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Abstract

High-throughput RNA sequencing (RNA-seq) has become an instrumental assay for the analysis of multiple aspects of an
organism’s transcriptome. Further, the analysis of a biological specimen’s associated microbiome can also be performed
using RNA-seq data and this application is gaining interest in the scientific community. There are many existing
bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next
generation sequencing (NGS) analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical
researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq
analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological
specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very
large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed
computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two
of these samples were derived from lymphoblastoid cell lines (LCLs) generated by the infection of naı̈ve B-cells with the
Epstein Barr virus (EBV), while another 23 samples were derived from Burkitt’s lymphomas (BL), some of which arose in part
through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster
analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a
germinal center-like phenotype) from the LCLs (which have a blast-like phenotype) with evidence of activated MYC
signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS
in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely available at http://
rnacompass.sourceforge.net/.
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Introduction

Through its capacity to delve deeply into the genetic

composition of a biological specimen, next generation sequencing

(NGS) technology presents an unprecedented approach to

pathogen discovery in the context of human disease. This unbiased

approach to identify undiscovered human disease causing

pathogens has already shown promise, resulting in the discovery

of a novel Merkel cell polyomavirus in Merkel cell carcinoma [1],

for example. More recently, the discovery of an association

between Fusobacterium and colorectal carcinoma was made using

two different NGS approaches [2,3]. These discoveries were

facilitated by the use of computational subtraction approaches

where reads aligning to reference genomes were subtracted from

the sequence file leaving behind sequences from undiscovered

organisms. Using this general approach, several groups, including

ours, have previously reported computational pipelines for the

analysis of exogenous sequences and for pathogen discovery [2,4–

8].

While current sequence-based computational subtraction pipe-

lines are used solely for pathogen discovery, RNA CoMPASS,

takes advantage of the richness of RNA-seq data to provide host

transcript expression data in addition to pathogen analysis. This

concept, recently coined ‘‘dual RNA-seq’’ by Westermann and

colleagues [9] allows the user to simultaneously investigate cellular

signaling pathways. It also allows the user to investigate

associations between differences in cellular signaling pathways

and the presence or absence of discovered pathogens. RNA

CoMPASS leverages some of the most useful freely available tools

and automates distribution of the computational burden over the

available computing resources. It is designed to be deployable on

either a local cluster or a grid environment managed by Portable

Batch System (PBS) submission. RNA CoMPASS provides a web-
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based graphical user interface, making the program accessible to

most biological researchers. Here we present RNA CoMPASS and

demonstrate its utility in dual analysis of RNA-seq data sets from

different B-cell types with different EBV infection status.

Materials and Methods

Sequence data acquisition
RNA-seq data sets from 22 Human B-Cell samples (lympho-

blastoid cell lines [LCLs]) immortalized with Epstein-Barr Virus

(EBV) were downloaded from the NCBI Sequence Read Archive

(SRA010302). Samples were sequenced using an Illumina

Genome Analyzer II machine running single end 50 base

sequencing reactions. Similarly, 22 Human Burkitt’s Lymphoma

(BL) samples were obtained from the NCBI Sequence Read

Archive (SRA048058). Samples were sequenced using an Illumina

Genome Analyzer II machine running paired end 107 and 102

base sequencing reactions. The Akata RNA-seq data set was

generated previously in our lab (SRA047981) [10]. The Akata

sample was sequenced using an Illumina HiSeq instrument

running paired end 100 base sequencing reactions. A list of all

the samples used is provided in Table S1.

RNA CoMPASS
RNA CoMPASS (RNA comprehensive multi-processor analysis

system for sequencing) is a graphical user interface (GUI) based

parallel computation pipeline for the analysis of both exogenous

and human sequences from RNA-seq data. Several open source

programs and a single commercial program are utilized in this

automated pipeline. For the deduplication steps, an in-house de-

duplication algorithm is used. Alignments to the reference genome

are carried out using Novoalign V2.07.18 (www.novocraft.com)

[-o SAM, default options] with a reference genome (e.g. human

(hg19; UCSC)), splice junctions (which is generated using the make

transcriptome application from Useq [11]; splice junction radius is

set to the read length minus 4), and abundant sequences (which

include sequence adapters, mitochondrial, ribosomal, enterobac-

teria phage phiX174, poly-A, and poly-C sequences). Human

mapped reads are analyzed using SAMMate [12] to quantify gene

expression and to generate genome coverage information.

