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surveillance, but this can result in overly optimistic statements regarding freedom from disease due to not accounting for
the uncertainty in the auxiliary information; our approach remedies this. We compare our Bayesian approach to a published
example of risk weights applied to chronic wasting disease in deer in Colorado, and we also present calculations to examine
when uncertainty in the auxiliary information has a serious impact on the risk weights approach. Our approach allows
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Introduction

Managing a harmful contagious disease in either domestic
animals or wildlife can typically result in expensive and unpopular
actions such as culling and quarantine. For free-ranging wildlife
populations subject to hunting, restrictions on carcass transporta-
tion and hunting over bait are other examples of common but
unpopular disease management tools. If a management unit (or
population) can be declared “disease-free”, these actions can be
avoided. Demonstrating “freedom from disease” in an animal
population is rooted in regulatory requirements pertaining to
national and international domestic animal trade [1], although the
phrase can be conceptually and legally ambiguous [2],[3]. The
only way to demonstrate an area is truly disease-free is to conduct
a complete census, which is almost always impractical. Instead, a
sample of animals from a population must be tested to obtain a
probabilistic statement about disease level. Sampling methods to
achieve this goal have been investigated for several decades (see [4]
for review), and management agencies are increasingly tasked with
developing sampling programs in free ranging wildlife [5],[6].

Although the term freedom-from-disease is commonly used in
this sampling setting [7],[8],[9], it is a misnomer from the
statistical point of view. What is usually actually meant is that
disease prevalence 7 is ascertained to be below some designated
target threshold 7, with some level of “assurance” (we elaborate on
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what this means later). Indeed, policy may allow an area to be
declared “free from disease” even if disease is observed to be
present, but at an acceptably low leveln < m;(e.g., [7]). Determin-
ing what target prevalence level 7, is acceptably low for an area to
be deemed disease-free is a case-by-case policy issue (see [3]) which
we do not address; our concern is in efficiently determining
whether the true prevalence 7 is less than the target threshold m,
with an appropriate degree of statistical assurance.

Sampling to ascertain freedom-from-disease is often referred to
as surveillance. Surveillance in free-ranging wildlife is typically
very expensive financially and logistically. While easy to design,
popular simple random sampling (SRS) may also be the least
efficient for heterogeneous populations and will in general require
the greatest number of samples to determine 7 < 7,with the degree
of prescribed assurance. Large gains over SRS in terms of
information per sample can often be realized with some type of
stratified, targeted, or weighted sampling.

We use surveillance for chronic wasting disease (CWD) for
illustration. Chronic wasting disease is a prion disease of free-
ranging and captive cervids (deer, elk, moose), and although there
is no evidence that it has been transmitted to humans, it is
concerning because prion diseases also include bovine spongiform
encephalopathy (BSE), or “mad cow” disease, known to be
transmissible to humans. CWD has been discovered in 15 states in
the United States of America, and negatively affects cervid

March 2014 | Volume 9 | Issue 3 | e89843



populations in those regions. Additionally, its known extent
continues to spread [10]. For such diseases, it is desirable to
detect their presence while the prevalence is still very low and
hopefully amenable to management, hence the target thresholds =,
are typically quite low, and potentially very challenging to assess.
We show the value in using what is known about individual-
specific infection risk factors obtained from outside the surveillance
area but reasonably generalizable to the surveillance area. This
work was initially motivated to facilitate the design of efficient
surveillance. However, our approach also provides a valuable tool
for evaluating the effectiveness of surveillance already conducted;
in fact we would argue an approach such as ours is really the only
valid way to make ‘“apples-to-apples” comparisons of the
effectiveness of multiple surveillance efforts (either in space or
time) involving heterogeneous samples.

Several papers have considered the SRS designs of CWD
surveillance programs for free-ranging wild animal populations
[11],[12]. Nusser et al. [13] explored sampling designs in a
simulated CWD system and highlighted the shortcomings of
convenience sampling, proposing alternatives based on probability
sampling. Diefenbach, Rosenberry and Boyd [14] considered
CWD surveillance protocols in Pennsylvania and called for an
expanded surveillance stream beyond sole reliance on hunter
harvested deer. More recently, to exploit auxiliary information
about CWD risk, Walsh and Miller (WM; [15]) developed a
surveillance design incorporating a points-based risk factor
weighting system (also see [16]). By focusing on high value (high
risk) animals, statistical assurance of freedom-from-disease can be
achieved with substantially fewer animals than SRS.

