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Abstract

Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an
informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional
organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a
large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure
regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large
cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp
low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further
studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional
BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN
mapping as a physiologically and functionally meaningful measure for studying brain functions.
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Introduction

Entropy indicates system irregularity [1], which remains

relatively low in living systems but increases over time in any

closed system like our universe as dictated by the second law of

thermodynamics [1,2]. As nearly the most complex living

organism known to us, the human brain has a prominent need

for sustaining its entropy to function normally [3–5]. Measuring

brain entropy (BEN) might then provide a physical means for

characterizing brain status as well as its alterations in disease. BEN

has long been measured using electrophysiological data [6–10]

with low spatial resolution. Functional MRI (fMRI) reflects

regional changes in cerebral blood flow and metabolism [11]

and provides time-resolved volumetric imaging of brain function

at relatively high spatial resolution, making it an attractive

approach for mapping BEN. In the context of fMRI, entropy

was first assessed as a novelty index [12], then as a tool for

activation detection [13], and recently as a potential marker for

brain diseases using the resting-state fMRI (rsfMRI) data from

prior-selected regions-of-interest (ROIs) [14,15]. Entropy of the

entire brain has also been assessed using fMRI [16–18], but little is

known about BEN’s spatially distribution and its regional

organizations. This study is an extension of our previously

presented preliminary BEN work [19–21]. The purposes of this

paper were to generate a whole brain entropy map using a large

cohort of subjects (n = 1049) and to investigate the spatial

distribution and local organization of BEN.

As directly calculating entropy from fMRI data is challenging

and inaccurate due to the difficulty of accurately estimating the

probability distribution function from the moderate number of

time points contained in a typical fMRI time-series, we used

sample entropy (SampEn) [22,23] to measure entropy of fMRI

timeseries, which is an approximate entropy measure that is stable

for different data lengths and across different sessions [22,23].

In tandem with BEN mapping, we sought to examine the

regional BEN structure and to develop a brain atlas based entirely

on the entropic correlations of brain regions, rather than using a

priori structural or functional information. Our hypothesis was that

BEN would discriminate between neuronal and non-neuronal

(phantom-based) dynamics. Furthermore, we hypothesized that it

would show a structured regional specificity based on empirical

observations about slow coherent fluctuations of activity in fMRI –

and theoretical work suggesting a hierarchical organization of

temporal dynamics in the cortex [24]. To evaluate the SampEn-

based BEN mapping and to test the above hypothesis, we first

performed a series of control experiment to verify both the

sensitivity and specificity of SampEn, and then compared fMRI

derived entropy of a static phantom and the normal brain as well

as the test-retest stability of BEN mapping in normal brain, and

then conducted BEN mapping in normal brain using the large

sample size from the 1000 functional connectome project (FCP)

database, followed by BEN clustering and regional organization

investigation.

Materials and Methods

Human subjects
16 young healthy subjects (age = 25.464.5, range = 20.3–35,

male/female: 8/8) were recruited from University of Pennsylvania

with approval from local ethics committee and signed consent

forms from the participants. rsfMRI and fMRI with a sensorimo-

tor task were acquired from the 16 subjects twice with 2 months
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apart. Detailed recruiting criteria and imaging parameters can be

found in [25,26]. The same fMRI sequence was also used to

acquire rsfMRI data from a water phantom.

Resting fMRI were then downloaded from the 1000 functional

connectomes project (FCP) [27]. All FCP data were acquired and

released with approval from each contributor’s ethics committee.

Data from 22 centers (n = 1175) were analyzed, and those with

small brain coverage or without demographic information (age

and gender) were excluded, resulting in a total of 1049 subjects

(age = 26.94611.34 (mean 6 standard deviation (STD)) years, age

range: 7.88,85 years, 466 males, 583 females) with rsfMRI data

and high resolution anatomical image. 50 subjects had repeat data.

The acquisition parameters were: duration: 4.15,9.8 min; voxel

size: 2,4 mm within plane; slice thickness, 3,5.5 mm.

