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Abstract

Background: MicroRNAs (miRNAs) are small (,22-nt), stable RNAs that critically modulate post-transcriptional gene
regulation. MicroRNAs can be found in the blood as components of serum, plasma and peripheral blood mononuclear cells
(PBMCs). Many microRNAs have been reported to be specific biomarkers in a variety of non-neoplastic diseases. To date, no
one has globally evaluated these proposed clinical biomarkers for general quality or disease specificity. We hypothesized
that the cellular source of circulating microRNAs should correlate with cells involved in specific non-neoplastic disease
processes. Appropriate cell expression data would inform on the quality and usefulness of each microRNA as a biomarker
for specific diseases. We further hypothesized a useful clinical microRNA biomarker would have specificity to a single
disease.

Methods and Findings: We identified 416 microRNA biomarkers, of which 192 were unique, in 104 publications covering 57
diseases. One hundred and thirty-nine microRNAs (33%) represented biologically plausible biomarkers, corresponding to
non-ubiquitous microRNAs expressed in disease-appropriate cell types. However, at a global level, many of these
microRNAs were reported as ‘‘specific’’ biomarkers for two or more unrelated diseases with 6 microRNAs (miR-21, miR-16,
miR-146a, miR-155, miR-126 and miR-223) being reported as biomarkers for 9 or more distinct diseases. Other biomarkers
corresponded to common patterns of cellular injury, such as the liver-specific microRNA, miR-122, which was elevated in a
disparate set of diseases that injure the liver primarily or secondarily including hepatitis B, hepatitis C, sepsis, and myocardial
infarction.

Conclusions: Only a subset of reported blood-based microRNA biomarkers have specificity for a particular disease. The
remainder of the reported non-neoplastic biomarkers are either biologically implausible, non-specific, or uninterpretable
due to limitations of our current understanding of microRNA expression.
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Introduction

MicroRNAs (miRNAs) are an important class of small (,22-nt)

regulatory RNAs that are intrinsic to post-transcriptional gene

control. MicroRNAs bind to the 39UTR regions of mRNAs and

either block translation or cause message degradation through

RNA-induced silencing complex (RISC) mediated events [1].

Since their discovery a mere decade ago, this family of small RNA

has been found to be quite common. miRBase.org, the central

database and repository of microRNAs, lists 2,578 human

microRNAs in its most recent version (v20.0) [2]. MicroRNAs

are found throughout the genome, with transcriptional units being

primarily intronic to mRNAs or in polycistronic microRNA

clusters containing from 2 to 50 microRNAs. Within these

genomic locations, regulatory mechanisms have arisen such that

microRNAs can be ubiquitously or variably expressed in different

tissues and cell types. Some microRNAs (ex. miR-126, miR-133a,

miR-122, miR-451a) are known to have cell type specificity, while

others remain to be characterized [3–6].

The normal ‘‘life-cycle’’ of a microRNA is to be transcribed and

processed by Drosha in the nucleus, then transported to the

cytoplasm to be spliced by Dicer before associating with a target

mRNA in the RISC to inhibit translation [1]. In addition to these

cytoplasmic and nuclear locations, microRNAs are located in

other cellular and non-cellular compartments, including mito-

chondria, blood serum, exosomes, and microvesicles [7–9]. It is

thought that intracellular transport of microRNAs may occur via

exosomes or microvesicles.

MicroRNAs were first identified in human blood in 2008 [10].

This discovery generated enormous enthusiasm for the potential

use of plasma or serum microRNAs as biomarkers of neoplastic

and non-neoplastic disease. MicroRNAs are especially appealing

as biomarkers because they are not prone to RNase degradation

and remain stable in stored samples [11]. Thus, an enormous
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number of studies investigating the role of microRNAs as

biomarkers of neoplastic and non-neoplastic diseases have been

published in a short period of time.

The term biomarker has different meanings depending on

context. Clinical biomarkers can be used as a tool for staging or

classifying the extent of disease. They can predict or monitor

clinical response to intervention. They can also serve to diagnose

patients with a disease or abnormal condition [12]. It is this last

definition for which microRNA biomarkers have primarily been

used. We have reasoned that a useful microRNA clinical

biomarker should, at a minimum, be expressed in a cell type

involved in the specific disease process. Beyond appropriate cell

localization, it has been suggested that a microRNA’s expression

must be altered in concert with the disease process. That is true if

one is trying to use blood-based microRNAs to delineate the

underlying biology, but not necessary for certain clinical uses. For

example, some microRNAs and proteins (i.e. troponin T) appear

in the serum/plasma as a result of cell death and the spilling of

cellular contents, rather than being specifically up or down

regulated in the disease process. Thus, the serum/protein presence

of a uniquely expressed microRNA found in a particular cell type

can inform on an injurious disease involving that cell.