Like stratified sampling designs, weighted surveillance programs
such as WM’s promise great increases in efficiency when there is
substantial population heterogeneity in the measured response
(e.g. infected or mnot) associated with observable risk factors.
Typically two sample sets are required: 1) a “learning sample”
from an area where the disease is present, and 2) the “surveillance
sample” from the area to be evaluated. The learning sample is
used to determine what factors, such as age and sex, put animals at
different risks for infection. In essence, this is a regression problem,
where the risk weights are estimated by (potentially transformed)
regression coeflicients from the learning sample. In contrast to the
learning sample, it is typical to not observe any diseased animals in
the surveillance sample. But even in the absence of positive
animals in the surveillance sample, risk weights from the learning
set can increase the assurance that 7 < mjn the surveillance
population, which forms the basis of the WM approach. As with
regression coefficients in general, the precision and accuracy of
these estimated weights depends on the quality and quantity of
data used to estimate them. Taking these regression coefficients or
weights at face-value without accounting for their uncertainty can
result in a considerably over-optimistic assessment of the assurance
of m< m,.

Some background seems desirable before we present our
method. We first present how the goal of disease surveillance is
equivalent to applying a confidence or credible bound on 7. This
task has historically been a statistical challenge; when none of N
samples are positive it amounts to putting a confidence bound on
an estimate of zero. Special techniques are required, and there are
both frequentist confidence bound and Bayesian credible bound
procedures that perform well for the 0/ situation. However,
because of the nature of the calculations, frequentist confidence
bounds appear to troublesome when auxiliary data (a learning set)
exists, while Bayesian procedures appear to generalize naturally.
Therefore, we propose a Bayesian approach that automatically
propagates uncertainty about risk factors and weights sampled
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individuals appropriately. The development of our approach is as
follows:

1) We first show SRS surveillance as traditionally designed and
conducted can be productively framed as a traditional one-
sided hypothesis test.

2) Then, we note the equivalence of one-sided hypothesis tests
and confidence bounds.

3) Frequentist confidence bounds work fine in the SRS context,
but Bayesian credible bounds prove more useful for extension
to auxiliary information. So, we develop a Bayesian credible
bound that has good frequentist coverage properties using a
“prior matching” approach. Prior matching involves identi-
fying Bayesian posterior probabilities that also have interpre-
tations as frequentist confidence intervals [17].

4) We briefly consider various concepts of “statistical assurance”;
although confidence and credible bounds “look” similar, they
have very different substantive interpretations with respect to
what they tell us about 7 < m;.

5) We show how a learning and surveillance sample can be
combined into a single augmented regression analysis
containing data set-specific intercepts, and how statements
about the assurance of m< m; in the surveillance sample can
then be formulated in terms of either confidence or credible
bounds on the surveillance sample-specific intercept. This is
readily accomplished in a Bayesian setting using the software
WinBUGS [18], which generalizes the credible bounds from
the SRS situation. We present a hypothetical example, and
distinguish between what we call “nominal” and ‘“real”
weights. The rationale for the specific regression models
structure is presented in Appendix S1 (Weight Models).

6) We compare real weights, which accommodate uncertainty in
the learning data set, to nominal weights, which are
unadjusted point estimates of sample weights. We demon-
strate that real weights should be preferred when the learning
data set is small to moderate in size. We compare our real and
nominal weights to the WM’s weights obtained for Colorado
mule deer (Odocoileus hemionus).

7) We discuss the application of our ideas from both surveillance
design and surveillance evaluation perspectives. We advocate
real weights as a heuristic surveillance design tool; that is,
various sample compositions can be evaluated by totaling up
their real weight point scores. To evaluate a surveillance
program after it has been performed, we advocate an exact
posterior bound approach.

We provide the software code that we used for our examples in
the Supplement.

Model Background

Freedom-from-disease surveillance as a traditional

hypothesis test

Frequentist hypothesis tests are usually designed such that the
Type I error rate (o) is controlled at some prescribed level. The
Type I error rate is the probability that the alternate hypothesis
(Ha) is declared true when in fact the null hypothesis (Hy) is true.
Statistical hypothesis tests should be structured such that the Type
I error is the scientifically more important because hypothesis tests
generally do not control the Type II error rate [19]. Regardless of
whether our focus is on wildlife, domestic animal, or human
health, in freedom-from-disease testing, we want to control the
probability (x) we incorrectly declare units disease-free, especially

March 2014 | Volume 9 | Issue 3 | e89843



when the consequences of mistakenly concluding a unit is disease-
free are serious. If 7, is the disease-free policy target (or threshold)
prevalence, with freedom-from-disease really meaning n< m,
then these considerations lead to the appropriate hypothesis test
structure:

Hy:n> =,

Hp:n<m,

This hypothesis structure reflects that the burden of proof rests
on the declaration that a unit is disease-free (e.g., [19], [20], [21]).

