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Abstract

There are numerous situations in which it is important to determine whether a particular disease of interest is present in a
free-ranging wildlife population. However adequate disease surveillance can be labor-intensive and expensive and thus
there is substantial motivation to conduct it as efficiently as possible. Surveillance is often based on the assumption of a
simple random sample, but this can almost always be improved upon if there is auxiliary information available about
disease risk factors. We present a Bayesian approach to disease surveillance when auxiliary risk information is available
which will usually allow for substantial improvements over simple random sampling. Others have employed risk weights in
surveillance, but this can result in overly optimistic statements regarding freedom from disease due to not accounting for
the uncertainty in the auxiliary information; our approach remedies this. We compare our Bayesian approach to a published
example of risk weights applied to chronic wasting disease in deer in Colorado, and we also present calculations to examine
when uncertainty in the auxiliary information has a serious impact on the risk weights approach. Our approach allows
‘‘apples-to-apples’’ comparisons of surveillance efficiencies between units where heterogeneous samples were collected.
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Introduction

Managing a harmful contagious disease in either domestic

animals or wildlife can typically result in expensive and unpopular

actions such as culling and quarantine. For free-ranging wildlife

populations subject to hunting, restrictions on carcass transporta-

tion and hunting over bait are other examples of common but

unpopular disease management tools. If a management unit (or

population) can be declared ‘‘disease-free’’, these actions can be

avoided. Demonstrating ‘‘freedom from disease’’ in an animal

population is rooted in regulatory requirements pertaining to

national and international domestic animal trade [1], although the

phrase can be conceptually and legally ambiguous [2],[3]. The

only way to demonstrate an area is truly disease-free is to conduct

a complete census, which is almost always impractical. Instead, a

sample of animals from a population must be tested to obtain a

probabilistic statement about disease level. Sampling methods to

achieve this goal have been investigated for several decades (see [4]

for review), and management agencies are increasingly tasked with

developing sampling programs in free ranging wildlife [5],[6].

Although the term freedom-from-disease is commonly used in

this sampling setting [7],[8],[9], it is a misnomer from the

statistical point of view. What is usually actually meant is that

disease prevalence p is ascertained to be below some designated

target threshold pt with some level of ‘‘assurance’’ (we elaborate on

what this means later). Indeed, policy may allow an area to be

declared ‘‘free from disease’’ even if disease is observed to be

present, but at an acceptably low levelpv pt(e.g., [7]). Determin-

ing what target prevalence level pt is acceptably low for an area to

be deemed disease-free is a case-by-case policy issue (see [3]) which

we do not address; our concern is in efficiently determining

whether the true prevalence p is less than the target threshold pt

with an appropriate degree of statistical assurance.

Sampling to ascertain freedom-from-disease is often referred to

as surveillance. Surveillance in free-ranging wildlife is typically

very expensive financially and logistically. While easy to design,

popular simple random sampling (SRS) may also be the least

efficient for heterogeneous populations and will in general require

the greatest number of samples to determine pv ptwith the degree

of prescribed assurance. Large gains over SRS in terms of

information per sample can often be realized with some type of

stratified, targeted, or weighted sampling.

We use surveillance for chronic wasting disease (CWD) for

illustration. Chronic wasting disease is a prion disease of free-

ranging and captive cervids (deer, elk, moose), and although there

is no evidence that it has been transmitted to humans, it is

concerning because prion diseases also include bovine spongiform

encephalopathy (BSE), or ‘‘mad cow’’ disease, known to be

transmissible to humans. CWD has been discovered in 15 states in

the United States of America, and negatively affects cervid

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e89843



populations in those regions. Additionally, its known extent

continues to spread [10]. For such diseases, it is desirable to

detect their presence while the prevalence is still very low and

hopefully amenable to management, hence the target thresholds pt

are typically quite low, and potentially very challenging to assess.

We show the value in using what is known about individual-

specific infection risk factors obtained from outside the surveillance

area but reasonably generalizable to the surveillance area. This

work was initially motivated to facilitate the design of efficient

surveillance. However, our approach also provides a valuable tool

for evaluating the effectiveness of surveillance already conducted;

in fact we would argue an approach such as ours is really the only

valid way to make ‘‘apples-to-apples’’ comparisons of the

effectiveness of multiple surveillance efforts (either in space or

time) involving heterogeneous samples.

Several papers have considered the SRS designs of CWD

surveillance programs for free-ranging wild animal populations

[11],[12]. Nusser et al. [13] explored sampling designs in a

simulated CWD system and highlighted the shortcomings of

convenience sampling, proposing alternatives based on probability

sampling. Diefenbach, Rosenberry and Boyd [14] considered

CWD surveillance protocols in Pennsylvania and called for an

expanded surveillance stream beyond sole reliance on hunter

harvested deer. More recently, to exploit auxiliary information

about CWD risk, Walsh and Miller (WM; [15]) developed a

surveillance design incorporating a points-based risk factor

weighting system (also see [16]). By focusing on high value (high

risk) animals, statistical assurance of freedom-from-disease can be

achieved with substantially fewer animals than SRS.