Interpretation of novel microRNA blood-based biomarkers

reported in recent studies is limited by our understanding of the

expression patterns of specific microRNAs at the cellular level.

Specifically, when a microRNA is elevated or decreased in serum

or plasma, the origin of that change is unknown. It may represent

altered cellular regulation of a given microRNA that is secreted

into a microvesicle. It may indicate cellular injury related to the

disease. The observed changes may also be unrelated to the

disease in question, resulting instead from methodological

problems or as a secondary phenomenon of the disease process

or treatment. This last point was highlighted by a recent study by

the Tewari group. They demonstrated that of 79 solid tumor

circulating microRNA biomarkers reported in the literature, 47

(58%) were highly expressed in hematologic cells (red blood cells,

granulocytes, platelets, monocytes, etc.) [13]. Some of these

microRNA biomarkers (e.g. miR-142-3p, miR-486-5p) are not

even expressed in epithelial cancer cell types. They conclude that

many ‘‘biomarker’’ microRNAs represent increased red blood cell

lysis or changing white blood cell counts, possible secondary effects

of malignancy or malignancy treatment, rather than being

products of the neoplasm itself.

The same factors described by Tewari et al. could, in theory,

affect non-neoplastic microRNA biomarkers. To address this

concern, we performed a critical evaluation of reported micro-

RNA non-neoplastic disease biomarkers with the hypothesis that

some reported microRNA biomarkers lack utility as they are not

expressed in a cell type known to be altered/damaged in the

disease, are insufficiently specific for the disease in question, or are

not supported by methodologically sound evidence.

To determine useful microRNA biomarkers we performed an

extensive literature and database search to identify all reports of

microRNA as serum, plasma and peripheral blood mononuclear

cell (PBMC) biomarkers for non-neoplastic disease. From publi-

cally-available Gene Expression Omnibus (GEO) and ArrayEx-

press Agilent microRNA array data, we created a novel cell-

specific microRNA array expression table that allows, for the first

time, the proper sourcing of microRNAs to a cell type of origin.

We then evaluated the plausibility of each reported microRNA

biomarker by correlating disease process with the cellular

expression pattern. MicroRNA expression needed to be both

cellularly relevant to the disease in question and non-ubiquitous to

be considered a plausible candidate as a biomarker. Ubiquitous

microRNAs, being expressed widely across cell types, will not have

the specificity required to be useful biomarkers even if they are

truly modified in a specific disease. We also evaluated the

microRNAs in the context of the entire study set, which allowed

us to not just determine their individual quality, but also their

specificity to a single disease. Thus, our two-tiered approach

provides both ‘‘tree’’ and ‘‘forest’’ level data. This has allowed us

to comment on both ‘‘quality’’ and ‘‘specificity’’ for each

biomarker.

Methods

Discovery of non-neoplastic microRNA serum biomarkers
publications

We conducted a two-fold method of identifying non-neoplastic

microRNA biomarker manuscripts. We searched PubMed using

the following key terms ‘‘microRNA biomarker,’’ ‘‘microRNA

serum biomarker,’’ ‘‘microRNA plasma biomarker’’ and ‘‘plasma

miRNA.’’ We separately investigated every suggestive manuscript

linked to from the Human MicroRNA Disease Database (HMDD)

[14]. We screened 130 articles – 86 from PubMed and 44 from the

HMDD (Figure S1). Of these, 26 were excluded as being reviews,

animal model studies, duplicates, a stem cell study, a study of

cerebral spinal fluid, or we were unable to obtain the manuscript.

The discovery phase ended February 9, 2013.

Manuscript data point collection and curation
Each manuscript was downloaded and relevant information was

obtained from each. Collected data included the disease(s) studied,

microRNA detection method(s), sample size, number of micro-

RNAs examined, microRNAs reported as biomarkers, normali-

zation strategy, submission of array data to a public repository

(GEO or ArrayExpress), and journal title. Only microRNAs that

were validated in two-step systems or were otherwise designated as

biomarkers in the study were included in our microRNA list. This

resulted in the exclusion in our study of many microRNAs found

in the first pass that were not followed up in the second step.

Population sizes were defined as the maximum number of all

individuals used in both discovery and validation steps. Due to a

range of methods, publication requirements and writing styles, the

actual techniques in some manuscripts were unclear or incomplete

resulting in some lost data points. Over the range of publication

dates of this data set (2008–2013), the nomenclature of micro-

RNAs has undergone several revisions. Therefore, for consistency

we revised old microRNA nomenclature (ex. let-7b and let-7b*) to

current nomenclature (let-7b-5p and let-7b-3p) as found in

miRbase.org (release 19.0) [2].