Let (’be the number of positive animals observed in a sample of
size. N. For a declaration of freedom-from-disease to be
credible,C = 0(this might not be the case for all diseases, but few
would question this for CWD) prescribes the critical region for this
test (probability of rejecting Hy), which means the total sample size
N must be manipulated to achieve o (this is a little different from
most typical testing setups in which VN is fixed and the critical
region is manipulated to achieve «, but this is of no particular
significance otherwise). The Type I error rate o is the maximum
probability of observing the critical region C=0when Hy: n> m,is
true. Assuming a large population with SRS, this is generally given
as Pr(C=0)= (1—n)"under H,, which is maximized at
a= (1—m,)". If for example we set a=0.05and 7, =0.01, we
obtain N(x=0.05,7, =0.01)=298 (for small populations, this
approach gives conservative results).

These calculations are at the core of most wildlife disease
surveillance sampling designs, although they are often not
explicitly framed in terms of hypothesis tests. Because the
probability of observing at least one positive subject is
Pr(C>0)=1— (1—n)", solving f=1— (1—n)" for N with
fixed f and 7, is sometimes described as a surveillance design that
achieves a “confidence of f” that disease would be detec-
tedPr(C > 0)if prevalence is greater than or equal to 7, (e.g., [11]).
While this terminology appears to be blending aspects of
hypothesis testing and confidence intervals, the intent and effect
appear to be essentially the same as our hypothesis test framing.

The Equivalence of hypothesis tests and confidence
bounds

There is a one-to-one correspondence between one-sided
hypothesis tests and confidence bounds (e.g., [19]), and an o-level
one-sided hypothesis test can always be inverted to obtain a
1 —aconfidence bound (we address confidence intervals/bounds
and the notion of coverage probability in more detail later). Thus
confidence bounds lead to a unifying interpretation of disease
surveillance in terms of supported prevalence values (values
consistent with the observation 0/N), rather than disease detection
in a hypothesis testing framework. Disease surveillance can be
reframed in terms of a confidence bound: N should be large
enough that if C=0 was observed, only prevalence values less
than 7, are supported at confidence level 1 —a. This confidence
bound view of disease surveillance is implicit in [21].

Thus, disease surveillance objectives can be viewed “simply” as
a problem of constructing narrow enough confidence bounds for
the situation when C=~0positives out of N samples is observed.
Although simple in statement, this problem is not so simple in
solution. Most confidence intervals involved in the analysis of
binary (0-1) data involve large sample theory (asymptotic)
approximations. When C =0, the maximum likelihood estimate
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(MLE) of prevalence is 0 and the estimate is on the boundary of
the parameter space. At this boundary, Brown, Cai and DasGupta
([22]; BCD) show asymptotic approximations break down and a
popular solution is to invert the binomial exact test used in the
hypothesis test above, referred to as the “exact” or Clopper-
Pearson procedure (BCD). Cai [23] and BCD criticize the
Clopper-Pearson procedure because it is conservative; it never
produces confidence bounds with coverage less thanl —o, and
sometimes coverage can be substantially greater. For freedom-
from-disease surveillance, conservative coverage seems reasonable
as the method should always perform at least as advertised (e.g.,
[24]) and we adopt the Clopper-Pearson confidence bound as the
standard to emulate as closely as reasonably possible.

Bayesian Credible Intervals; Reverse Engineering to
Achieve Good Coverage

Many Bayesians acknowledge the usefulness of the frequentist
notion of confidence interval (or bound) coverage probabilities as a
performance metric, and employ it to evaluate Bayesian credible
mtervals (or bounds). Alternatively, a Bayesian perspective often
suggests ways in which frequentist confidence intervals can be
improved (e.g., [17], [25]).

As noted by Cai [23], exact binomial Clopper-Pearson
confidence bounds correspond to Beta; —a(1,N), meaning the
(I—o) % 100 percentile of aBeta(a=1,h= N)distribution. When
viewed in a Bayesian context as a posterior credible bound given
the observations C=0|N, it is reasonable to ask what prior
distribution was imposed on 7 to achieve this posterior. To achieve
this posterior for a binomial likelihood with 0|, it can be seen
that this corresponds to assigning the priorBeta(l,b—0) to n
(Appendix S1; Prior Matching). This is a curiously pessimistic
prior that puts all the prior mass atm=1; it expresses the prior
belief that all animals are infected. This pessimism is consistent
with the observed conservatism of Clopper-Pearson bounds. BCD
advocate the Jeffreys prior Beta(0.5, 0.5) on the basis that resulting
confidence intervals are “more accurate” and “less wasteful” than
Clopper-Pearson, but this produces coverage that may be
considerably less than 1—o (See [25] for a discussion of Jeffreys
and other priors). Our initial analyses indicated that Jeffreys priors
can produce coverages substantially less than 1—ofor small =,
which is a particular problem for freedom-from-disease surveil-
lance studies which should never be liberal. For example, we
determined that withr=0.0landN =200, a 95% Jeffreys confi-
dence bound only achieved 87% coverage. We agree with Casella
[24] that confidence intervals (and confidence bounds) should
perform as advertised; they should never provide substantially less
than 1—uacoverage.