Like stratified sampling designs, weighted surveillance programs

such as WM’s promise great increases in efficiency when there is

substantial population heterogeneity in the measured response

(e.g. infected or not) associated with observable risk factors.

Typically two sample sets are required: 1) a ‘‘learning sample’’

from an area where the disease is present, and 2) the ‘‘surveillance

sample’’ from the area to be evaluated. The learning sample is

used to determine what factors, such as age and sex, put animals at

different risks for infection. In essence, this is a regression problem,

where the risk weights are estimated by (potentially transformed)

regression coefficients from the learning sample. In contrast to the

learning sample, it is typical to not observe any diseased animals in

the surveillance sample. But even in the absence of positive

animals in the surveillance sample, risk weights from the learning

set can increase the assurance that pv ptin the surveillance

population, which forms the basis of the WM approach. As with

regression coefficients in general, the precision and accuracy of

these estimated weights depends on the quality and quantity of

data used to estimate them. Taking these regression coefficients or

weights at face-value without accounting for their uncertainty can

result in a considerably over-optimistic assessment of the assurance

of pv pt.

Some background seems desirable before we present our

method. We first present how the goal of disease surveillance is

equivalent to applying a confidence or credible bound on p. This

task has historically been a statistical challenge; when none of N

samples are positive it amounts to putting a confidence bound on

an estimate of zero. Special techniques are required, and there are

both frequentist confidence bound and Bayesian credible bound

procedures that perform well for the 0/N situation. However,

because of the nature of the calculations, frequentist confidence

bounds appear to troublesome when auxiliary data (a learning set)

exists, while Bayesian procedures appear to generalize naturally.

Therefore, we propose a Bayesian approach that automatically

propagates uncertainty about risk factors and weights sampled

individuals appropriately. The development of our approach is as

follows:

1) We first show SRS surveillance as traditionally designed and

conducted can be productively framed as a traditional one-

sided hypothesis test.

2) Then, we note the equivalence of one-sided hypothesis tests

and confidence bounds.

3) Frequentist confidence bounds work fine in the SRS context,

but Bayesian credible bounds prove more useful for extension

to auxiliary information. So, we develop a Bayesian credible

bound that has good frequentist coverage properties using a

‘‘prior matching’’ approach. Prior matching involves identi-

fying Bayesian posterior probabilities that also have interpre-

tations as frequentist confidence intervals [17].

4) We briefly consider various concepts of ‘‘statistical assurance’’;

although confidence and credible bounds ‘‘look’’ similar, they

have very different substantive interpretations with respect to

what they tell us about pv pt.

5) We show how a learning and surveillance sample can be

combined into a single augmented regression analysis

containing data set-specific intercepts, and how statements

about the assurance of pv pt in the surveillance sample can

then be formulated in terms of either confidence or credible

bounds on the surveillance sample-specific intercept. This is

readily accomplished in a Bayesian setting using the software

WinBUGS [18], which generalizes the credible bounds from

the SRS situation. We present a hypothetical example, and

distinguish between what we call ‘‘nominal’’ and ‘‘real’’

weights. The rationale for the specific regression models

structure is presented in Appendix S1 (Weight Models).

6) We compare real weights, which accommodate uncertainty in

the learning data set, to nominal weights, which are

unadjusted point estimates of sample weights. We demon-

strate that real weights should be preferred when the learning

data set is small to moderate in size. We compare our real and

nominal weights to the WM’s weights obtained for Colorado

mule deer (Odocoileus hemionus).

7) We discuss the application of our ideas from both surveillance

design and surveillance evaluation perspectives. We advocate

real weights as a heuristic surveillance design tool; that is,

various sample compositions can be evaluated by totaling up

their real weight point scores. To evaluate a surveillance

program after it has been performed, we advocate an exact

posterior bound approach.

We provide the software code that we used for our examples in

the Supplement.

Model Background

Freedom-from-disease surveillance as a traditional
hypothesis test

Frequentist hypothesis tests are usually designed such that the

Type I error rate (a) is controlled at some prescribed level. The

Type I error rate is the probability that the alternate hypothesis

(HA) is declared true when in fact the null hypothesis (H0) is true.

Statistical hypothesis tests should be structured such that the Type

I error is the scientifically more important because hypothesis tests

generally do not control the Type II error rate [19]. Regardless of

whether our focus is on wildlife, domestic animal, or human

health, in freedom-from-disease testing, we want to control the

probability (a) we incorrectly declare units disease-free, especially

Bayesian Wildlife Disease Surveillance
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when the consequences of mistakenly concluding a unit is disease-

free are serious. If pt is the disease-free policy target (or threshold)

prevalence, with freedom-from-disease really meaning pv pt,

then these considerations lead to the appropriate hypothesis test

structure:

H0 : p§ pt

HA : pv pt

This hypothesis structure reflects that the burden of proof rests

on the declaration that a unit is disease-free (e.g., [19], [20], [21]).