Obtaining publically available microRNA array datasets
Although there are multiple ways to assess the utility of a blood-

based biomarker (cost, reproducibility, head-to-head comparison

of an established biomarker, etc.), we chose to validate these

microRNAs as biomarkers by simply determining their cellular

expression patterns. A good biomarker should be expressed in a

cell type implicated in the disease process and should not be

ubiquitously expressed. Conversely, poor biomarkers would

include microRNAs that are undetected in a disease-related cell

type or that are widely expressed in multiple cell types unrelated to

the disease, particularly leukocytes [13]. To evaluate the micro-

RNA biomarkers in the 104 manuscripts, we therefore needed to

understand microRNA expression at the cellular level. This finely

granular approach is critical because tissue level data includes a

variety of cell types (endothelial cells, inflammatory cells, etc.) that

may contain many ‘‘bystander’’ microRNAs that are not expressed

Evaluation of microRNA Biomarkers
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in the true cell type of interest. Inclusion of these additional

microRNAs could lead to misinterpretation of expression data.

Such a microRNA cell-type specific expression matrix is a resource

that does not currently exist, so we created one specifically for this

project.

We searched the GEO and ArrayExpress databases for all

human studies that contained non-malignant, non-immortalized

cell and tissue microRNA expression data, that were available as

of September, 2011. This yielded 705 ‘‘normal’’ or ‘‘control’’

tissues and cell data series from 108 separate experiments. For the

purposes of normalization, we focused on the version 1 (V1), V2,

and V3 Agilent microRNA arrays, which were the most

commonly used. These arrays contain 461, 711, and 837 valid

microRNAs respectively. Of the 705 initial data series, 473 were

from Agilent arrays and 356 had sufficient data for analysis and

normalization. The 356 were further segmented with 111 series

being from 18 cells (Table S1) and the remaining 245 (69%), were

from 19 tissues. The latter group was useful for normalization

(Figure S2).

Normalizing human microRNA array data
To evaluate the normal human cellular and tissue microRNA

array series, it was necessary to preprocess and combine data from

several Agilent microarray platforms. We began by filtering arrays

that consisted of greater than 50% missing data – these most likely

resulted from non-standard protocols, experimental failure, or

data corruption. The microRNA probes present on each

microarray platform were mapped to standardized mirbase.org

MIMAT identifiers using a key generated from multiple versions

of mirbase.org that mapped the changing nomenclature back to a

unifying MIMAT ID.

The full data set was normalized together using a modified

version of subset quantile normalization in which the subset was

defined by the microRNAs in common between all array versions

[15]. Full quantile normalization assumes distributional equality

across samples. Subset quantile normalization relaxes this

assumption by requiring distributional equality for only a subset

of probes (in the original publication this subset was chosen to be

the negative control probes on the arrays). The other probes are

normalized based on their relationship to the chosen subset of

probes. For the microRNA microarray platforms considered here,

the standard implementation of subset quantile normalization is

not feasible due to the relative small number of control probes

present on these arrays. Moreover, full quantile normalization is

also problematic due to differences in the microRNAs targeted by

each platform. Therefore, we implemented a modified version of

subset quantile normalization in which the subset of probes used to

perform the subset quantile normalization is the set of probes in

common across all platforms. This cross-platform preprocessing

approach was motivated by previous work showing that large

batch effects can be introduced by combining data normalized

separately [16].

To correct for systemic chip-specific effects that remained after

normalization, we applied the ComBat algorithm, developed to

adjust for batch effects in mRNA expression profiling [17].

ComBat uses an empirical Bayes approach to estimate and adjust

for both location and scale batch effects. The adjusted values were

subsequently used to create a database of cellular microRNA

expression profiles (Table S2). The data set was validated by

examining miR-451a and miR-126-3p levels in each cell type.

Through validation, we recognized that the ductal and acinar cell

data is contaminated with red blood cell and endothelial cell data

due to a crude microdissection technique that captured adjacent

small blood vessels [18].

Evaluation of microRNA expression in a given cell type
Each microRNA biomarker described in any manuscript was

evaluated for its expression across our range of 18 unique cell

types. After normalization, expression levels ranged between 12.8

and 4.8 on a log2 expression scale (Table S2). Every value below

7.0 was clearly in the noise of the array. A comparison of

literature-based reports of expression patterns of microRNAs to

our data indicated we should have high confidence in values above

8.0. Thus we arbitrarily used a cutoff of 8.0 to indicate positive

expression in any one sample of any given cell type.