A popular “common-sense” prior for the analysis of binary data
has long been the Bayes-Laplace prior, which is simply the
uniform distribution on 0-1 assigned to 7 and is equivalent to the
Beta(1,1) distribution. Tuyl, Gerlac and Mengersen [26] argue
strongly for the desirability of this prior based on its predictive
properties. The Bayes-Laplace prior leads to what we call the
Bayes-Laplace confidence bound, which is easily shown to be
Betay—a(1,N+1) and is equivalent to the Clopper-Pearson
confidence bound based onN + lobservations (see Appendix S1;
Prior Matching). There is essentially no practical difference
between the Clopper-Pearson and Bayes-Laplace confidence
bounds coverages for moderate sample sizes; in our example
above where Jeffreys bounds achieve 87% coverage, Clopper-
Pearson and Bayes-Laplace both achieve 100%. While the Bayes-
Laplace confidence bound will be slightly more liberal than the
Clopper-Pearson, it still tends to be conservative. In a surveillance
context, this conservatism is preferable to the liberal error
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associated with use of Jeffreys prior. We prefer Bayes-Laplace over
the “Clopper-Pearson prior” Beta(1,b—0), since the latter lacks
intuitive motivation and can elicit computational difficulties in the
Bayesian MCMC sampling framework (e.g., WinBUGS seems to
have problems if 4 is much less than 0.01).

In the Bayesian context, Bayes-Laplace credible bounds inherit
the desirable frequentist characteristics of Bayes-Laplace confi-
dence bounds obtained by prior matching. The problem is that
confidence bounds for the C=0 situation seem difficult to
generalize beyond the SRS setting, whereas credible bounds seem
naturally generalizable, as we will demonstrate. The Bayes-
Laplace credible bound is found by solving a= (1—m,)" +1,
which is easily done by hand calculator. We show how this can
also be done in WinBUGS (Software Code S1; Program 1)
because it provides a useful stepping stone for later development. If
we set N =297, we find the 1 —a 95% percentile of the posterior
distribution to be m=0.01, which although practically the same as
the Clopper-Pearson confidence bound has a very different
interpretation.

The Two Meanings of Statistical Assurance

Given the importance of confidence and credible bounds to our
approach, some background on both is useful. Both impart
information about the statistical assurance of parameter values,
but the nature of this assurance is very different and worth
understanding in the disease surveillance context. It is not
uncommon for practitioners to have an unclear understanding of
how to interpret a frequentist confidence bound. (Anyone who
teels they really understand confidence intervals should read BCD
and see if the feeling remains!) A confidence bound is a random
variable. A 1—oupper confidence bound computed from data as
7y means that in an infinite number of future sets of samples from
the same population with true prevalencern, if m; is always
computed in the same way in these future samples, in at
least(1 —a) * 100%of the infinite future cases m< mywould be
true. Thus a confidence bound is a statement about the behavior
of a random bound in a series of hypothetical sample sets
generated from the same underlying process. The confidence
bound generated from a given sample of data can be considered
one realization from these sample sets. As such, the frequentist
confidence bound provides an indirect, yet intuitive (some would
claim), measure of assurance regarding m< myin the sample at
hand. Many practitioners erroneously conclude that confidence is
simply the probability that 7 < 7y, but this is the definition of a
Bayesian credible bound [19]. This difference in interpretation
reflects the frequentist versus Bayesian interpretation of probability

“the probabilities of things and the probabilities of our beliefs
about things” [27].

Confidence bounds can be criticized for the convoluted
interpretation that they require when used as a data interpretation
tool (e.g., [19]). On the other hand, there seems to be agreement,
even among most Bayesians, that the frequentist notion of
coverage probability inherent in confidence bounds is a desirable
performance metric for assurance measures. The usual criticism of
credible bounds is that it requires the subjective specification of
prior belief. It could be argued that the ideal assurance measure
shares the strong points of both confidence and credible bounds:
credible bounds that enjoy the clear Bayesian interpretation yet
achieve good coverage behavior when viewed as frequentist
confidence bounds. This justifies our use of the Bayes-Laplace
confidence/credible bound (see Appendix S1; Prior Matching).
However, it is not the clarity of the Bayesian interpretation that
primarily motivates our Bayesian approach. With auxiliary data (a
learning set), there appears to be no way forward with respect to
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extending frequentist confidence bounds, while the way is clear
with Bayesian credible bounds. We consider this in more detail
next.