Let C be the number of positive animals observed in a sample of

size N. For a declaration of freedom-from-disease to be

credible,C~0(this might not be the case for all diseases, but few

would question this for CWD) prescribes the critical region for this

test (probability of rejecting H0), which means the total sample size

N must be manipulated to achieve a (this is a little different from

most typical testing setups in which N is fixed and the critical

region is manipulated to achieve a, but this is of no particular

significance otherwise). The Type I error rate a is the maximum

probability of observing the critical region C~0when H0: p§ ptis

true. Assuming a large population with SRS, this is generally given

as Pr C~0ð Þ~ 1{pð ÞNunder H0, which is maximized at

a~ 1{ ptð ÞN . If for example we set a~0:05and pt ~0:01, we

obtain N a~0:05, pt ~0:01ð Þ~298 (for small populations, this

approach gives conservative results).

These calculations are at the core of most wildlife disease

surveillance sampling designs, although they are often not

explicitly framed in terms of hypothesis tests. Because the

probability of observing at least one positive subject is

Pr Cw0ð Þ~1{ 1{pð ÞN , solving b~1{ 1{pð ÞN for N with

fixed b and pt is sometimes described as a surveillance design that

achieves a ‘‘confidence of b’’ that disease would be detec-

tedPr Cw0ð Þif prevalence is greater than or equal to pt (e.g., [11]).

While this terminology appears to be blending aspects of

hypothesis testing and confidence intervals, the intent and effect

appear to be essentially the same as our hypothesis test framing.

The Equivalence of hypothesis tests and confidence
bounds

There is a one-to-one correspondence between one-sided

hypothesis tests and confidence bounds (e.g., [19]), and an a-level

one-sided hypothesis test can always be inverted to obtain a

1{aconfidence bound (we address confidence intervals/bounds

and the notion of coverage probability in more detail later). Thus

confidence bounds lead to a unifying interpretation of disease

surveillance in terms of supported prevalence values (values

consistent with the observation 0/N), rather than disease detection

in a hypothesis testing framework. Disease surveillance can be

reframed in terms of a confidence bound: N should be large

enough that if C~0 was observed, only prevalence values less

than pt are supported at confidence level 1{a. This confidence

bound view of disease surveillance is implicit in [21].

Thus, disease surveillance objectives can be viewed ‘‘simply’’ as

a problem of constructing narrow enough confidence bounds for

the situation when C~0positives out of N samples is observed.

Although simple in statement, this problem is not so simple in

solution. Most confidence intervals involved in the analysis of

binary (0–1) data involve large sample theory (asymptotic)

approximations. When C~0, the maximum likelihood estimate

(MLE) of prevalence is 0 and the estimate is on the boundary of

the parameter space. At this boundary, Brown, Cai and DasGupta

([22]; BCD) show asymptotic approximations break down and a

popular solution is to invert the binomial exact test used in the

hypothesis test above, referred to as the ‘‘exact’’ or Clopper-

Pearson procedure (BCD). Cai [23] and BCD criticize the

Clopper-Pearson procedure because it is conservative; it never

produces confidence bounds with coverage less than1{a, and

sometimes coverage can be substantially greater. For freedom-

from-disease surveillance, conservative coverage seems reasonable

as the method should always perform at least as advertised (e.g.,

[24]) and we adopt the Clopper-Pearson confidence bound as the

standard to emulate as closely as reasonably possible.

Bayesian Credible Intervals; Reverse Engineering to
Achieve Good Coverage

Many Bayesians acknowledge the usefulness of the frequentist

notion of confidence interval (or bound) coverage probabilities as a

performance metric, and employ it to evaluate Bayesian credible

intervals (or bounds). Alternatively, a Bayesian perspective often

suggests ways in which frequentist confidence intervals can be

improved (e.g., [17], [25]).

As noted by Cai [23], exact binomial Clopper-Pearson

confidence bounds correspond to B eta1{a 1,Nð Þ, meaning the

1{að Þ � 100 percentile of aBeta a~1,b~Nð Þdistribution. When

viewed in a Bayesian context as a posterior credible bound given

the observations C~0jN, it is reasonable to ask what prior

distribution was imposed on p to achieve this posterior. To achieve

this posterior for a binomial likelihood with 0|N, it can be seen

that this corresponds to assigning the priorBeta 1,b?0ð Þ to p
(Appendix S1; Prior Matching). This is a curiously pessimistic

prior that puts all the prior mass atp~1; it expresses the prior

belief that all animals are infected. This pessimism is consistent

with the observed conservatism of Clopper-Pearson bounds. BCD

advocate the Jeffreys prior Beta(0.5, 0.5) on the basis that resulting

confidence intervals are ‘‘more accurate’’ and ‘‘less wasteful’’ than

Clopper-Pearson, but this produces coverage that may be

considerably less than 1{a (See [25] for a discussion of Jeffreys

and other priors). Our initial analyses indicated that Jeffreys priors

can produce coverages substantially less than 1{afor small p,

which is a particular problem for freedom-from-disease surveil-

lance studies which should never be liberal. For example, we

determined that withp~0:01andN~200, a 95% Jeffreys confi-

dence bound only achieved 87% coverage. We agree with Casella

[24] that confidence intervals (and confidence bounds) should

perform as advertised; they should never provide substantially less

than 1{acoverage.