Sensorimotor task
The task consisted of 5 resting and activation blocks, each block

lasting for 48 seconds and was presented using Presentation

(Neurobehavioral Systems, Albany, CA, USA). During the task

block, visual stimuli with an 8 Hz reversing black and white

checkerboard were presented intermittently in the full visual field

for 48 seconds, and the subject was asked to perform a self-paced

left-hand only fingertapping task when they saw the visual stimuli.

Data acquisition
For the 16 subjects, structural imaging and rsfMRI acquisitions

were described in [25,26]. Sensorimotor fMRI was acquired using

the same sequence as that of rsfMRI. The same structural MRI,

rsfMRI, task fMRI were repeated in 2 months. The same fMRI

sequence was also used to acquire rsfMRI data from a water

phantom.

Image processing
Image preprocessing was performed using AFNI (afni.nimh.-

nih.gov/afni/) and FSL(www.fmrib.ox.ac.uk/fsl/) with standard

processing steps [27] including motion correction, temporal

filtering, and spatial smoothing. Nuisance cleaning were per-

formed as described in [27,28], but without global signal cleaning

[29]. We used the Nonlinear Image Registration Tool [30] to

register each subject’s structural image into the MNI standard

space. Statistical analysis was performed using SPM (http://www.

fil.ion.ucl.ac.uk/spm/).

Entropy calculation
Directly calculating entropy from fMRI data is challenging and

inaccurate because of the difficulty of accurately estimating the

probability distribution function from the moderate number of

time points contained in a typical fMRI time-series. To overcome

this challenge, we used sample entropy (SampEn) [22,23], which is

an extension of Approximate Entropy (ApEn) [31], both are

approximations to Kolmogorov complexity/entropy [32]. Sam-

pEn is shown to be stable for different data lengths and across

different sessions [22,23]. Since SampEn needs to be calculated for

hundreds of thousands of voxels for the .1000 subjects, we used

an optimized SampEn algorithm implemented in C++ computer

language to reduce the total computation time.

Denote the rsfMRI data of one voxel byx~½x1,x2,:::xN �, where

N is the number of time points. SampEn starts with forming a

series of vectors, the so called embedded vectors, each with m

consecutive points extracted from x: ui~½xi,xiz1,:::xizm{1�,
where i~1 to N-m+1, and m is the pre-defined dimension. Using

a pre-specified distance threshold r, Bm
i rð Þ counts the number

ofuj (j~1,to N-m, andj=i) whose distances (Chebyshev distance is

generally used though any other distance can be used as well) toui

are less than r, so doesBm
i z1 rð Þfor the dimension of m+1. By

averaging across all possible vectors, we have

Bm rð Þ~ 1

N{mð Þ N{m{1ð Þ
XN{m

i~1

Bm
i rð Þ ð1Þ

Am rð Þ~ 1

N{mð Þ N{m{1ð Þ
XN{m

i~1

Bmz1
i rð Þ ð2Þ

And SampEn is calculated as:

SampEn m,r,N,xð Þ~{ln
Am rð Þ
Bm rð Þ

� �
ð3Þ

In the original algorithm, the distance oful anduk and the

subsequent comparison with r are conducted twice: one forBm
l rð Þ

and the other for Bm
k rð Þ. This redundancy was removed by

updatingBm
l rð Þ andBm

k rð Þ simultaneously and flagging these

operations for this pair to be excluded in later iteration. For

fMRI data with N time points, this routine will save (N-m-1)*(N-

m-2)/2 times distance calculations and (N-m-1)*(N-m-2)/2 times

distance comparisons. Meanwhile, the first m elements of the

embedded vectors of dimensions m and m+1 are the same,

meaning that distance calculations for m can be shared with m+1,

while the latter will only needs to be updated with the last element

of the vectors. This SampEn calculation algorithm was verified

with Matlab code implementing the original algorithm to make

sure that it yielded the same results as the original implementation.

SampEn evaluations
As described above, SampEn depends on an embedded

dimension m and a tolerance threshold r and different m and r

may yield different SampEn values. Small m and large r lead to

more vector matches (higher Bm rð Þ and Am rð Þ in Eqs. 1 and 2.