Model Implementation

Changing Scales - Binary Regression Models for
Surveillance Data

It is traditional to analyze binary event data, such as disease test
data, with logistic regression. In essence, the logistic function
remaps prevalence 7 from 0 to 1 to a new scale, the logistic scale,
which covers the entire real line. Most software programs allow
fitting a regression model without any covariates, that is, an
intercept-only, or grand mean model. On the logistic scale, this
can be represented as logit(n)=u, where logit() refers to the
logistic transformation of prevalence. If one attempts to fit this
model using traditional frequentist logistic regression software for
the case where no events (C=0) were observed, it will fail because
the traditional large sample approximations methods used by
popular software break down.

However, the no event case presents no particular challenge in
the Bayesian context. This is because Bayesian computations are
essentially exact and not based on large sample approximations
(WinBUGS uses numerical methods to obtain exact results — the
longer it is allowed to run, the smaller the numerical error
becomes in general. In contrast, traditional generalized linear
model software uses numerical methods to obtain approximate
results; numerical errors can be reduced by more iterations but
approximation error cannot.)

We illustrate how this is done in WinBUGS (Software Code S1;
Program 2) for the surveillance situation where 297 animals were
sampled with no positives. We use the complementary log-log
(cloglog) link instead of the logistic link, but the basic principle
remains the same. We used the logistic link above because readers
are much more likely to be familiar with it than the cloglog link,
but we develop in the Appendix (Appendix S1; Weight Models)
why the cloglog link is better suited to our goals. At this point, it
may appear the cloglog transform is simply adding an additional,
apparently pointless, step beyond our previous Bayes-Laplace
approach. Our reason for presenting this stepping stone becomes
clear in the next two sections when we consider auxiliary data
from outside the surveillance area.

Modeling Auxiliary Information

Suppose we have sampled an area known to have CWD; we
refer to this as auxiliary information or the learning data set (£).
Sex is known to be a risk factor for CWD; we will use it for
illustration. We will use x to indicate sex, with x = Ofor females and
x = lfor males. Let N, be the sex-specific sample size, and let C, be
the respective number of positives found. For illustration,
assumeNo = N1 =200,Cp =10, andC; =20; the observed (em-
pirical or apparent) prevalence in males is twice that of females.
We could fit the model cloglog(C;/ N;)= u; +px;, where i
refers to the «th category of samples. Because x is the male
indicator, the intercept gy is the cloglog-transformed female
prevalence in the learning data set. In this model, f is referred to
as the log hazard ratio, andw= exp(fl)is the hazard ratio
(Appendix S1). We will refer to w and estimates of it as “nominal
weights”.

This model can be readily fitted to the auxiliary data using
traditional generalized linear model software. This model is also
easily fitted with WinBUGS (Software Code S1; Program 3). (The
large-variance normal prior on f§ is a traditional approach to
establishing an essentially vague yet proper prior; see for example
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Appendix C of [28].) For our hypothetical example the posterior
mean (and standard deviation) for the male log hazard ratio f§ is
0.656 (0.379). The posterior mean for the hazard ratio
w= exp(f}), or nominal weight, is 2.07; very close to the observed
2:1 prevalence ratio observed in the data. As noted, the analyses
up to this point could be done with either traditional frequentist or
Bayesian software. The problem with the frequentist approach
would arise when one then attempts to integrate surveillance data
in which no positives were observed.

When we obtain a point estimate of the nominal weight w our
certainty in it will depend on the strength of the learning set, just as
for any regression coeflicient in general. If our data set is small and
we obtain an estimate of w of 2, we may be reluctant to conclude
that a male is actually worth 2 females, but our certainty in this
should increase as the sample size increases. We later describe how
to calculate modified weights (which we refer to as real weights)
that adjust for such uncertainty due to sample size.

Augmented Surveillance

We now combine our hypothetical surveillance sample of 297
animals and our learning sample from before. Will the learning
data set change our conclusions about surveillance? As we will see,
the answer is that it depends. Let J; be an indicator variable for
whether the ¢-th sample is from the surveillance (J; =1)or learning
data set (0; =0). The model for the augmented analysis then
becomes cloglog(C;/ Ni)= (1 — 0;)uy + 6; g + fX;, where .
and g are data-set specific female intercept terms for the learning
and surveillance data sets respectively. Note that we can back-
transform g to ms, the prevalence in the surveillance sample.
Given how the model is parameterized, this is the female
prevalence, which we have established as the baseline.

Suppose all 297 surveillance subjects are females. If we run this
analysis (Software Code S1; Program 4) and establish a 95%
credible bound for mg, we find it is mg=0.01. This is exactly as it
was before in the absence of any auxiliary learning data. This is
exactly as it should be. In the auxiliary analysis, the baseline was
established as the females. As the reference group, the observation
of a female provides a unit amount of information in the
surveillance sample.