We then classified each microRNA based on the following

definitions. The first level ‘‘likely’’ was for microRNAs expressed

in a cell type known to be involved in the disease process with

some level of cellular exclusivity. We used ‘‘questionable’’ for any

reported microRNA that was not expressed at a moderate level in

any cell type for which we had information. The next level,

‘‘ubiquitous,’’ was used for any microRNA that was found in 7 or

more different cell types which we believe makes it an unlikely

marker of a specific disease process. We reserved ‘‘unlikely’’ for

those microRNAs whose expression patterns did not match with

cells known to be involved in the disease process. Finally, any

reported microRNAs that we did not have data on were classified

as ‘‘unknown.’’ We took a very inclusive approach to using the first

level ‘‘likely’’ for microRNAs and evaluated each microRNA

within the context of a disease, such that some microRNAs may be

‘‘likely’’ for one disease but ‘‘unlikely’’ in another. PBMC studies

required a microRNA to be a leukocyte expressed microRNA. For

studies of pregnancy-related diseases (pre-eclampsia and eclamp-

sia), we incorporated our tissue level data, as we recognized that

the miR-517 family is expressed exclusively in the placenta, but we

did not have syncytiotrophoblast or cytotrophoblast cell data [19].

As an example of our assignment strategy, this is the method of

categorizing 10 microRNAs in 3 studies of tuberculosis. Two

studies investigated PBMCs and in these studies the category

‘‘likely’’ was assigned to microRNAs miR-155-5p and miR-223-

3p, both known to be expressed in PBMCs. MicroRNAs miR-424-

5p, miR-451a, miR-144-3p and miR-365-3p are not expressed in

PBMCs, so these were categorized as ‘‘unlikely.’’ MicroRNAs

miR-155-3p and miR-21-3p are both carrier strand (minor)

microRNAs which have low expression and were categorized as

‘‘questionable.’’ For the third study (in serum), miR-29a-3p was

categorized as ‘‘ubiquitous’’ as it is expressed in 16 cell types and

miR-93-3p was ‘‘questionable’’ as it too is a carrier strand (minor)

microRNA with low expression.

Determination of normalization quality
Of the variety of normalization methods used, we decided that

the evaluation of RNU6B in serum, plasma or blood NOS and the

use of no normalization (including unreported methods), would be

poor normalization methods (N = 28). The use of any other

method including spiked-in, RNU6B in PBMCs, any human

microRNAs (except miR-451a) used in normalization were

included as acceptable methods (N = 76) (Table S3). This schism

of the data was used to compare the frequency of likely and

unlikely microRNAs in poor or acceptable normalization strate-

gies.

Statistics
Data was maintained in Excel 2007 (Microsoft) workbooks. T-

tests and x2 analysis was performed as needed. The database of

microRNA expression across cell types was based on the raw

Agilent expression data files. Data analysis was performed in the R

Statistical Computing language.

Evaluation of microRNA Biomarkers
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Results

MicroRNA biomarker studies identified
Through an extensive search of PubMed and the HMDD, we

identified 104 publications that contained microRNA biomarker

studies performed with plasma, serum, or peripheral blood

mononuclear cells (Figure S1). These studies covered 57 diseases,

with most being diseases of the cardiovascular (n = 32), hepatic

(n = 13) or pulmonary systems (n = 5) (Table 1). Seventeen studies

were of autoimmune diseases. The studies were predominantly of

serum (n = 40) and plasma (n = 40), with fewer investigating

PBMCs (n = 26), or blood not otherwise specified (NOS) (n = 3).

Five studies were of multiple blood compartments. Additional

microRNA discovery in urine and platelets, performed in a few

studies, were not included in the analysis.

Variation in microRNA detection methods
Because there is no agreed upon protocol of blood microRNA

biomarker discovery, we observed a wide range of reported

methods. Fifty-nine studies performed qRT-PCR exclusively,

investigating an average of 4 (range 1–23) microRNAs. Forty-

two studies used both a microarray/RNA-seq method of

microRNA discovery with secondary qRT-PCR validation of an

average of 6.7 (range 1–24) microRNAs. Three studies were

exclusively microarray or RNA-seq methods (Table S4). In

addition, there was a wide range of total population sizes studied

(range 5–982), with a median of 69 subjects (Figure S3).

We then focused our attention on the normalization strategies of

the studies, to determine what were the best and/or most common

methods utilized. We found that consensus for the normalization

of serum, plasma and PBMC microRNA studies does not exist.

Thus, many markers were used and the quality of the normali-

zation method used varied from study to study. Overall, spiked-in

non-human microRNAs (n = 35) and RNU6B (n = 32) were the

most commonly described, either alone or in conjunction with

other means of normalization (Table S3). A large number of

intrinsic microRNAs were also used, with miR-16 being partic-

ularly common (n = 9). For 9 studies, no normalization controls

Table 1. Studies of non-neoplastic serum, plasma or PBMC
microRNAs biomarkers.