A popular ‘‘common-sense’’ prior for the analysis of binary data

has long been the Bayes-Laplace prior, which is simply the

uniform distribution on 0-1 assigned to p and is equivalent to the

Beta(1,1) distribution. Tuyl, Gerlac and Mengersen [26] argue

strongly for the desirability of this prior based on its predictive

properties. The Bayes-Laplace prior leads to what we call the

Bayes-Laplace confidence bound, which is easily shown to be

B eta1{a 1,Nz1ð Þ and is equivalent to the Clopper-Pearson

confidence bound based onNz1observations (see Appendix S1;

Prior Matching). There is essentially no practical difference

between the Clopper-Pearson and Bayes-Laplace confidence

bounds coverages for moderate sample sizes; in our example

above where Jeffreys bounds achieve 87% coverage, Clopper-

Pearson and Bayes-Laplace both achieve 100%. While the Bayes-

Laplace confidence bound will be slightly more liberal than the

Clopper-Pearson, it still tends to be conservative. In a surveillance

context, this conservatism is preferable to the liberal error
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associated with use of Jeffreys prior. We prefer Bayes-Laplace over

the ‘‘Clopper-Pearson prior’’ Beta 1,b?0ð Þ, since the latter lacks

intuitive motivation and can elicit computational difficulties in the

Bayesian MCMC sampling framework (e.g., WinBUGS seems to

have problems if b is much less than 0.01).

In the Bayesian context, Bayes-Laplace credible bounds inherit

the desirable frequentist characteristics of Bayes-Laplace confi-

dence bounds obtained by prior matching. The problem is that

confidence bounds for the C~0 situation seem difficult to

generalize beyond the SRS setting, whereas credible bounds seem

naturally generalizable, as we will demonstrate. The Bayes-

Laplace credible bound is found by solving a~ 1{ ptð ÞN z1,

which is easily done by hand calculator. We show how this can

also be done in WinBUGS (Software Code S1; Program 1)

because it provides a useful stepping stone for later development. If

we set N~297, we find the 1{a 95% percentile of the posterior

distribution to be p~0:01, which although practically the same as

the Clopper-Pearson confidence bound has a very different

interpretation.

The Two Meanings of Statistical Assurance
Given the importance of confidence and credible bounds to our

approach, some background on both is useful. Both impart

information about the statistical assurance of parameter values,

but the nature of this assurance is very different and worth

understanding in the disease surveillance context. It is not

uncommon for practitioners to have an unclear understanding of

how to interpret a frequentist confidence bound. (Anyone who

feels they really understand confidence intervals should read BCD

and see if the feeling remains!) A confidence bound is a random

variable. A 1{aupper confidence bound computed from data as

pU means that in an infinite number of future sets of samples from

the same population with true prevalencep, if pU is always

computed in the same way in these future samples, in at

least 1{að Þ � 100%of the infinite future cases pv pU would be

true. Thus a confidence bound is a statement about the behavior

of a random bound in a series of hypothetical sample sets

generated from the same underlying process. The confidence

bound generated from a given sample of data can be considered

one realization from these sample sets. As such, the frequentist

confidence bound provides an indirect, yet intuitive (some would

claim), measure of assurance regarding pv pU in the sample at

hand. Many practitioners erroneously conclude that confidence is

simply the probability that pv pU , but this is the definition of a

Bayesian credible bound [19]. This difference in interpretation

reflects the frequentist versus Bayesian interpretation of probability

– ‘‘the probabilities of things and the probabilities of our beliefs

about things’’ [27].

Confidence bounds can be criticized for the convoluted

interpretation that they require when used as a data interpretation

tool (e.g., [19]). On the other hand, there seems to be agreement,

even among most Bayesians, that the frequentist notion of

coverage probability inherent in confidence bounds is a desirable

performance metric for assurance measures. The usual criticism of

credible bounds is that it requires the subjective specification of

prior belief. It could be argued that the ideal assurance measure

shares the strong points of both confidence and credible bounds:

credible bounds that enjoy the clear Bayesian interpretation yet

achieve good coverage behavior when viewed as frequentist

confidence bounds. This justifies our use of the Bayes-Laplace

confidence/credible bound (see Appendix S1; Prior Matching).

However, it is not the clarity of the Bayesian interpretation that

primarily motivates our Bayesian approach. With auxiliary data (a

learning set), there appears to be no way forward with respect to

extending frequentist confidence bounds, while the way is clear

with Bayesian credible bounds. We consider this in more detail

next.