Nonmapped reads are separated following this alignment and

subjected to consecutive BLAST V2.2.27 searches against the

Human RefSeq RNA database (a final filtering step) and then to

the NCBI NT database to identify reads corresponding to known

exogenous organisms [13]. Results from the NT BLAST searches

are filtered to eliminate matches with an E-value of less than

10e26. The results are fed into MEGAN 4 V4.62.3 [14] for

convenient visualization and taxonomic classification of BLAST

search results.

Statistics and Cluster analysis
Human transcript counts were imported into the R software

environment and analyzed using the edgeR package [15]. Genes

with low transcript counts (less than 1 CPM (count per million)) in

the majority of samples were filtered out. The Manhattan (L-1)

distance matrix for the samples was computed using the remaining

transcript counts, and this was taken as input for hierarchical

clustering using the Ward algorithm. After assigning each sample

to one of two groups identified by hierarchical clustering (Human

B-Cell or Burkitt’s Lymphoma), the glmFit function was used to fit

the mean log(CPM) for each group and likelihood ratio tests were

used to identify those genes that were differentially expressed, with

adjusted P,0.05 following the Benjamini-Hochberg correction for

multiple testing. The fitted log(CPM) values for the subset of genes

that were differentially expressed in the LCL samples relative to

the BL samples were then clustered using the Euclidean distance

and complete linkage algorithm to detect groups of co-expressed

genes.

Results

RNA CoMPASS Architecture
RNA CoMPASS facilitates the analysis of small and large RNA

sequencing studies through an automated dataflow management

and acceleration of processing via distributed computing over a

cluster (Figure 1). It has the capability to analyze fastq sequence

files generated from single-end, paired-end, and/or directional

sequencing strategies. After an initial deduplication step, the first

phase of RNA CoMPASS is to perform the alignment of millions

of short reads against the host genome using an accurate aligner,

Novoalign (http://www.novocraft.com/) [-o SAM, default op-

tions]. Any host genome can be uploaded to RNA CoMPASS. In

our case, we used the human reference genome, hg19 (UCSC),

plus splice junctions (which is generated using the make

transcriptome application from Useq [11]; splice junction radius

is set to the read length minus 4), and abundant sequences (which

include sequence adapters, mitochondrial, ribosomal, enterobac-

teria phage phiX174, poly-A, and poly-C sequences). After

alignment, Novoalign categorizes reads into four classes: uniquely

mapped reads, repeat mapped reads, unmapped reads and quality

controlled reads. Further processing is bifurcated into the analysis

of endogenous sequences (uniquely mapped reads and repeat

mapped reads) and the investigation of exogenous reads

(unmapped reads) (Figure 1).

Endogenous sequence analysis is performed via the SAMMate

transcript analysis software (Figure 1) [12]. A gene annotation file

of interest is uploaded to facilitate the calculation of expression

abundance scores for annotated genes and transcripts using the

uniquely mapped reads (this includes spliced reads) and the best

hits of repeat mapped reads from Novoalign. Gene expression is

calculated using Reads/Fragments Per Kilobase of exon model

per million Mapped reads (RPKM/FPKM) [16]. Isoform

quantification is also computed via the RAEM algorithm [17] or

the iQuant procedure [18] to estimate the relative isoform

proportions and abundance scores. RNA CoMPASS also gener-

ates useful files for visualization of RNA-seq data. Read coverage

files are produced in Wiggle format for coverage viewing in a

genome browser and signal map files are produced with single

base pair resolution which can be used with peak detection

algorithms [12].