Note that smaller m tends to yield smaller distance) and

subsequently improve the accuracy and confidence level of

SampEn. However, the definition of SampEn requires that m

approaches ‘ and as r approaches 0 [31]. To verify SampEn with

different m and r for differentiating signals with different known

entropy and also to find an empirically optimal value for both

parameters, SampEn calculations were performed with different m

and r using synthetic data with known entropy.

Evaluation 1
SampEns of Gaussian noise, chirp signal, and sinusoidal signal

(Fig. S1A) were calculated with different r and m. Based on the

literature [23,33–35], in the simulations, m was changed from 3 to

4; r was changed from 0.2 to 1.2 with a step of 0.2 and then

changed to 1.5 of data STD. The length of these synthetic data

was set to be 150 to 400.

Evaluation 2
As described in [36,37], synthetic fMRI data with a periodic on-

off paradigm were generated with 6 different contrast-to-noise-

ratios (CNRs): 0.08, 0.1, 0.2, 0.5, 0.8, and 1. Synthetic data were

generated at each noise level by adding new Gaussian noise for

100 times. Both noise and activation were convolved with the

canonical hemodynamic reference function (HRF) [38] to mimic

the real fMRI noise environment. Fig. S1C shows the HRF

convolved design function (red dashed line) and the noise
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contaminated signal with a CNR of 0.2 (blue solid line). SampEn

was calculated for both noise and synthetic activation data using m

from 3 to 4, and r from 0.2 to 1 STD.

BEN mapping evaluations
After the above SampEn evaluations, we performed several

control experiments to validate BEN mapping using fMRI. The

first control experiment was to check the entropy level in a

nonliving water phantom (Fig. 1A shows one image slice of the

phantom). Entropy of each voxel within and outside of the

phantom was calculated using the SampEn algorithm described

above and the non-processed raw fMRI data. Since fMRI signal of

the static phantom consists of random thermal fluctuations and a

random low frequency drift [39] with high irregularity, entropy of

the phantom should be no different from that of the background

noise. The second control experiment was performed to verify the

test-retest reproducibility of BEN mapping results in normal brain.

To do that, SampEn was calculated at each voxel of the

preprocessed rsfMRI data from 50 subjects identified from the

FCP database who had repeated rsfMRI scans. The collection of

all voxels’ SampEn formed a BEN map, which was warped to the

MNI standard space using FNIRT. The intra-class correlation

coefficient (ICC) [40] of BEN at the test and retest sessions was

calculated at each voxel using Matlab. Correlation coefficient (CC)

of the whole brain mean BEN of both sessions was also calculated.

The third experiment was to assess whether BEN mapping can

capture the brain activity irregularity changes during performing

periodic sensorimotor task. Entropy has been assessed as a way to

detect brain activation in [13], but was derived from a small

window around the assumed brain activation epoch peaks. In this

paper, entropy of the entire fMRI time series was characterized. In

this experiment, we calculated BEN maps from the 16 subjects’

rsfMRI data and sensorimotor fMRI data which were separately

acquired in the same scan session and were repeated in another

session in 2 months. Since brain activity in response to the periodic

task performing would introduce regional orderliness to the fMRI

data, regional BEN should decrease accordingly. SampEn was

calculated at each voxel of the preprocessed rsfMRI and task

fMRI images. The resulting BEN maps were registered and

resampled to a resolution of 36363 mm3 into the MNI space

using FNIRT. A paired t-test between BEN maps of rsfMRI and

task fMRI was conducted for each scan separately to assess the

regional BEN alterations due to the periodic task performing.

BEN mapping using the FCP data
BEN maps were calculated using the routines described above.

Each BEN map was divided by its mean and subtracted by 1 to get

an rBEN map. Using FNIRT, both BEN and rBEN maps were

projected into the MNI space with a resolution of 36363 mm3.

We then calculated the mean BEN maps of all 1049 subjects and

conducted a one-sample t-test on the rBEN maps. Age and gender

effects were included in a multiple regression model to assess their

effects. This regression was conducted on the whole brain mean

BEN and each voxel’s BEN separately.