Disease Number of studies*

Cardiovascular

Myocardial infarction/injury 10

Coronary artery disease 5

Heart failure 5

Acute coronary syndrome 4

Atrial fibrillation 1

Aortic stenosis 1

Cardiac arrest 1

Hypertension 1

Hypertrophic cardiomyopathy 1

Pulmonary arterial hypertension 1

Risk of myocardial infarction 1

Viral myocarditis 1

Liver

Hepatitis C 4

Hepatitis B 4

Biliary atresia 1

Cirrhosis 1

Drug-induced liver injury 1

Liver transplant rejection 1

Muscle disorder induced liver 1

Pulmonary

Tuberculosis 3

Acute Pulmonary embolism 1

Chronic obstructive pulmonary disease 1

Inflammatory bowel disease

Crohns Disease 2

Inflammatory bowel disease 1

Ulcerative Colitis 1

Autoimmune

Multiple sclerosis 5

Systemic lupus erythematosus 4

Rheumatoid arthritis 3

Scleroderma/Systemic sclerosis 3

Graves disease 1

Pediatric systemic lupus erythematosus 1

Other

Sepsis 6

Diabetes 3

Preeclampsia 3

Osteoarthritis 2

Acute kidney failure 1

Alzheimer disease 1

Amyotrophic lateral sclerosis 1

Atherosclerosis obliterans 1

Bipolar mania 1

Ectopic pregnancy 1

End stage renal disease 1

Table 1. Cont.

Disease Number of studies*

Endometriosis 1

Eosinophilic esophagitis 1

Gestational diabetes 1

Hand foot and mouth disease 1

HIV 1

Huntingtons disease 1

Intracerebral hemorrhage 1

Muscular Dystrophy 1

Naturalistic Stress 1

Parkinsons disease 1

Postmenopausal osteoporosis 1

Psoriasis Vulgaris 1

Schizophrenia 1

Traumatic brain Injury 1

Zinc Depletion 1

*Citations for these studies are in Table S6.
doi:10.1371/journal.pone.0089565.t001
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Figure 1. microRNA expression patterns across 18 cell types. These 157 microRNAs have variable expression patterns across the 18 cell types.
Cells clustering cleanly separates hematopoetic (H) and nonhematopoetic (NH) cell types.
doi:10.1371/journal.pone.0089565.g001
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could be determined from the manuscript. This includes one study

that rationalized not using controls [20] and another which

rejected the controls tried [21].

Publication quality and data sharing
As these studies encompassed such a wide range of human

disease and were reported in such a diverse group of journals

(n = 76), we needed a measure of journal quality. Although, by

many reports it is less than ideal [22], we used Impact Factor as a

surrogate for quality. The two most common journals publishing

these manuscripts were PLOS One (n = 14) and Clinical

Chemistry (n = 4). The average 1 year Impact Factor of the

publications was 4.7 with a range of 0.936 to 14.156 (Figure S4).

We also sought to determine how frequently array data was

submitted in public repositories. Among the 45 array-based or

RNA-seq studies, only 10 (22%) deposited their data in GEO or

ArrayExpress. There was no correlation between groups that

deposited their data and better journal impact factor scores (t-test

Impact Factor 5.1 vs. 4.9, p.0.05).

A novel table of human cell microRNA expression
After extensive normalization we created a robust microRNA

expression matrix organized by cell type (Figure 1 and Table S2).

The collected data spans 18 cell types, reflecting a broad, but

incomplete, description of most major cell types (epithelial,

endothelial, mesenchymal, hematopoetic, and muscle). Our

dataset nicely recapitulates known cell-specific microRNAs such

as miR-1, miR-133a and miR-216 in muscle tissues and miR-122

in liver. Also, the hematopoetic cells cluster separately from the

non-hematopoetic cells again consistent with known microRNA

differences between these cell types [23].

MicroRNA biomarker plausibility within a given study
Using the cellular microRNA expression matrix described

above, we investigated each reported microRNA biomarker for its

expression in an appropriate cell of interest. We used the five

categories of potential biomarker quality: likely, questionable,

ubiquitous, unlikely and unknown described in methods. We

investigated 416 reported microRNA biomarkers culled from 104

separate studies. Roughly two-thirds (278) of microRNAs were

reported as elevated and 142 (32%) were reported as decreased in

serum, plasma or PBMCs. Of these 416 microRNAs, we scored

139 (33%) microRNAs as likely, 93 (22%) as questionable, 139

(33%) as ubiquitous, 37 (9%) as unlikely and 8 (2%) as unknown.

After merging similar disease processes (ex. 10 myocardial

infarction publications) together in which some microRNAs were

repeatedly reported upon, 337 microRNA biomarkers remained.

Of these, 96 (28%), 85 (25%), 114 (34%), 35 (10%) and 8 (2%)

were likely, questionable, ubiquitous, unlikely or unknown,

respectively.