Model Implementation

Changing Scales – Binary Regression Models for
Surveillance Data

It is traditional to analyze binary event data, such as disease test

data, with logistic regression. In essence, the logistic function

remaps prevalence p from 0 to 1 to a new scale, the logistic scale,

which covers the entire real line. Most software programs allow

fitting a regression model without any covariates, that is, an

intercept-only, or grand mean model. On the logistic scale, this

can be represented as logit pð Þ~m, where logit() refers to the

logistic transformation of prevalence. If one attempts to fit this

model using traditional frequentist logistic regression software for

the case where no events C~0ð Þ were observed, it will fail because

the traditional large sample approximations methods used by

popular software break down.

However, the no event case presents no particular challenge in

the Bayesian context. This is because Bayesian computations are

essentially exact and not based on large sample approximations

(WinBUGS uses numerical methods to obtain exact results – the

longer it is allowed to run, the smaller the numerical error

becomes in general. In contrast, traditional generalized linear

model software uses numerical methods to obtain approximate

results; numerical errors can be reduced by more iterations but

approximation error cannot.)

We illustrate how this is done in WinBUGS (Software Code S1;

Program 2) for the surveillance situation where 297 animals were

sampled with no positives. We use the complementary log-log

(cloglog) link instead of the logistic link, but the basic principle

remains the same. We used the logistic link above because readers

are much more likely to be familiar with it than the cloglog link,

but we develop in the Appendix (Appendix S1; Weight Models)

why the cloglog link is better suited to our goals. At this point, it

may appear the cloglog transform is simply adding an additional,

apparently pointless, step beyond our previous Bayes-Laplace

approach. Our reason for presenting this stepping stone becomes

clear in the next two sections when we consider auxiliary data

from outside the surveillance area.

Modeling Auxiliary Information
Suppose we have sampled an area known to have CWD; we

refer to this as auxiliary information or the learning data set (L).

Sex is known to be a risk factor for CWD; we will use it for

illustration. We will use x to indicate sex, with x~0for females and

x~1for males. Let Nx be the sex-specific sample size, and let Cx be

the respective number of positives found. For illustration,

assumeN0 ~ N1 ~200,C0 ~10, andC1 ~20; the observed (em-

pirical or apparent) prevalence in males is twice that of females.

We could fit the model cloglog Ci =Nið Þ~ mL zb xi, where i

refers to the i-th category of samples. Because x is the male

indicator, the intercept mL is the cloglog-transformed female

prevalence in the learning data set. In this model, b is referred to

as the log hazard ratio, andw~ exp bð Þis the hazard ratio

(Appendix S1). We will refer to w and estimates of it as ‘‘nominal

weights’’.

This model can be readily fitted to the auxiliary data using

traditional generalized linear model software. This model is also

easily fitted with WinBUGS (Software Code S1; Program 3). (The

large-variance normal prior on b is a traditional approach to

establishing an essentially vague yet proper prior; see for example
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Appendix C of [28].) For our hypothetical example the posterior

mean (and standard deviation) for the male log hazard ratio b is

0.656 (0.379). The posterior mean for the hazard ratio

w~ exp bð Þ, or nominal weight, is 2.07; very close to the observed

2:1 prevalence ratio observed in the data. As noted, the analyses

up to this point could be done with either traditional frequentist or

Bayesian software. The problem with the frequentist approach

would arise when one then attempts to integrate surveillance data

in which no positives were observed.

When we obtain a point estimate of the nominal weight w our

certainty in it will depend on the strength of the learning set, just as

for any regression coefficient in general. If our data set is small and

we obtain an estimate of w of 2, we may be reluctant to conclude

that a male is actually worth 2 females, but our certainty in this

should increase as the sample size increases. We later describe how

to calculate modified weights (which we refer to as real weights)

that adjust for such uncertainty due to sample size.

Augmented Surveillance
We now combine our hypothetical surveillance sample of 297

animals and our learning sample from before. Will the learning

data set change our conclusions about surveillance? As we will see,

the answer is that it depends. Let di be an indicator variable for

whether the i-th sample is from the surveillance di ~1ð Þor learning

data set di ~0ð Þ. The model for the augmented analysis then

becomes cloglog Ci =Nið Þ~ 1{ dið ÞmLz di mS zb xi, where mL

and mS are data-set specific female intercept terms for the learning

and surveillance data sets respectively. Note that we can back-

transform mS to pS, the prevalence in the surveillance sample.

Given how the model is parameterized, this is the female

prevalence, which we have established as the baseline.

Suppose all 297 surveillance subjects are females. If we run this

analysis (Software Code S1; Program 4) and establish a 95%

credible bound for pS, we find it is pS = 0.01. This is exactly as it

was before in the absence of any auxiliary learning data. This is

exactly as it should be. In the auxiliary analysis, the baseline was

established as the females. As the reference group, the observation

of a female provides a unit amount of information in the

surveillance sample.