Exogenous sequence analysis proceeds concurrently with the

endogenous analysis (Figure 1). Utilizing BLAST [19], unmapped

reads are searched against the NCBI NT database for identifica-

tion using an E-value of better than 10e26. This process is

extremely computationally intensive and is distributed across the

computing cluster to minimize processing time and memory

requirements. BLAST run time and memory requirements depend

not only on the size of the database being searched but also on the

number of input reads. The filtering of reads originating from the

human genome prior to searching against the NCBI NT database

is the first major step in managing this burden. Despite this step,

we have discovered that many host reads remain unmapped and

are subsequently identified by BLAST (since BLAST is substan-

tially more permissive). To further reduce the computational

burden incurred by BLASTing these unmapped host reads, RNA

CoMPASS offers an optional stage prior to NT database

BLASTing where the user can BLAST against a host transcript

database. Because host transcript databases are much smaller than

RNA CoMPASS: Dual Pathogen and Host Transcriptome
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the NT database, host reads not aligned by Novoalign can be

filtered out at lower computational cost than would otherwise be

incurred by BLASTing these reads against the NT database.

After BLASTing against the NT database, taxonomic analysis is

performed by importing the BLAST results into MEGAN [14]. To

allow MEGAN to determine the taxon associated with each

match, the NCBI taxon id number is appended to each BLAST

hit. This is accomplished by looking up the GI accession number

in the GI to TaxID file using a custom script. MEGAN then

determines the taxon associated with matches based on the hit

table using a lowest common ancestor algorithm. MEGAN

categorizes the exogenous sequences and outputs an NCBI

taxonomy tree. Each node of the output tree is labeled by a

taxon and the size of a given node represents the number of reads

assigned to that taxon. This provides the researcher with an

overview of reads of possible exogenous origin. The researcher can

then evaluate the exogenous sequence content in the context of

their own biological knowledge of the experiment at hand. The

researcher can also formulate hypotheses to test given the

taxonomic classification displayed by MEGAN and then export

all reads that were assigned to a specific taxon for further analysis.

For example, the reads can be assembled into longer transcripts

[20] using a de novo parallel sequence assembler. This provides

the researcher with a broader view of the particular transcripts

that were found within a given taxon. De novo assembly can be

repeated for each taxon of interest and the researcher can search

the longer assembled transcripts against the databases again to get

more precise hits.

In RNA CoMPASS, we have implemented both the Java

Parallel Processing Framework (JPPF) API and Portable Batch

System (PBS) API in order to deploy it on either a small local

cluster or a grid system managed by PBS submission. Our testing

of RNA CoMPASS in both environments (data not shown for grid

system) showed that our pipeline could efficiently analyze RNA-

seq data sets achieving a significant speedup over analysis on a

single machine. This will allow other investigators to use RNA

CoMPASS on whichever type of computational environment they

have access to. In our case, we employed RNA CoMPASS on a

Figure 1. Schematic of RNA CoMPASS (RNA comprehensive multi-processor analysis system for sequencing) architecture. RNA
CoMPASS is a graphical user interface (GUI) based parallel computation pipeline for the analysis of both exogenous and human sequences from RNA-
seq data. It employs a commercial and several open-source programs to analyze RNA-seq data sets including Novoalign, SAMMate, BLAST, and
MEGAN. Each step results in the subtraction of reads in order to further analyze the unmapped reads for pathogen discovery. The mapped reads are
analyzed separately. The end result from this pipeline is pathogen discovery and host transcriptome analysis.
doi:10.1371/journal.pone.0089445.g001
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local 4-node cluster environment (Intel Xeon Mac Pros with 64–

96 GB RAM).

RNA CoMPASS performance
To evaluate the performance of RNA CoMPASS on a cluster

environment versus a single node environment, we benchmarked 6

RNA-seq data sets with incrementally varied file sizes on both a

single machine and on a local cluster with 4 nodes. The 6 files used

for this analysis were extracted from a previously generated RNA-

seq data set from a BL cell line (1 sequence pair from the Akata

RNA-seq data set) [10] and the file sizes varied from 1.4 to 51

million reads. All 6 samples, run on the single node or the 4-node

cluster, were processed using identical parameters. As expected,

run time increased with file size with the 51 million read file taking

approximately 1,400 minutes on a single machine but only 400

minutes on the cluster (Figure 2). Speedup increased with file size

(up to 3.4, Figure 2) supporting a benefit of a cluster environment

for large-scale projects. Overall speedup was attributed primarily

to the parallelization of the two more computationally intensive

steps, Novoalign and BLAST (Figure S1).