Clustering
To further delineate the entropic patterning of the brain to test

the hypothesis that BEN is self-organized into regional commu-

nities, we used a data-driven clustering method to automatically

parcellate whole brain rBEN values into a series of clusters. We

used rBEN maps to remove across-subject global BEN variability.

To reduce the computational burden for the whole brain based

BEN clustering, rBEN maps were resampled with a resolution of

4.564.564.5 mm3 in MNI space. We used a fast and robust

clustering algorithm, spectral clustering [41], to search for regional

BEN communities (clusters). We chose spectral clustering which

has been shown to have good performance in various applications

[41] including fMRI-based brain segmentation [42]. With 1049

subjects’ BEN maps, we had an nxS BEN data matrix, where

n = 15893 is the number of intracranial voxels, S = 1049 is the

number of subjects. Spectral clustering starts with building an nxn

similarity (CC in this study) matrix. With the similarity matrix, a

Laplacian matrix was built. Using eigen decomposition, the k

smallest eigenvectors of the Laplacian matrix were extracted and

grouped into an Sxk matrix, which was subsequently normalized

along each row. Treating each row as a new data point, standard

k-mean clustering was used to cluster the S points into k clusters. k

was the pre-specified cluster number. We used the Matlab code

written by Ingo Buerk (http://www.mathworks.com/

matlabcentral/fileexchange/34412) to do spectral clustering using

the algorithm proposed by [43].

Determining the optimal cluster number
Since clustering produces the results based on the pre-specified

cluster number, we performed a series of experiments to determine

the optimal cluster number. Clustering was performed for the

entire group and a randomly assigned 525 group and a 524 group

with k varying from 3 to 40. For each k, we calculated Silhouette

coefficient (SC) [44] and a reproducibility index (RI). RI is the

Figure 1. Evaluations of entropy mapping using fMRI. A) image
of a cylinder water phantom; B) entropy map of the phantom. The color
bar indicates the display color window for the entropy map; C) visual
and sensorimotor functional activation induced brain entropy decrease
as compared to the resting state. Red and green represent the test
(session 1) and retest (session 2) experiment, respectively. The color
bars indicate the color window used to display the statistical
comparison results (t maps of the paired student t-testing). The
statistical threshold for identifying the entropy decreasing clusters is
p,0.001 and cluster size.30 (uncorrected for multiple comparisons);
D) the correlation coefficient (CC) map of 50 subjects’ resting BEN maps.
The color bar was used to map the CC value from 0.5 to 1.
doi:10.1371/journal.pone.0089948.g001
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number of non-reproducible clusters across the 3 groups. For each

k, we got 3 sets of clusters. For each of the k clusters from the 1049

group, we calculated its overlap ratio with each of the k clusters of

the two subgroups (the 525 and 524 group). The overlap ratio of

two clusters was the ratio of the number of overlapped voxels

divided by the total number of voxels in both clusters. The cluster

in each of the two subgroups showing the highest overlap ratio to

the target cluster in the 1049 group was identified as its partner.

We set the partner to be null if no cluster in that subgroup showed

greater than 10 percent of overlap ratio with the target cluster of

the 1049 group. We then calculated the number of mis-matched

clusters by counting the number of null partners of all k clusters of

the 1049 group. We repeated the same partner-matching

procedure for all clustering experiments with k varying from 2

to 40. We then used the number of mis-matched clusters as the RI

for the k-clusters-based clustering. Fewer mis-matchings means

higher RI. The optimal k was identified at the peak (local

maximum) of SC curve and the peak (local minimum) of the RI

curve.

Rank and hierarchy of regional BEN
This experiment was to further evaluate the possible hierarchi-

cal structure of the BEN communities identified in the above

experiment. We extracted the mean rBEN for the above identified

clusters from all subjects. One-way ANOVA function and a series

of paired t-tests were performed to test whether there are

significant rBEN differences among those clusters. The entropy

similarity matrix was also created using the mean cluster rBEN

series (across subjects), a dendrogram was generated using the

hierarchical clustering method provided in Matlab (Mathworks,

Natick, MA, USA) to summarize the entropy relations of the

regional entropy communities identified above.