Now suppose all 297 surveillance subjects are males (Software

Code S1; Program 5). We now find the 95% credible bound for pS

to be 0.0058. Recall that pS is the prevalence for the baseline

female group; we can now be 95% certain that female prevalence

pS is less than 0.0058 with 297 male samples in contrast to 0.01

with 297 female samples. Because the auxiliary sample showed

males have a higher risk of infection than the female reference

class, they contain more information regarding freedom-from-

disease, and hence the smaller bound.

If these models were attempted with traditional maximum

likelihood software, they would fail because the MLE for mS in the

absence of any positive surveillance events is negative infinity, on

the boundary of parameter space. Even if this is ‘‘patched’’ by

assigning some small number, usual methods for estimating the

standard error of the estimate of mS will fail. (Technically speaking,

this failure results from a violation of what are called the ‘‘usual

regularity conditions’’ on which traditional standard error

approximations are based – in particular the parameter estimate

is not in the interior of the parameter space as required.).

Returning to our augmented analysis, the nominal weight of

2.07 suggests that 1 male is worth a little more than 2 females. But

this assessment ignores statistical uncertainty in the nominal

weight estimate. We can account for this uncertainty by

progressively decreasing the surveillance sample of males until

the 95% credible bound matches the targetpS ~0:01, which

occurs at about N1 ~173males. We call this approach ‘‘target

bound-matching’’. Thus, a male surveillance sample is worth

about 297=173ð Þ~1:7females, given the information, albeit im-

perfect, from our learning data set. We will refer to weights

obtained in this manner, by target bound-matching, as real

weights.

Model Results

Weights in General
WM proposed the idea of weights or ‘‘points’’ that could be

assigned to an animal to reflect its value for detecting disease,

relative to some reference class of animals for which the point

value was 1. Under WM’s derivation, the parametric expression of

their weight was wW M~p1 = p0 (considering just two classes, with

class 0 being the reference class). Under our derivation (Appendix

S1) the parametric expression for our (nominal) weight is

w~ log 1 {p1ð Þ= log 1 {p0ð Þ. Generally speaking, our derivation

of w reflects how sample sizes and prevalences influence the

probability of detecting at least 1 positive subject in a sample. The

different derivations of w versus wWM lead to different behaviors.

Because w is based on the probability of detecting at least one

positive, p1 ~1has special significance because it means if even

one class 1 animal is sampled, a positive will be detected with

certainty. When p1 ~1, we say that class 1 constitutes a ‘‘perfect

sentinel’’ (only one sample is needed), and in which case

w~z?which is arguably desirable behavior (regardless of the

prevalence of the reference class, only one perfect sentinel needs to

be sampled). Figure 1 displays the parametric relationship between

w and wWM, and in particular it shows how they depart as p1 ?1.

These are parametric expressions; in reality one uses estimates

of these quantities. As these parametric expressions suggest, the

quality of the weight estimates rest largely on the quality of the

prevalence estimates. If the prevalence estimates are of low quality

with substantial uncertainty, estimates of w and wWM should not be

taken at face value but should be discounted in some way for

estimation uncertainty, which is considered next.

Nominal Weights versus Real Weights
As illustrated previously, we propose a method to obtain weights

that are adjusted for uncertainty through a process we call ‘‘target

bound-matching’’, we refer to these uncertainty adjusted weights

as ‘‘real weights’’. For large data sets with many positive cases, real

weights and nominal weights should correspond. Here we are

primarily interested in the factors that cause them to not

correspond, that is, what aspects of an auxiliary data set gives

rise to uncertainty when it comes to estimating nominal weights?

Considering just two classes, there are 4 statistics involved in

estimating weights, which are N0, N1, C0, and C1: the sample sizes

in the two classes, and the number of positives in the two classes,

respectively. In this 4-dimensional statistics space, what factors

result in large departures between real and nominal weights? This

requires exploring this sample space in a systematic manner; we

were interested in exploring regions of the space that correspond

with potential real world scenarios. One factor we wanted to

examine was the role of the empirical prevalence ratio, ŵw~p̂p1 = p̂p0,

where p̂pi ~Ci =Ni. Thus we did two sets of analyses, one for ŵw~2

and one for ŵw~10. Within each observed prevalence ratio we

looked at the effect of total sample size for sample sizes of

N0 ~ N1 ~100 andN0 ~ N1 ~200. With ŵwand Ni fixed, it was an

easy matter to compute all values of Ci consistent with the fixed

ŵwand Ni, which we did. We then compute the corresponding

estimated nominal weights ŵwand real weights R which we
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expressed as the ratio ŵw=R for standardization; the results

surprised us somewhat (Figure 2).

The observed prevalence ratio and total sample size has

relatively little influence over the estimated nominal weight/real

weight ratio. The primary determinate seemed to the number of

events (positives) Ci, while the number of trials Ni needed to

observe these events seem to have little influence. Figure 2 also

clearly illustrates that there is a point of diminishing returns, where

the real weights get very close to the nominal weights, and

relatively little is learned with additional sampling. The practical

implication for the learning set appears to be that one should seek

a happy medium; if few positives are observed, the real weights will

be low, but beyond a certain number of positives the additional

gain in real weight is negligible.