Pathogen Discovery and Analysis
To test the utility of RNA CoMPASS to identify pathogens

within biological specimens we used RNA-seq data sets from two

distinct B-cell types, lymphoblastoid cell lines (LCLs) and Burkitt’s

lymphoma (BL) samples. LCLs are not tumor cells but have

instead been immortalized by infection with EBV. In contrast, the

Burkitt’s lymphoma cells lines are tumor cell lines, some of which

underwent tumorigenesis in part through natural infection with

EBV. Notably, however, although some Burkitt’s lymphoma cell

lines are infected with EBV, the EBV gene expression pattern and

the cell phenotype of Burkitt’s lymphomas and LCLs are distinct.

Single-end RNA-seq data sets from 45 B-cell lines (22-

Lymphoblastoid cell lines, 23-Burkitt’s lymphomas) were analyzed

using RNA CoMPASS (Table S1). Most samples contained

relatively low numbers of non-human viral reads (e.g. enterobac-

teria phage) that most likely represent environmental contamina-

tion (Figure 3A). EBV was the primary mammalian virus detected

in these samples (displayed as Human herpesvirus 4 in examples

shown in Figure 3A). Nevertheless, related viruses were sometimes

displayed in the MEGAN output such as that for sample

SRR032270 where 88 reads were classified as Macacine

herpesvirus 4 reads and 32 were classified as Papiline herpesvirus

1 (Figure 3A). Further analysis of these reads using manual

BLAST revealed that EBV ranked among the top 2 hits suggesting

that these reads are likely EBV but were misclassified. Most

importantly, RNA CoMPASS identified all 22 LCLs and 7 of the

23 Burkitt’s lymphoma samples as being positive for EBV

(Figure 3B).

As expected, EBV gene expression in LCLs is generally more

robust and shows the expression profile expected in this cell type

with all the latent proteins including EBNA 1,2, and 3 and LMP 1

and 2 being expressed (Figure 4). In contrast, the BL samples

showed the expected more restricted gene expression pattern

(referred to as type 1 latency) with regions in the BamHI A and the

EBNA 1 loci showing coverage (Figure 4).

Host Transcriptome Analysis
The host transcriptome analysis component of RNA CoMPASS

generates gene expression output files that can be used for cluster

and pathway analysis. Gene expression output from RNA

CoMPASS analysis of the 22 LCL and 23 BL samples was

subjected to hierarchical clustering and differential gene expres-

sion analysis (Table S2 contains the list of the top 250 differentially

expressed genes and Table S3 contains the list of all the

differentially expressed genes). Using the Ward criterion, the

Figure 2. Performance Analysis of RNA CoMPASS. RNA CoMPASS was deployed on a local cluster and benchmarking was performed. An Akata
RNA-seq data set was split into six files of varying sizes: 1–393.4 MB, 1,397,139 reads, 2–757 MB, 2,685,149 reads, 3–1.44 GB, 5,120,805 reads, 4–
2.72 GB, 9,651,466 reads, 5–5.01 GB, 25,465,406 reads, sample 6–8.99 GB, 50,930,812 reads. Overall time was calculated for each file on a single
machine (blue column) and on the local 4-node cluster (red column). Speedup time is represented as a green line.
doi:10.1371/journal.pone.0089445.g002
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samples separated in two well defined clusters with one cluster

representing the LCL phenotype and the other representing the

BL phenotype (Figure 5). Furthermore, within the BL cluster,

biopsies separated from the cell lines, possibly caused by the

contribution of stromal signals in the biopsies ads/or by genetic

drift in the cell lines.

To investigate differences in LCLs compared to BLs, Ingenuity

Pathway Analysis software (IPA: Ingenuity Systems) was used to

assist in the analysis of signaling pathways and molecular functions

associated with the differentially expressed cellular genes. Up-

stream regulator analysis within IPA predicted activation of MYC

(z-score: 3.375), MYCN (z-score: 2.813), MAPK9 (z-score: 2.414),

and MAPK1 (z-score: 2.138) pathways with an inhibition of

Interferon alpha (z-score: 22.916), interferon gamma (z-score:

22.788), NF-kB (z-score: 22.746), interferon alpha-2 (z-score:

22.723), and interferon lambda (z-score: 22.000) pathways in BL

relative to LCL samples (Figure 5, Figures S2 and S3). TCF3 (5.4-

fold) and TOP2A (9.0-fold) were both increased in BLs relative to

LCLs.