Results

SampEn with different m and r for differentiating signal
from noise

Simulations on SampEn calculations showed that data length

has only a minor effect on SampEn (Fig. S1B), which ensured

including all the rsfMRI data even with different time points for

BEN mapping. For fMRI, SampEn robustly detected the synthetic

brain activity from the noise contaminated data even when the

contrast-to-noise-ratio was as low as 0.2 (see Fig. S1D and Table
S1), though its sensitivity decreases when r was greater than 1.

Since SampEn with m = 3 or 4 showed similar performance for

differentiating signal from noise (Fig. S1D) and small m may

improve SampEn-based entropy calculation accuracy, m = 3 was

chosen as the empirical value for rsfMRI-based BEN mapping.

When r was greater than 0.6 STD, different m’s yielded similar

SampEn values and the SampEn difference between the

Sinusoidal and chirp signal stayed at the same level. Therefore,

r = 0.6 STD was chosen to be the optimal value for the following

BEN mapping.

Brain entropy mapping using fMRI
In the first fMRI-based entropy mapping experiment, the water

phantom (Fig. 1A) showed the same entropy as that of the

background except random spatial fluctuations (Fig. 1B). In the

second evaluation experiment, sensorimotor task performing

introduced significant (p,0.001 and cluster size.30, uncorrected

for multiple comparisons) regional SampEn decrease in visual and

sensorimotor brain areas as compared to the resting state (Fig. 1C).

The SampEn decrease due to task performing in scan day 1 (the

hot spots) was replicated in a second experiment performed 2

months later (the green spots). Fig. S2 shows the brain activations

identified using standard GLM. The GLM results confirmed the

SampEn identified functional regions in both sessions. Fig. 1D

shows the test-retest intra-class correlation coefficient (ICC) map of

the 50 FCP subjects’ BEN maps. Nearly all intracranial voxels

showed an ICC.0.5. ICC for the whole brain mean BEN was

0.967. Several voxels in the posterior cingulate cortex showed an

ICC,0.5.

Normal BEN distribution revealed using 1049 normal
subjects

Fig. 2A shows the BEN map (calculate using SampEn with

m = 3 and r = 0.6) from a representative subject from the FCP

database. Similar to the result shown in Fig. 1B, entropy in the

background is high and randomly distributed. However, BEN in

the intracranial voxels appears to be much lower than the

background.

Fig. 2B shows the mean BEN map of the 1049 subjects with

background removed for better visualization of the detailed BEN

structure (very similar patterns were found in the mean BEN maps

calculated with different r values as shown in Fig. S3). The mean

BEN map shows a clear BEN contrast between neocortex, white

matter (WM), and subcortical gray matter structures. Neocortex

showed lower BEN than the rest of brain, with the 5 lowest BEN

regions located in the precuneus (PRE), bilateral motor cortex

(MC), orbito-frontal cortex (OFC) and visual cortex (VIS) (Fig. 2B,

Figure 2. The BEN maps with and without background. A) BEN
map of a representative subject. B) average BEN map of 1049 subjects.
The background voxels were removed for a better visualization.The
gray scale and color scale indicate BEN values for Figure 2a and 2b,
respectively.
doi:10.1371/journal.pone.0089948.g002

Brain Entropy Mapping Using fMRI

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e89948



3A). Low entropy in PRE, OFC, and VIS is consistent with prior

results [14]. Whole brain BEN did not show age effects, either

regionally or globally. By comparing rBEN to 1, we statistically

(p,0.01, corrected for multiple comparison) defined the high and

low BEN distribution pattern shown in Fig. 2B as a higher-than-

average BEN network (HBEN) and a lower-than-average BEN

network (LBEN) in Fig. 3A.

