as [17]. Of course, if result

accuracy of the extracted information is the main intention of an

experiment, it might become inevitable to use more complex

segmentation routines.

We aim to use the developed processing pipeline in upcoming

projects to automatically analyze multiple Terabytes of experi-

mental data of live zebrafish embryos that are stored on the Large

Scale Data Facility (LSDF), a large distributed storage system

offering multiple Petabytes of storage [39]. A distributed

computing environment based on the Apache Hadoop framework

is used to accelerate the automated analysis of the image data. A

main goal will be to identify and quantify variations among

different chemical treatments with respect to nucleus counts,

nucleus densities, cell migration patterns, body part formation and

other phenotypic alterations in space and time.

Supporting Information

File S1 Implementation of the TWANG Segmentation
Algorithm. C++ source code of the fast segmentation pipeline

presented in this paper. The provided archive contains all sources,

installation instructions and an example image.

(ZIP)

File S2 Example Data of a Zebrafish Embryo. The

archive contains two additional cropped regions of a 3D DSLM

image of a developing zebrafish embryo.

(ZIP)
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