Real Data Application
Using the auxiliary data from WM’s Table 1 of Colorado mule

deer/CWD data[15], we first compute point estimates for weights

that are not adjusted for uncertainty. We do this in three ways. We

used SAS PROC GENMOD (Software Code S1; Program 8)

under WM’s Poisson assumption to obtain MLEs of their weights

wWM. As we note above, we need to use a Bayesian approach for

augmented (surveillance and auxiliary combined) analyses, but the

auxiliary data alone can be equally well analyzed by either

Bayesian or frequentist methods, and it is interesting to do so for

comparative purposes. We computed Bayesian nominal weights

for our binomial model (Software Code S1; Program 6) and their

maximum likelihood equivalents using SAS PROC GENMOD

(Software Code S1; Program 8). As expected, our estimated

Figure 1. Nominal weights as a function of the prevalence ratio p1 =p0and prevalence p0. Nominal weights are shown for 5 fixed
prevalence ratios: 10, 5, 2, 1, and 0.5, which are in ascending order in the figure. The x-axis is the denominator prevalence p0. Nominal weights
increase rapidly as the numerator prevalence p1 approaches 1; as the numerator class becomes more like a ‘‘perfect sentinel’’.
doi:10.1371/journal.pone.0089843.g001
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nominal weights are higher than estimated WM’s weights in high

prevalence situations (Table 1) because of the sort of behavior

demonstrated in Figure 1. The Bayesian and frequentist estimates

of our nominal weights are the same for practical purposes.

We then used credible bound matching in our Bayesian model

to obtain real weights for the Colorado data set (Table 2). The real

weights closely matched the estimated nominal weights obtained

from the learning data for all but the three lowest weighted classes.

This stability reflects the relatively large number of positives in

most of the learning set categories.

Discussion

We think real weights are useful to motivate the notion that

targeted surveillance schemes should accommodate uncertainty.

We also think they are a useful design tool for researchers tasked

with conducting surveillance – if testing resources are limited, real

weights can be used as a rule-of-thumb to prioritize samples during

the design and implementation phases. For example, using the

Colorado data for illustration, ifPr pv0:01ð Þ§0:95 is the goal,

and harvested-adult-males are deemed a reasonable reference

category forp, this goal can be achieved with a surveillance sample

of 297 harvested-adult-males. But this goal could also be achieved

Figure 2. Factors controlling the departure of real and nominal weights. The red curves correspond to a prevalence ratio of 10, and the
black curves correspond to a prevalence ratio of 2. For each fixed prevalence ratio, two sample sizes N0 ~ N1 ~100(plotting symbol = 1) and
N0 ~ N1 ~200(plotting symbol = 2) are shown. For a fixed prevalence ratio and sample size, one can vary the number of positives in class 0 (C0), and
compute the corresponding number of positives in class 1 (C1). The x-axis is C0. One can then compute the nominal and real weights from C0, C1, N0,
and N1. The primary determinate for departures between the real and nominal weights appears to be the number of positives in the sample (x-axis),
and not the total sample size (1 versus 2 plotting symbol). The apparent prevalence ratio (red versus black) appears to play a minor secondary role.
doi:10.1371/journal.pone.0089843.g002
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with as few as 22 suspect-females (297/13.5). In many cases, it may

not be possible to simply sample the highest weight subjects, but

one could still focus on generally high weight subjects. For

example, if one summed up the real weights for 10 suspect-

females, 10 suspect-males, and 23 others, the summed real weight

is 297.7. When we calculate the exact posterior credible bound for

such an observation (Software Code S1; Program 7), we observe

Pr pv0:0096ð Þ§0:95, so we have slightly overshot our goal

(which is usually not a bad thing).

As this illustrates, we have noticed that in general real weights

do not exhibit perfect additivity, in particular when the

discrepancy between real and nominal weights is large (not

illustrated). Thus, although we feel that real weights are a useful

design tool for planning and prioritizing samples and ‘‘getting in

the ballpark’’ with respect to the effective sample size, we advocate

exact posterior bounds as we just illustrated to evaluate the specific

performance of a surveillance sample.

Typically, logistics constrain the number of surveillance samples

that a monitoring agency can obtain. Real weights allow the

agency to realistically prioritize high-value animals. By summing

weights, they can also keep track of how well a surveillance

program is progressing by summarizing the ‘‘effective’’ sample size

in terms of a synthetic sample of all reference animals; however we

recommend some caution in this respect. As we note, real weights

are not purely additive, and we advocate that exact posterior

bounds be used to rigorously determine whether the surveillance

goal ofPr pv ptð Þ§1{ahas been achieved. Summed real weights

should be viewed as rules-of-thumb, and should be useful in

designing and monitoring a surveillance effort.