The hierarchical self-organization of BEN
On the basis of the peak of the SC (Silhouette coefficient) [44]

and the peak of a clustering reproducibility index (RI) (Fig. S4), we

identified 8 BEN clusters (Fig. 3B). One cluster (h in Fig. 3B)

consists of voxels within the peripheral brain boundaries, likely to

represent artifact due to imperfections in brain registration. The

other 7 clusters correspond to anatomically or functionally

meaningful regions. LBEN identified in Fig 3A was reorganized

into 5 BEN clusters (a, g, f, e, and d in Fig. 3B) located in OFC,

prefrontal cortex (PFC), MC, the posterior part of the ‘‘default

mode network’’ (DMN) [45], and VIS, respectively; while HBEN

was separated into clusters b, and c, where c consists of WM, and b

covers cerebellum, brain stem, limbic area, inferior temporal

cortex (ITC), and part of medial temporal cortex (MTC) (cluster b

will be called temporal lobe-subcortex (TPLS) cluster in the

following). All clusters were bilateral, albeit with some asymmetry.

By randomly splitting the whole group into two subgroups with

n = 525 and n = 524 respectively, we verified that the 8 cluster

parcellation results for the n = 525 subgroup (Fig. S5A) and the

n = 524 subgroup (Fig. S5B) are highly reproducible.

Fig. 4A shows the entropy similarity matrix of the 7 structurally

and functionally meaningful clusters identified above. Fig. 4B is

the dendrogram generated with the hierarchical clustering. The

most distinct BEN partitions at the highest level of the hierarchy

corresponds to a division between an anterior BEN system (PFC,

OFC, WM, and TPLS (g, a, c, and b in Figs. 3B, 4) and a posterior

BEN system (MC, DMN, and VIS (f, e, and d in Figs. 3B, 4) as

marked by the thick yellow line in the sagittal view of Fig. 3B;

below the anterior BEN system are the frontal BEN network (PFC

and OFC) and HBEN, while below the posterior BEN system are

the visual-DMN system (VIS and DMN) and the sensory motor

system (MC).

Using the one-way ANOVA, we found that the 7 clusters

identified above showed significantly (p = 0) different rBENs

(Fig. 4C). Among them, the WM cluster showed the highest

BEN, followed by TPLS (cluster b in Fig. 3B), MC, PFC, OFC,

VIS, and DMN (Fig. 4C). PFC and OFC showed the same level of

rBEN, and no rBEN difference was found between VIS and

DMN. Significant rBEN differences were demonstrated between

each pair of the remaining 5 cluster groups: 1) WM, 2) TPLS, 3)

MC, 4) PFC and OFC, 5) VIS and DMN (see the inset for the

paired-t test probability values Fig. 4C).

Discussion

We mapped whole brain entropy using resting state fMRI from

1049 normal subjects. Entropy was measured with SampEn. Our

data demonstrated that SampEn is a robust and sensitive entropy

measure for differentiating generic and fMRI signals with different

regularities and that SampEn-based fMRI-derived BEN is reliable

brain activity measure, which differs from that of a non-living

object and background noise, and is sensitive to task-induced

regional brain activity alterations. BEN was stable in nearly the

whole brain except several voxels in the middle sagittal plane.

While their ICC were still .0.4, the relatively lower test-retest

stability may reflect that resting state activity in those voxels which

are in the precuneus has larger across-session variability.

Low entropy has long been postulated and observed in living

organisms [2] including human brain [3–5]. Our results clearly

demonstrated the big entropy contrast between the living brain

tissue and the background and the nonliving water phantom,

which retrospectively proves physical validity for the fMRI-based

BEN mapping method, and is consistent with Lovelock’s

suggestion of using entropy for detecting life in Mars which was

further developed into the Gaia theory [46,47]. The whole brain

entropy map showed a clear spatial distribution and a sharp

contrast between neocortex and the rest of brain. The relatively

lower BEN in neocortex may reflect the ‘‘higher’’ mental functions

subserved by cortex [48]. Within the neocortex, low entropy in

PRE (precuneus), OFC (orbito-frontal cortex), and VIS (visual

cortex) is consistent with prior results [14] where BEN was

measured in anatomical ROIs using wavelet entropy [49] and no

statistical inference was provided for BEN distributions across the

brain. The white matter versus grey matter BEN contrast was

consistent with our previous findings using a negentropy-based

BEN mapping method [19,20] and those reported in [18] which

was based on ApEn [31].