Now suppose all 297 surveillance subjects are males (Software
Code S1; Program 5). We now find the 95% credible bound for mg
to be 0.0058. Recall that mg is the prevalence for the baseline
female group; we can now be 95% certain that female prevalence
7y 1s less than 0.0058 with 297 male samples in contrast to 0.01
with 297 female samples. Because the auxiliary sample showed
males have a higher risk of infection than the female reference
class, they contain more information regarding freedom-from-
disease, and hence the smaller bound.

If these models were attempted with traditional maximum
likelihood software, they would fail because the MLE for g in the
absence of any positive surveillance events is negative infinity, on
the boundary of parameter space. Even if this is “patched” by
assigning some small number, usual methods for estimating the
standard error of the estimate of pg will fail. (Technically speaking,
this failure results from a violation of what are called the “usual
regularity conditions” on which traditional standard error
approximations are based — in particular the parameter estimate
is not in the interior of the parameter space as required.).

Returning to our augmented analysis, the nominal weight of
2.07 suggests that 1 male is worth a little more than 2 females. But
this assessment ignores statistical uncertainty in the nominal
weight estimate. We can account for this uncertainty by
progressively decreasing the surveillance sample of males until
the 95% credible bound matches the targetmrs =0.01, which
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occurs at about Ni =173males. We call this approach “target
bound-matching”. Thus, a male surveillance sample is worth
about(297/173) =1.7females, given the information, albeit im-
perfect, from our learning data set. We will refer to weights
obtained in this manner, by target bound-matching, as real
weights.

Model Results

Weights in General

WM proposed the idea of weights or “points” that could be
assigned to an animal to reflect its value for detecting disease,
relative to some reference class of animals for which the point
value was 1. Under WM’s derivation, the parametric expression of
their weight was wyr M =m; / mp (considering just two classes, with
class 0 being the reference class). Under our derivation (Appendix
S1) the parametric expression for our (nominal) weight is
w=log (1 —mn;)/log(1 —my). Generally speaking, our derivation
of w reflects how sample sizes and prevalences influence the
probability of detecting at least 1 positive subject in a sample. The
different derivations of w versus wy,, lead to different behaviors.
Because w is based on the probability of detecting at least one
positive, m; = lhas special significance because it means if even
one class 1 animal is sampled, a positive will be detected with
certainty. When 7; =1, we say that class 1 constitutes a “perfect
sentinel” (only one sample is needed), and in which case
w= 4 cowhich is arguably desirable behavior (regardless of the
prevalence of the reference class, only one perfect sentinel needs to
be sampled). Figure 1 displays the parametric relationship between
w and wyyny, and in particular it shows how they depart as m; —1.

These are parametric expressions; in reality one uses estimates
of these quantities. As these parametric expressions suggest, the
quality of the weight estimates rest largely on the quality of the
prevalence estimates. If the prevalence estimates are of low quality
with substantial uncertainty, estimates of w and wy»s should not be
taken at face value but should be discounted in some way for
estimation uncertainty, which is considered next.

Nominal Weights versus Real Weights

As illustrated previously, we propose a method to obtain weights
that are adjusted for uncertainty through a process we call “target
bound-matching”, we refer to these uncertainty adjusted weights
as “real weights”. For large data sets with many positive cases, real
weights and nominal weights should correspond. Here we are
primarily interested in the factors that cause them to not
correspond, that is, what aspects of an auxiliary data set gives
rise to uncertainty when it comes to estimating nominal weights?
Considering just two classes, there are 4 statistics involved in
estimating weights, which are Ny, N;, Cy, and C;: the sample sizes
in the two classes, and the number of positives in the two classes,
respectively. In this 4-dimensional statistics space, what factors
result in large departures between real and nominal weights? This
requires exploring this sample space in a systematic manner; we
were interested in exploring regions of the space that correspond
with potential real world scenarios. One factor we wanted to

examine was the role of the empirical prevalence ratio, ¢ =7; / g,
where 7; = C; / N;i. Thus we did two sets of analyses, one for ¢ =2

and one for (;5= 10. Within each observed prevalence ratio we
looked at the effect of total sample size for sample sizes of

No = N1 =100 andNy = N1 =200. With &and N, fixed, it was an

easy matter to compute all values of C; consistent with the fixed

(i)and N, which we did. We then compute the corresponding
estimated nominal weights Wwand real weights R which we
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Figure 1. Nominal weights as a function of the prevalence ratio 7, / 7pand prevalence 7, Nominal weights are shown for 5 fixed
prevalence ratios: 10, 5, 2, 1, and 0.5, which are in ascending order in the figure. The x-axis is the denominator prevalence m,. Nominal weights
increase rapidly as the numerator prevalence 7; approaches 1; as the numerator class becomes more like a “perfect sentinel”.

doi:10.1371/journal.pone.0089843.g001

expressed as the ratio Ww/R for standardization; the results
surprised us somewhat (Figure 2).