Given the diverse range of categorized microRNAs, we asked

whether there was any relation of these biomarker quality metrics

to the method of normalization or the Impact Factor of the

journal. We found no difference in the frequency of likely or

unlikely calls based upon the quality of qRT-PCR normalization

(x2 = 0.76 and 1.17 respectively, p.0.05). There was an increase

in the percentage of likely biomarkers in studies reported in

journals with Impact Factors of .6 (44%) vs. studies in journals

with Impact Factors up to 6 (29%) (x2 = 7.47, p = 0.0063).

However, for unlikely biomarkers, we observed no difference in

their frequency between the quality of the higher rated (10.2%)

and lower-rated (8.5%) journals (x2 = 0.16, p.0.05). We deter-

mined that a closer look at this data among the more common

organ systems was warranted.

MicroRNA biomarkers in cardiac disease
Twenty-nine studies of cardiac disease reported 87 microRNA

biomarkers. Of these, 31 were unique microRNAs (Figure 2). We

determined 14 (45%) to be likely, 9 (29%) to be questionable, 9

(29%) to be ubiquitous, and 6 (19%) as unlikely. The microRNAs

miR-1, miR-133a, miR-133b and miR-499 are known to be

highly expressed in cardiac and skeletal myocytes [6,24]. miR-1,

miR-133a and miR-133b are also expressed in breast tissue [25].

These 4 microRNAs consistently had higher blood expression

across studies in which myocardial injury occurred including

myocardial infarction, viral myocarditis, and acute coronary

syndrome compared to normal subjects. miR-133a was also

reported as a biomarker in coronary artery disease. Another 3

microRNAs, miR-21, miR-208a and miR-208b were consistently

elevated across 4 studies. miR-21 is expressed in all cell types

examined (Figure 1) and was therefore characterized as ubiqui-

tous, rather than likely. miR-208a and miR-208b were character-

ized as questionable as we were unable to detect their signal in our

cellular microRNA expression data, which included skeletal but

not cardiac muscle. Four likely microRNAs, miR-107, miR-125b-

5p, miR-142-3p, miR-142-5p and miR-146a-5p all failed to

replicate in additional studies. miR-370, highly expressed in

lymphatic endothelial cells, showed higher expression in 2 of 5

studies of coronary artery disease.

MicroRNA biomarkers in liver disease
Of the 12 papers related to liver disease, 24 microRNAs were

reported as biomarkers for hepatic injury (Figure 3). We

determined that 6 (25%) microRNAs were likely biomarkers. Of

these, only miR-122, a known liver-specific microRNA, was

elevated in 9 separate studies. The majority of the reported

biomarkers (n = 14), are common microRNAs with ubiquitous

expression patterns. This includes miR-16 which had higher

expression in 3 studies.

MicroRNA biomarkers across different disease states
After focusing in on some of these common disease processes

and finding a range of expression patterns, we investigated

microRNAs across all of the studies in a ‘‘forest’’ level approach.

In fact, many of the 416 microRNA biomarkers were described in

multiple studies/diseases. After merging duplicates, we were able

to collapse the list of 416 microRNA biomarkers down to 192

unique microRNAs. We plotted the 192 unique microRNAs

against the 104 studies (Tables S5 and S6) to investigate overall

patterns of microRNAs as biomarkers. We found that 69 (36%)

microRNAs were reported in more than one manuscript.

Encouragingly, there were several instances in which two or more

studies of the same disease were able to replicate particular

biomarkers. This was specifically true for several myocardial

infarction and hepatitis microRNAs (miR-1, miR-133a, miR-499,

and miR-122) as described above. However, many of the other

microRNA biomarkers that were described failed to replicate in a

comparable study.

One hundred and twenty-three microRNAs were described as

biomarkers for a single disease. Of these, we scored 92 (75%) as

questionable, ubiquitous, unlikely, or unknown biomarkers,

suggesting that many of these may be spurious findings. Also

adding to the complexity of finding unique biomarkers for non-

neoplastic disease, we found that 47 (24%) of the 192 microRNAs

reported here are also described as neoplastic biomarkers (Table

S5) [13].

Evaluation of microRNA Biomarkers
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MicroRNA biomarker plausibility across studies
As stated above, 69 microRNAs were reported in more than

one publication. While several of these were in confirming studies,

many microRNA biomarkers were found across two or more

distinct diseases. In fact, six microRNAs (miR-16, miR-155, miR-

21, miR-126, miR-223 and miR-146a) were reported as a specific

biomarker in 9 or more different diseases (Figure 4). With the

exception of miR-126, all of these microRNAs are highly and

ubiquitously expressed across cell types (Figure 1). miR-126 is

highly expressed in endothelial cells – a ubiquitous cell type in all

organs - and more moderately expressed in inflammatory cells [3].