Figure 3. Spatial distribution and regional organization of BEN.
A) The statistically defined higher-than-average BEN network (hot color)
and lower-than-average BEN network (cool color). The significance level
used for thresholding the distribution map (the statistical parametric
map of the student t-test) is p,0.01 (corrected for multiple
comparison); B) The 8 BEN clusters identified by clustering: a) OFC, b)
TPLS, c) WM, d) VIS, e) DMN, f) MC, g) PFC, h) peripheral artifact. The text
above each axial slice in B, C, and D indicates the slice location (z and x
mean the x and z coordinate in mm, respectively) in the MNI space. The
left side of image corresponds to the left side of brain.
doi:10.1371/journal.pone.0089948.g003
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The heterogeneity of neocortex BEN and its organization into

regional communities are indirectly supported in prior rsfMRI

studies [45,50–52]_ENREF_35. Specifically, PRE and OFC are

within the so-called DMN [45], which is known to fluctuate in a

coherent way [27]. MC has long been demonstrated to have

strong correlations between its bilateral segments by Biswal et al in

their seminal functional connectivity paper [51]_ENREF_41. VIS

has also been repeatedly identified as a separate resting state

network [50]. BEN clusters were bilateral, suggesting no side

dominance of resting BEN across subjects. BEN clustering based

brain parcellation is purely driven by the data. Although we

controlled the stability of BEN clustering by repeating the process

to randomly selected sub-data sets and presented the results that

had both a local maximal SI coefficient and a local maximum of

reproducibility, it is still possible that new data might give different

number of optimal clusters. However, finding a different number

of clusters should not change the general patterns of the

subdivisions except cluster splitting or merging as shown in the

additional clustering results derived at two sub-optimal SI and RI

peaks with k = 6 and 14, respectively.

The hierarchical BEN clustering findings were partly supported

by recently published cortical surface area-based genetic subdivision

study [53] where a similar anterior/posterior brain subdivision was

reported. The hierarchical structure of the identified regional BEN

clusters was further evidenced by the progression pattern shown in

the 6, 8, and 14 clusters-based parcellations results (Fig. 3 and Fig.

S6) that the successive clusters (when k increased) tend to be sub-

partitions of previous clustering results (of smaller k).

An approximate negentropy [54] was used in our preliminary

studies as reported in [19,20]. Though the entropy contrast

between grey matter and white matter shown there was similar to

what we found in this paper, the negentropy-based BEN mapping

using the same FCP data showed relatively higher entropy rather

than lower entropy in the motor cortex than the rest of brain. We

later found that the artificial ‘‘higher’’ entropy in the resting motor

cortex was caused by the sensitivity of the negentropy measure to

input data normalization, which is not an issue for SampEn

because SampEn uses a data-dependent threshold (r) for counting

the vector matchings and therefore is data scale-free. Choosing r

and m has been extensively performed in previous literature. We

repeated the evaluation process in order to provide guidance for

choosing them for BEN mapping. Though we used r = 0.6 and

m = 3 in this paper, we did run a series of analyses using different

values and found very similar results for those values assessed in

the evaluation experiments.

It’s worth to note that SampEn and ApEn are not the same as

Shannon entropy. SampEn and ApEn are rather often used to

indicate system complexity because both of them were defined as

approximates to the Kolmogorov complexity. In our BEN mapping

experiments using the sensorimotor fMRI data, we showed that

SampEn reduced when brain activity turned to be more coherent

due to the periodic task engagement. Since the periodic task

activation would increase entropy if measured by Shannon entropy

but decrease complexity, a reduction of SampEn suggests that

SampEn can be potentially used as a complexity measure for brain

activity. However, SampEn has not been fully shown to a

complexity measure similar to the Tononi complexity [55]. In

[56], a multi-scale SampEn was proposed, which showed lower

SampEn in random noise than in 1/f noise when scale increased.