The observed prevalence ratio and total sample size has
relatively little influence over the estimated nominal weight/real
weight ratio. The primary determinate seemed to the number of
events (positives) (;, while the number of trials N, needed to
observe these events seem to have little influence. Figure 2 also
clearly illustrates that there is a point of diminishing returns, where
the real weights get very close to the nominal weights, and
relatively little is learned with additional sampling. The practical
implication for the learning set appears to be that one should seek
a happy medium; if few positives are observed, the real weights will
be low, but beyond a certain number of positives the additional
gain in real weight is negligible.

PLOS ONE | www.plosone.org

Real Data Application

Using the auxiliary data from WM’s Table 1 of Colorado mule
deer/CWD data[15], we first compute point estimates for weights
that are not adjusted for uncertainty. We do this in three ways. We
used SAS PROC GENMOD (Software Code S1; Program 8)
under WM’s Poisson assumption to obtain MLEs of their weights
wpar- As we note above, we need to use a Bayesian approach for
augmented (surveillance and auxiliary combined) analyses, but the
auxiliary data alone can be equally well analyzed by either
Bayesian or frequentist methods, and it is interesting to do so for
comparative purposes. We computed Bayesian nominal weights
for our binomial model (Software Code S1; Program 6) and their
maximum likelihood equivalents using SAS PROC GENMOD
(Software Code S1; Program 8). As expected, our estimated
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Figure 2. Factors controlling the departure of real and nominal weights. The red curves correspond to a prevalence ratio of 10, and the
black curves correspond to a prevalence ratio of 2. For each fixed prevalence ratio, two sample sizes Ny = N; =100(plotting symbol =1) and
No = N1 =200(plotting symbol =2) are shown. For a fixed prevalence ratio and sample size, one can vary the number of positives in class 0 (Cp), and
compute the corresponding number of positives in class 1 (C;). The x-axis is C,. One can then compute the nominal and real weights from C,, C;, Ny,
and N;. The primary determinate for departures between the real and nominal weights appears to be the number of positives in the sample (x-axis),
and not the total sample size (1 versus 2 plotting symbol). The apparent prevalence ratio (red versus black) appears to play a minor secondary role.

doi:10.1371/journal.pone.0089843.9002

nominal weights are higher than estimated WM’s weights in high
prevalence situations (Table 1) because of the sort of behavior
demonstrated in Figure 1. The Bayesian and frequentist estimates
of our nominal weights are the same for practical purposes.

We then used credible bound matching in our Bayesian model
to obtain real weights for the Colorado data set (Table 2). The real
weights closely matched the estimated nominal weights obtained
from the learning data for all but the three lowest weighted classes.
This stability reflects the relatively large number of positives in
most of the learning set categories.

PLOS ONE | www.plosone.org

Discussion

We think real weights are useful to motivate the notion that
targeted surveillance schemes should accommodate uncertainty.
We also think they are a useful design tool for researchers tasked
with conducting surveillance — if testing resources are limited, real
weights can be used as a rule-of-thumb to prioritize samples during
the design and implementation phases. For example, using the
Colorado data for illustration, ifPr(n<0.01)>0.95 is the goal,
and harvested-adult-males are deemed a reasonable reference
category form, this goal can be achieved with a surveillance sample
of 297 harvested-adult-males. But this goal could also be achieved
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Table 1. Estimates of nominal CWD surveillance weights for 8 classes of mule deer from Colorado (data from WM[15]) using a
binomial complementary log-log regression model with Bayesian and maximum likelihood approaches, as well as a Poisson

Binomial Poisson C/N
Mortality Source Bayesian (SD) MLE (SD) MLE (SD)
Suspect-F 14.1 (2.40) 14.1 (2.4) 11.6 (1.6) 40/111
Suspect-M 12.2 (2.05) 12.2 (2.06) 10.3 (1.46) 40/125
Other 1.9 (0.24) 1.9 (0.25) 1.9 (0.24) 77/1,300
Harvest-adult-M 1 (NA) 1 (NA) 1 (NA) 313/10,046
Harvest-adult-F 0.57 (0.06) 0.57 (0.06) 0.58 (0.06) 104/5,782
Harvest-juv-F 0.44 (0.15) 0.44 (0.15) 0.45 (0.15) 9/645
Harvest-juv-M 0.25 (0.08) 0.25 (0.08) 0.25 (0.08) 11/1,329
Harvest-fawn 0.03 (0.03) 0. 03 (0.03) 0.03 (0.03) 1/999

number sampled (N) from WM [15].
doi:10.1371/journal.pone.0089843.t001

with as few as 22 suspect-females (297/13.5). In many cases, it may
not be possible to simply sample the highest weight subjects, but
one could still focus on generally high weight subjects. For
example, if one summed up the real weights for 10 suspect-
females, 10 suspect-males, and 23 others, the summed real weight
1s 297.7. When we calculate the exact posterior credible bound for
such an observation (Software Code S1; Program 7), we observe
Pr(n<0.0096) >0.95, so we have slightly overshot our goal
(which is usually not a bad thing).