Discussion

RNA CoMPASS is designed to take advantage of several open

source programs in order to streamline and accelerate RNA-seq

data analysis. RNA CoMPASS helps the researcher to manage the

computational burden of processing large sets of RNA-Seq data by

parallelizing the most compute intensive steps of the process and

automatically managing files through each step of the pipeline.

The simultaneous analysis of the host transcriptome along with the

discovery of pathogens allows investigators to not only detect

pathogens but also study the relationship between the pathogen

and host transcription.

In RNA CoMPASS, we have implemented both the Java

Parallel Processing Framework (JPPF) API and Portable Batch

System (PBS) API in order to deploy it on either a small local

cluster or a grid system managed by PBS submission. Our testing

of RNA CoMPASS in both environments showed that our

pipeline could efficiently analyze RNA-seq data sets achieving a

significant speedup over analysis on a single machine. This will

allow other investigators to use RNA CoMPASS on whichever

type of computational environment they have access to. In our

case, we employed RNA CoMPASS on a local 4-node cluster

environment (Intel Xeon Mac Pros with 64-96GB RAM) which

achieves a speedup approaching the theoretical limit of 4 by

splitting the computational tasks over 4 machines as the file size

increases. This speedup of a 4 node cluster serves as a proof of

principle that an even greater speedup could be obtained using a

significant computational cluster involving hundreds of nodes. A

recently published study [21] also outlines a different approach

using the Bowtie aligner (which is significantly faster than

Figure 3. Detection of EBV in Human B-Cells using RNA CoMPASS. Analysis of all 45 single-end RNA-seq data sets (22-Lymphoblastoid cell
lines, 23-Burkitt’s lymphomas) were analyzed using RNA CoMPASS. (A) The virome branch of the taxonomy trees for two representative LCLs and
Burkitt’s lymphomas were generated using the metagenome analysis tool, MEGAN 4. (B) EBV reads were quantified in all 45 RNA-seq data sets and are
represented as per 5,000,000 total sequence reads.
doi:10.1371/journal.pone.0089445.g003
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novoalign) to align against the human plus virus genomes. As an

alternative approach, they use BLASTing of de novo assembled

reads instead of all unaligned reads. These are computationally

more efficient approaches but the first method is constrained by

index size limitations, which preclude the inclusion of a broad

array of organisms such as bacteria and fungi, for example. In

contrast, the BLAST approach of RNA CoMPASS surveys the

entire NT database. The blasting of only de novo assembled reads

would also significantly speed up our approach, however,

BLASTing raw reads allows us to quantify relative levels of each

exogenous agent found, which is an important read-out for these

studies.

Though the BLASTing step of RNA CoMPASS incurs

moderate limits on the size of input file that can be processed

(depending on access to a large computational cluster), it allows for

a more comprehensive analysis. In previous work, we would that

sampling 10 million reads from an RNA sequencing experiment is

likely to be well beyond the number needed to detect meaningful

levels of exogenous agents [22]. A future enhancement of RNA

CoMPASS will be to leverage this result and first align all reads

Figure 4. Circos plot of two EBV samples shows distinct gene expression. An annotated Circos plot depicts the EBV read coverage across
the EBV genome of two samples. The graph displays the number of reads mapped to each nucleotide position of the genome and are depicted in log
scale. Blue features represent lytic genes, red features represent latency genes, green features represent potential non-coding genes, and black
features represent non-gene features (e.g. repeat regions and origins of replication).
doi:10.1371/journal.pone.0089445.g004
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from a sample for analysis of human reads, but then to carry