Reproducibility of microRNAs within the same disease
Finally, we investigated how frequently a microRNA was

replicated in situations where the same disease was studied more

than one time. There were 15 diseases in which two or more

studies were performed that could be compared. A total of 180

microRNA biomarkers were found in these 15 diseases. Of these,

only 21 (12%) were replicated in two or more studies and 8

microRNAs (4%) gave opposite results between two studies.

Discussion

This study is the first critical evaluation of microRNAs as

biomarkers for non-neoplastic diseases. It differs from reviews of

biomarkers that focus on a single disease entity, and fail to put the

findings from one disease into the overall context of microRNAs as

clinical biomarkers. This has been accomplished using data from

104 publications covering 57 different non-neoplastic diseases. We

have additionally created a unique cell microRNA expression

tabular matrix to evaluate the quality of each reported microRNA

biomarker.

At the ‘‘tree’’ level we found a reasonably high percentage of

likely microRNA biomarkers (33%). This was based on the

microRNA possessing demonstrable specificity to a tissue type

involved in the disease process. This favorable view of the

microRNA as a biomarker is independent of any known biological

Figure 2. Reported microRNA biomarkers in 29 cardiac studies. Key: Study numbers = PMIDs; Green = likely; yellow = questionable; blue =
ubiquitous; red = unlikely; * The same study investigated myocardial infarction and viral myocarditis; { These studies investigated PBMCs, not serum
or plasma.
doi:10.1371/journal.pone.0089565.g002
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function of the microRNA and within the cohort of 104 papers,

only rarely were putative biomarkers investigated mechanistically

[26]. The other common group of microRNA biomarkers was in

the ubiquitous category (33%). These microRNAs are so

pervasive, that a several fold change in a single affected cell type

would be unlikely to affect the overall signal of the microRNA.

This is similar to the idea introduced by Pritchard et al., which

reasoned that a microRNA that was highly expressed in leukocytes

was unlikely to be a useful biomarker of an epithelial tumor [13].

The group of questionable microRNAs (25%), those with no

expression in our normal cell microRNA expression cohort, are

likely of three sources. First, microRNAs could truly be

upregulated in disease from a lower basal (normal) state that was

not captured using normal (i.e. healthy) cell expression data.

Although, these microRNAs are strong candidates as biomarkers,

it is rare for a microRNA to transition from almost no expression

to high expression in a non-neoplastic cell type [27–29].Secondly,

some microRNAs are expressed in a cell type for which we lacked

sufficient information. This is surely the case for miR-208a, which

is known to be expressed in cardiac myocytes [30]. Finally, some of

these biomarkers may have been detected at a very low level.

Through questionable normalization and/or the reporting of ‘‘fold

changes’’ without a minimum threshold of absolute expression,

many of these microRNAs are detected spuriously as signal in the

noise. This is undoubtedly true for most of the 23 carrier strand

microRNAs (previously described as * or –as microRNAs)

described as biomarkers in this cohort.

At the ‘‘forest’’ level, we report on several highly and

ubiquitously expressed microRNAs that have been assigned as

biomarkers for multiple diseases (Figure 4). This overlap can be

interpreted in two ways. One is that these microRNAs truly

respond non-specifically to disease stressors and are thus altered in

a variety of diseases [31]. For example, miR-21 is known to be

upregulated in a variety of processes including proliferative

vascular disease [32], cardiac hypertrophy [33], pulmonary

fibrosis [34], renal fibrosis [35] skeletal muscle injury [36] and

neoplasia [37]. Also, miR-126 would be expected to be altered in

any disease that causes microvascular or macrovascular damage

[38–40]. The other option is that these microRNAs are both

highly expressed and easily detected such that common method-

ological issues (e.g. poor normalization, variability in plasma

preparation, or red blood cell lysis) could result in their repeated

spurious discovery [41,42]. Regardless, microRNAs that are

altered in several disparate diseases can hardly be considered as

specific clinical biomarkers for any one disease. As we learn more

about higher and lower expression of microRNAs across studies,

we may see clear patterns emerge. At that point, it may become

useful to combine multiple microRNAs with both lower and

higher expression patterns to achieve specificity for a particular

disease.

Normalization and analytical methods continue to be a

challenge for blood based microRNA studies. For example,

RNU6B is not native to serum or plasma and is known to

degrade during storage, yet it was used to normalize 19 studies in

these fluids [43,44]. Also, 9 studies (3 serum, 4 plasma and 2

PBMC) used miR-16 to normalize their data, rationalizing it was a

stable microRNA. The data supporting the use of miR-16 is mixed

[45,46], with hemolysis markedly affecting miR-16 levels [47]. We

point out that it was also described as a biomarker across 10

separate diseases (Figure 4), suggesting it is not a useful

normalization control. Another curious method was to use miR-

451a to normalize plasma data [48]. miR-451a is a red blood cell

Figure 3. Reported microRNA biomarkers in 13 hepatic studies. Key: Study numbers = PMIDs; Green = likely; yellow = questionable; blue
= ubiquitous; grey = unknown; * The same study investigated hepatitis B and muscle injury-induced hepatitis; { Study investigated PBMCs, not just
serum or plasma.
doi:10.1371/journal.pone.0089565.g003
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specific microRNA which, when RBCs lyse, ends up in highly