Since 1/f noise is known to have higher complexity than random

noise, the multi-scale SampEn could potentially provide a way to

approximately measure signal complexity. A difficulty of using

higher scale in fMRI is that increasing scale will exponentially

reduce the available data length, resulting in a non-stable SampEn

measurement. Since increasing scale is similar to a low-pass filtering,

an alternative approach to perform multi-scale SampEn is to

combine low-pass filtering and SampEn. However, that is out of the

scope of this study and should be assessed in future work.

To summarize, BEN provides a physiologically and functionally

meaningful brain activity measure. Different from the relative

metrics used in prior rsfMRI studies, entropy is a quantitative

measure, making it a potentially useful index for studying different

brain states. The hierarchy of BEN suggests that brain activities

can be ranked by BEN, which may provide opportunities to detect

brain disorders based on abnormalities in BEN activity such as a

pilot investigation of BEN in drug addiction [57].

Figure 4. The hierachy and ranking of the BEN-derived brain
subdivisions. A) the across-subject BEN similarity matrix, B) the
hierarchical structure of the 7 BEN clusters. C) Mean and standard errors
of the mean rBEN in the 7 clusters. The color map in A represents the
correlations of BEN within and between BEN clusters. The inset in C lists
the probability of the rBEN comparisons between a pair of BEN clusters.
doi:10.1371/journal.pone.0089948.g004
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Supporting Information

Figure S1 SampEn evaluation results. A) waveforms of a

Gaussian noise, a chirp signal, and a sinusoidal signal used for

evaluating SampEn; B) SampEn calculation results using different

embedded dimensions (m) and different tolerance levels (r) with

different data length; C) the hemodynamic response function

(HRF)-convolved artificial brain activation (the red line) and noise

(the blue line); D) SampEn of noise (blue lines) and noise

contaminated brain activation (red lines). The errorbars indicate

standard error of SampEn for each calculation.

(DOCX)

Figure S2 Brain activations identified using standard
general linear model. The task activation was defined as the

significant brain activity magnitude between the task condition

and control condition. The significance level used here is the same

as that in Fig. 1C. Red and green indicate results of the first and

second day sensorimotor task performing experiment. Colorbar

means the t-value range of the statistical parametric maps shown

here.

(DOCX)

Figure S3 Mean resting BEN maps of 1049 subjects
calculated using SampEn with m = 3, r = 0.4, 0.6, 0.8, 1
from the bottom row to the top row, respectively. For the

purpose of display, every BEN map has been normalized to be

from 0 to 1 (divided by its maximum intensity). The colormap

shows the display window used for generating the maps and its

range is from 80% to 101% of the maximum.

(DOCX)

Figure S4 Silhouette coefficient (red line) and the
number of non-reproducible clusters (blue line) of BEN
clustering using different pre-specified cluster numbers.
(DOCX)

Figure S5 Two different data subsets-based BEN clus-
tering results. A) Eight brain subdivisions identified from the

525 randomly selected subjects’ rBEN maps, B) eight brain

subdivisions the rest 524 subjects’ rBEN maps using the data-

driven spectral clustering method. These clusters were identified at

the optimal peak of the curves shown in Fig. S4 using the same

spectral clustering procedure as described in the main article.

(DOCX)

Figure S6 A) six brain subdivisions and B) fourteen brain

subdivisions derived from 1049 subjects’ rBEN maps. These

clusters were identified using the same spectral clustering

procedure as described in the main article. The prior specified

cluster number k of 6 and 14were located in the two suboptimal

peak locations adjacent to the optimal one k = 8 as shown in Fig.

S4.

(DOCX)

Table S1 Signal detection results using sample entropy
and reference guided data fitting. Synthetic data were

generated by adding noise to a boxcar function with 8 different

level of contrast-to-noise-ratio (CNR). SampEn was calculated

using an embedded dimension of 4, and 5 different tolerance

levels. cc means Pearson’s correlation coefficient.

(DOCX)
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