forward only an adequately sized sample of unmapped reads

through the more computationally burdensome analysis of

exogenous agents (BLASTing). Future implementations of RNA

CoMPASS are also under development which will leverage large

computing clouds (like Amazon EC2) and will also provide the

Figure 5. Heat Map representing Human B-Cells analyzed using RNA CoMPASS. Human transcript counts from the 45 B-cell samples were
imported into the R software environment and analyzed using the edgeR package [15]. Genes with low transcript counts (less than 1 CPM (count per
million)) in the majority of samples were filtered out. The Manhattan (L-1) distance matrix for the samples was computed using the remaining
transcript counts, and this was taken as input for hierarchical clustering using the Ward algorithm. After assigning each sample to one of two groups
identified by hierarchical clustering (Human B-Cell or Burkitt’s Lymphoma), the glmFit function was used to fit the mean log(CPM) for each group and
likelihood ratio tests were used to identify those genes that were differentially expressed, with adjusted P,0.05 following the Benjamini-Hochberg
correction for multiple testing. The fitted log(CPM) values for the subset of genes that were differentially expressed in the LCL samples relative to the
Burkitt’s lymphoma samples were then clustered using the Euclidean distance and complete linkage algorithm to detect groups of co-expressed
genes. The expression heat map displays the top 250 differentially expressed genes.
doi:10.1371/journal.pone.0089445.g005
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option of using alternative aligners such as Bowtie or STAR to

significantly speed up the alignment process.

We used LCLs and BL samples to evaluate the pathogen and

host transcriptome analysis arms of RNA CoMPASS because of

their differences in phenotypes. The LCLs were generated by

infecting human B-cells with EBV, which typically display an

activated B-cell like phenotype (type III latency – expressing all 9

EBV latency genes (LMP1, LMP2A, LMP2B, EBNA1, EBNA-LP,

EBNA2, EBNA3A, EBNA3B, and EBNA3C) and BART

transcripts). The BL samples typically display a germinal center-

like phenotype (type I latency – expressing EBNA1 and BART

transcripts). The entire sequence file for all samples was used as

input for RNA CoMPASS. Although the BL samples were

sequenced using a paired-end approach, only one of the reads

from each pair was analyzed in order to remain consistent among

all samples and because a single-end read should provide sufficient

evidence for pathogen discovery.

RNA CoMPASS discovered a significantly larger proportion of

EBV (Human Herpesvirus 4) reads within the LCLs as compared

to the BLs. This is an anticipated result, which validates the usage

of RNA CoMPASS to interrogate genetic material of exogenous

origin.

One of the most highly active pathways within BLs is the MYC

pathway. In our study, the MYC and MYCN pathways were

predicted to be the top two activated pathways in BLs relative to

LCLs according to IPA’s upstream regulator analysis. Several

MYC targets have been reported in the literature [23–27] and we

see many of these targets regulated in our study including the

MYC-induced genes, BUB1, CENPF, CCNB1, PLK1, PCNA,

AURKB; and the MYC-repressed genes: STAT1, IL10RA, and

HLA-DRA. In addition, the MYC pathway has emerged as one of

the central regulators of cell growth and ribosome biogenesis by

inducing several genes encoding ribosomal proteins [28]. In our

study, we observe that the top differentially expressed gene targets

of MYC and MYCN are related to ribosomal protein synthesis

(NCL, RPL30, RPL37, RPS20, and RPL3).

Transcriptome analysis has shown that the MYC signature is

the hallmark signaling difference between Burkitt’s lymphomas

and diffuse large B-cell lymphomas with: upregulation of MYC-

target genes and downregulation of genes involved in the NF-kB

and interferon responses [23,24,27]. This hallmark signaling is

recapitulated in our study using transcriptome analysis of BL and

LCL samples. Taken together, the results presented here as well as

from others indicate that a single master transcriptional pathway,

MYC, mainly governs the growth potential of BLs with the help of

other oncogenes as cofactors [27].

On the other hand, the most highly inhibited pathways within

BLs compared to LCLs were the interferon response pathway and

the NF-kB pathway. The NF-kB pathway has been shown to play

a vital role in EBV’s ability to transform naı̈ve B-cells as the EBV

transforming latency protein, LMP1 continuously activates NF-kB

[29,30]. Among other genes, we observe an increased expression

of antigen presentation molecules in LCLs relative to BLs, possibly

through the LMP1/NF-kB pathway [29]. The inhibition of the

interferon response pathways seen in BLs lends to the overexpres-

sion of MYC contributing to immune escape through repression of

the interferon response [31].