variable levels in serum and plasma [13,41]. If possible, a spiked-in

non-human microRNA used at the time of RNA preparation, such

as cel-miR-39, cel-miR-54 and/or cel-miR-238 [10,47] is likely

the best normalization strategy. Even that strategy can be fraught

with error if the spiking is done with poor or inconsistent

methodology for handling samples [42,49]. Analytical methods on

qPCR arrays were also variable with no less than 3 different global

normalization methods used to evaluate the data [50].

Despite variable normalization quality, we were unable to

associate better normalization procedures with an increased

likelihood of obtaining likely microRNA biomarkers. We were

also dismayed by the low reporting of array data depositing into a

public repository (22%). This is consistent with known problems in

enforcing MIAME regulations [51]. Finally, the median size of

these studies (Figure S3) was only 69 subjects, which suggests that

many studies were significantly underpowered to identify robust

biomarkers of disease.

We strongly believe that if there was an accessible and

comprehensive database of cellular expression patterns for each

microRNA, the quality of microRNAs reported as biomarkers

would be vastly improved. In the 42 two-step studies (array

followed by qRT-PCR), the authors attempted to replicate only a

subset of all initial hits. Generally, these were the microRNAs with

the highest fold expression changes. If investigators could consider

both the relative change in expression and known cellular

specificity, it is likely they would have chosen better microRNAs

with which to follow up. Therefore, we propose a simple flow chart

(Figure 5) taking ideas from the best-designed microRNA

biomarker publications and incorporating cell expression locali-

zation to create an optimal method of identifying blood-based

microRNA biomarkers.

We recognize some important limitations to our work.

Foremost, our cellular expression data, covering only 18 cell

types, was incomplete. As we showed in this study, participation in

submitting to GEO or ArrayExpress is inadequate, and it is

impossible to glean sufficient data from the public repositories to

create a complete cell microRNA expression dataset. As we lacked

certain cell types (including neurons, glial cells, cardiac myocytes

and specific epithelial cell types) we undoubtedly overused our

‘questionable’ classification. Thus our lack of knowledge of cell

level expression may have resulted in underreporting bonafide

clinical microRNA biomarkers. Our data argues strongly for the

formation of a comprehensive database of RNA-seq microRNA

expression data at the cellular level. Every researcher, when faced

with a number of microRNAs from an initial screen could use such

a resource to make informed and rational target choices based on

knowledge of their cellular expression patterns.

A second limitation of the study was that the determination of

disease-associated cell type was subjective. The determination of

tissues involved in each disease process was based on the consensus

opinion of a board-certified pathologist and a medical school

graduate. It is possible for some of the more esoteric diseases

studied, that we failed to identify all cell types involved in the

disease. Certainly a small percentage of microRNAs have been

misassigned into some categories. Also, the inclusion of PBMC

Figure 4. Six microRNAs have been identified as biomarkers for 9 or more diseases. Green arrows = higher in disease; red arrows = lower
in disease; grey arrows = up or down in disease depending on the study.
doi:10.1371/journal.pone.0089565.g004
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studies impacted on the categorization of some microRNAs, as

PBMC studies would have to identify only microRNAs expressed

in leukocytes.

Although we find that many blood based microRNA biomark-

ers that have been described are likely useful, a cautious evaluation

of the literature is warranted. Less than a third of all reported

microRNA biomarkers are expressed with some exclusivity in an

appropriate diseased cell type and are not biomarkers for two or

more unrelated diseases. Some microRNAs, such as miR-122 and

the myocyte specific microRNAs miR-1, miR-133a, miR-499,

were appropriately and consistently altered in hepatitis and

myocardial infarction. However, it is best to think of these

microRNAs as non-specific markers of organ injury, akin to liver

function tests (i.e. AST and ALT) or troponin levels, rather than

markers exclusive to a specific type of injury. Some microRNAs

biomarker discoveries are encouraging, such as miR-370 which

was replicated in two studies of coronary artery disease and was

not reported for any other disease process.

MicroRNAs represent an exciting and explosive area of

biomarker research. Over 45,000 hits on a Google Patent search

for ‘‘microRNA’’ and ‘‘biomarker’’ suggest that a number of

individuals anticipate this to be an important diagnostic area. Our

critical evaluation of the non-neoplastic microRNA biomarkers

suggests that additional rigor must be afforded to these studies to

identify robust, unique and justifiable biomarkers to this wide

variety of diseases.
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