The choice of reference class is mainly a matter of common

sense; it should be some class of animals in which one would be

interested in statements about disease presence, typically a

common class. This notion is sometimes criticized for its apparent

arbitrariness; but this completely misses the point – such criticism

is akin a saying the Celsius scale measures temperature better than

Fahrenheit. Indeed, without such standardization, it seems

essentially impossible to make meaningful comparative statements

about how well surveillance has been performed in various units.

Clearly, a surveillance sample of 297 harvest-fawns is not

equivalent to a sample of 297 harvest-adult-males; only an

approach such as ours allows an ‘‘apples-to-apples’’ comparison

of certainty of ‘‘freedom-from-disease’’ from different areas.

For CWD, the standard USDA certified tests are regarded as

being essentially 100% specific. However, for an animal that has

Table 1. Estimates of nominal CWD surveillance weights for 8 classes of mule deer from Colorado (data from WM[15]) using a
binomial complementary log-log regression model with Bayesian and maximum likelihood approaches, as well as a Poisson
regression model.

Binomial Poisson C/N

Mortality Source Bayesian (SD) MLE (SD) MLE (SD)

Suspect-F 14.1 (2.40) 14.1 (2.4) 11.6 (1.6) 40/111

Suspect-M 12.2 (2.05) 12.2 (2.06) 10.3 (1.46) 40/125

Other 1.9 (0.24) 1.9 (0.25) 1.9 (0.24) 77/1,300

Harvest-adult-M 1 (NA) 1 (NA) 1 (NA) 313/10,046

Harvest-adult-F 0.57 (0.06) 0.57 (0.06) 0.58 (0.06) 104/5,782

Harvest-juv-F 0.44 (0.15) 0.44 (0.15) 0.45 (0.15) 9/645

Harvest-juv-M 0.25 (0.08) 0.25 (0.08) 0.25 (0.08) 11/1,329

Harvest-fawn 0.03 (0.03) 0. 03 (0.03) 0.03 (0.03) 1/999

Notes: The Harvest-adult-M category is used as the reference class in these analyses, as in WM [15]. We provide both the count of CWD positive animals (C) and the total
number sampled (N) from WM [15].
doi:10.1371/journal.pone.0089843.t001

Table 2. Nominal and real surveillance weights calculated using data from WM[15].

Mortality Source Nominal Weight (SD) Real Weight (Ri) C/N

Suspect-female 14.1 (2.40) 13.5 40/111

Suspect-male 12.2 (2.05) 11.9 40/125

Other 1.9 (0.24) 1.9 77/1,300

Harvest-adult male 1 (NA) 1 313/10,046

Harvest-adult female 0.57 (0.06) 0.57 104/5,782

Harvest-yearling female 0.44 (0.15) 0.39 9/645

Harvest-yearling male 0.25 (0.07) 0.23 11/1,392

Harvest-fawn 0.03 (0.03) 0.006 1/999

For real weights, a sample equivalent toNH arvest{adult{males~297 reference class animals was needed to obtain the target goal, which is for the posterior
probability Pr pt ƒ0:01ð Þ§0:95.
Notes: Values for nominal weights are the Bayesian posterior means of the hazard ratios. Real weights were obtained by posterior credible bound matching, described in
the text.
doi:10.1371/journal.pone.0089843.t002
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just recently experienced an infection event, it may not test

positive, so in this sense the test may not be 100% sensitive, but it

is very difficult to quantify this. The most straightforward

approach would be to recognize the possibility that apparent

prevalence might be lower than true prevalence, and set an

appropriately conservative (small) threshold for pt. If sensitivity

and specificity can be quantified, extensions similar to Cameron

and Baldock [21] could be explored. Another potential modifica-

tion would be to include a finite population correction factor if the

population size is known [21]; our approach is conservative for

small populations, that is, the actual assurance level will probably

be higher than the nominal 1{alevel, which is appropriate for

disease surveillance.

Ideally, we recommend agencies collect learning data from their

unique disease systems for subsequent calculation of real weights in

their surveillance efforts. If relatively local data are available, the

desirability of including spatial structure as a risk factor, similar to

that employed for disease risk mapping [29], could be explored. If

relatively local data are not available, caution should be exercised

when generalizing information from other systems. As we

presented our approach, we always included the data from the

learning set directly into the augmented analysis of the surveillance

data. However, we could have partitioned our analyses into two

steps – first obtain the posterior distributions for the log hazards

from the learning set, and then use these posteriors as priors in the

evaluation of the surveillance set, perhaps using normal approx-

imations. If we have doubts about the generalizability of the

learning set to our surveillance set, we could manipulate the priors

going into the surveillance analysis from the learning set to reflect

this added uncertainty, for example increasing their variance to

evaluate the sensitivity of the results to this added uncertainty. This

is a natural application of the Bayesian concept of uncertainty.

Supporting Information

Appendix S1 Prior Matching and Weight Models. The

technical details behind prior matching and our derivation of

sample weight models is given here.

(DOC)

Software Code S1 Software Code for Examples. The

WinBUGS and SAS code is given here for all of our examples.

(DOC)
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