As this illustrates, we have noticed that in general real weights
do not exhibit perfect additivity, in particular when the
discrepancy between real and nominal weights is large (not
illustrated). Thus, although we feel that real weights are a useful
design tool for planning and prioritizing samples and “getting in
the ballpark” with respect to the effective sample size, we advocate
exact posterior bounds as we just illustrated to evaluate the specific
performance of a surveillance sample.

Typically, logistics constrain the number of surveillance samples
that a monitoring agency can obtain. Real weights allow the
agency to realistically prioritize high-value animals. By summing
weights, they can also keep track of how well a surveillance
program is progressing by summarizing the “effective” sample size

Notes: The Harvest-adult-M category is used as the reference class in these analyses, as in WM [15]. We provide both the count of CWD positive animals (C) and the total

in terms of a synthetic sample of all reference animals; however we
recommend some caution in this respect. As we note, real weights
are not purely additive, and we advocate that exact posterior
bounds be used to rigorously determine whether the surveillance
goal ofPr(m < m;) > 1 —ohas been achieved. Summed real weights
should be viewed as rules-of-thumb, and should be useful in
designing and monitoring a surveillance effort.

The choice of reference class is mainly a matter of common
sense; it should be some class of animals in which one would be
interested in statements about disease presence, typically a
common class. This notion is sometimes criticized for its apparent
arbitrariness; but this completely misses the point — such criticism
is akin a saying the Celsius scale measures temperature better than
Fahrenheit. Indeed, without such standardization, it seems
essentially impossible to make meaningful comparative statements
about how well surveillance has been performed in various units.
Clearly, a surveillance sample of 297 harvest-fawns is not
equivalent to a sample of 297 harvest-adult-males; only an
approach such as ours allows an “apples-to-apples” comparison
of certainty of “freedom-from-disease” from different areas.

For CWD, the standard USDA certified tests are regarded as
being essentially 100% specific. However, for an animal that has

Table 2. Nominal and real surveillance weights calculated using data from WM[15].

Mortality Source Nominal Weight (SD) Real Weight (R) anN
Suspect-female 14.1 (2.40) 135 40/111
Suspect-male 12.2 (2.05) 11.9 40/125
Other 1.9 (0.24) 19 77/1,300
Harvest-adult male 1 (NA) 1 313/10,046
Harvest-adult female 0.57 (0.06) 0.57 104/5,782
Harvest-yearling female 0.44 (0.15) 0.39 9/645
Harvest-yearling male 0.25 (0.07) 0.23 11/1,392
Harvest-fawn 0.03 (0.03) 0.006 1/999

probability Pr(z, <0.01)>0.95.

the text.
doi:10.1371/journal.pone.0089843.t002

PLOS ONE | www.plosone.org

For real weights, a sample equivalent toNy arvest —adult —males =297 reference class animals was needed to obtain the target goal, which is for the posterior

Notes: Values for nominal weights are the Bayesian posterior means of the hazard ratios. Real weights were obtained by posterior credible bound matching, described in
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just recently experienced an infection event, it may not test
positive, so in this sense the test may not be 100% sensitive, but it
is very difficult to quantify this. The most straightforward
approach would be to recognize the possibility that apparent
prevalence might be lower than true prevalence, and set an
appropriately conservative (small) threshold for m,. If sensitivity
and specificity can be quantified, extensions similar to Cameron
and Baldock [21] could be explored. Another potential modifica-
tion would be to include a finite population correction factor if the
population size is known [21]; our approach is conservative for
small populations, that is, the actual assurance level will probably
be higher than the nominal 1—alevel, which is appropriate for
disease surveillance.

Ideally, we recommend agencies collect learning data from their
unique disease systems for subsequent calculation of real weights in
their surveillance efforts. If relatively local data are available, the
desirability of including spatial structure as a risk factor, similar to
that employed for disease risk mapping [29], could be explored. If
relatively local data are not available, caution should be exercised
when generalizing information from other systems. As we
presented our approach, we always included the data from the
learning set directly into the augmented analysis of the surveillance
data. However, we could have partitioned our analyses into two
steps — first obtain the posterior distributions for the log hazards
from the learning set, and then use these posteriors as priors in the
evaluation of the surveillance set, perhaps using normal approx-
imations. If we have doubts about the generalizability of the
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learning set to our surveillance set, we could manipulate the priors
going into the surveillance analysis from the learning set to reflect
this added uncertainty, for example increasing their variance to
evaluate the sensitivity of the results to this added uncertainty. This
is a natural application of the Bayesian concept of uncertainty.
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