A few other noteworthy genes that were observed as being

differentially expressed include TCF3 and TOP2A, both of which

have increased expression in BLs relative to LCLs. In a recent

study using RNA-seq with RNA interference screening of BLs,

Schmitz et al was able to identify mutations affecting the

transcription factor TCF3 [32]. TCF3 has been shown to activate

the pro-survival phosphatidylinositol-3-OH (PI(3)) kinase in part

by augmenting B-cell receptor signaling [32]. The authors suggest

that the MYC and PI(3) kinase pathways may act synergistically in

BL oncogenesis, and that the PI(3) kinase pathway may be a new

target for drug development [32].

The other molecule, TOP2A has been shown to determine

anthracycline-based drug (e.g. doxorubicin) response in vitro and in

vivo [33]. Dose intensity of doxorubicin was evaluated by Kwak

and colleagues in a retrospective analysis of 115 patients with

diffuse large B-cell lymphoma [34]. The outcome of this study

determined that doxorubicin should be used for the treatment of

aggressive non-Hodgkin’s lymphomas and dose intensity of

doxorubicin was a key factor in predicting patient survival.

Further, a meta-analysis of published randomized controlled trials

comparing chemotherapy regimens incorporating doxorubicin at

a high dose with standard CHOP therapy was conducted and their

conclusions were consistent with the Kwak and colleagues study

[35]. Altogether, levels of TOP2A in BLs are elevated relative to

immortalized B cells and that high dose doxorubicin in addition to

standard CHOP therapy may improve Burkitt’s lymphoma patient

outcome through TOP2A mediated doxorubicin response.

Conclusion

In summary, our results demonstrate the utility of RNA

CoMPASS in analyzing large sequence datasets for the discovery

of pathogens and host transcriptome analysis. The use of this

pipeline is expected to enable more researchers to enter the filed of

RNA Sequencing and to yield novel associations between

pathogens and human diseases with important medical implica-

tions. This study shows the disparate expression profiles between

Lymphoblastoid cell lines and the Burkitt’s lymphoma samples

thereby exhibiting the ability of RNA CoMPASS to analyze

endogenous sequencing. RNA CoMPASS is publically available

under the GPL: http://rnacompass.sourceforge.net. Installation

guidelines, supporting documentation, along with example data

are available from the sourceforge repository. The most up to date

source code is available from the sourceforge site; the version of

the source code at the time of publication is included in Software

S1: Source Code.

We are planning to implement the Circos plot capability for

discovered pathogens as well as clustering analysis for host gene

expression in later versions of RNA CoMPASS. These improve-

ments will further streamline and complement the analysis of

RNA-seq data in the discovery and analysis of pathogens

associated with malignancies. In addition, we are investigating

ways to further improve the speedup of the pipeline.

Supporting Information

Figure S1 Performance of RNA CoMPASS based on
individual tasks. The six Akata RNA-seq data set files used

previously were benchmarked on completion of individual tasks

and represented in the graphs. Runs on a single node are

represented using blue columns while runs on a 4-node cluster are

represented using red columns. The green line represents speedup

time between the single node and 4-node environment. Note in

particular that speedup of the BLAST portion of RNA CoMPASS

and overall speedup approaches the theoretical limit of 4 as the

data size is increased.

(TIF)

Figure S2 Predicted top activated upstream pathway of
top 250 differentially expressed genes.

(TIF)
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Figure S3 Predicted top inhibited upstream pathway of
top 250 differentially expressed genes.
(TIF)

Table S1 Sample list.
(XLS)

Table S2 Top 250 differentially expressed genes be-
tween lymphoblastoid cell line and Burkitt’s lymphoma
samples.
(XLS)

Table S3 All differentially expressed genes between
lymphoblastoid cell line and Burkitt’s lymphoma sam-
ples.
(XLS)

Software S1 Source code for RNA CoMPASS.

(TXT)
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