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Abstract

It has been notoriously difficult to understand interactions in the basal ganglia because of multiple recurrent loops. Another
complication is that activity there is strongly dependent on behavior, suggesting that directional interactions, or effective
connections, can dynamically change. A simplifying approach would be to examine just the direct, monosynaptic
projections from cortex to striatum and contrast this with the polysynaptic feedback connections from striatum to cortex.
Previous work by others on effective connectivity in this pathway indicated that activity in cortex could be used to predict
activity in striatum, but that striatal activity could not predict cortical activity. However, this work was conducted in
anesthetized or seizing animals, making it impossible to know how free behavior might influence effective connectivity. To
address this issue, we applied Granger causality to local field potential signals from cortex and striatum in freely behaving
rats. Consistent with previous results, we found that effective connectivity was largely unidirectional, from cortex to
striatum, during anesthetized and resting states. Interestingly, we found that effective connectivity became bidirectional
during free behaviors. These results are the first to our knowledge to show that striatal influence on cortex can be as strong
as cortical influence on striatum. In addition, these findings highlight how behavioral states can affect basal ganglia
interactions. Finally, we suggest that this approach may be useful for studies of Parkinson’s or Huntington’s diseases, in
which effective connectivity may change during movement.
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Introduction

It is tremendously important to understand interactions among

the subcortical nuclei of the basal ganglia (BG) because these

nuclei have been implicated in a broad array of motor and higher-

order cognitive functions like reward seeking [1–3], habit

formation [4], action selection [5], and multi-modal information

integration [6,7]. In addition, dysfunction in the BG and related

systems is thought to play a causative role in Huntington’s and

Parkinson’s diseases [8–13].

However, it has been extremely challenging to understand

interactions in the BG because these structures have many

recurrent synaptic connections [7,13]. Numerous reports also

indicate that activity in the BG nuclei is strongly modulated by

behavioral states [14–16], suggesting that interactions within the

BG may change rapidly with behavior.

An attractive solution to this dilemma would be to study just one

BG connection, and to observe how interactions in that

connection change with different behaviors. In this respect,

perhaps the simplest connection in the BG is that between the

cortex and the striatum. Neocortex sends direct, monosynaptic

projections to striatum [13], the input nucleus of the BG.

Moreover, striatum does not project directly back to cortex.

Striatum can influence cortex indirectly, though, by way of

projections from striatum to other BG nuclei, which in turn project

to thalamus, which then projects to cortex [7]

To date, studies of interactions between cortex and striatum

have focused on correlated activity using both spike trains [17] and

local field potentials (LFPs) [18]. While studies of correlated

activity are highly informative, determining the contributions of

cortical and subcortical processes to such correlations requires

methods to distinguish directed influence from temporal synchro-

ny. To our knowledge, only two studies have assessed directed

relationships in the cortico-striatal pathway of rats. Other groups

[19] used directed measures to explore interactions in anesthetized

rats and found that cortical influence over BG nuclei exceeded

reciprocal influence. In another study, the investigators used

directed measures during spike and wave seizures in a rat model of

epilepsy, and again found cortico-striatal influence to be dominant

[20]. Building on this important work, we sought to measure how

different free behaviors might modulate directional influence

between cortex and striatum in healthy animals.
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To do this, we characterized directed influence between cortex

and striatum using LFPs recorded in primary motor cortex (M1)

and dorsal striatum (dStr) from awake, unrestrained rats. In

addition to observing free behaviors, we recorded during sleep and

anesthesia in order to compare rest states to spontaneous behavior

and to each other, and to assess the neural correlates of drug-

induced and natural inactivity. To gauge directional network

interactions, we applied Granger causality (GC) [21–23], which

quantifies the degree to which two systems exchange directed

information based on temporal precedence. GC is a well-

established effective connectivity metric and has shown great

promise based on foundational work in both animals [24] and

humans [25]. The mathematical underpinnings of GC are

described in detail elsewhere [22,26,27]. Importantly, GC is easily

expanded into Fourier space, making it an ideal method for

studying LFPs, which are rich in spectral content. Recent findings

suggest that this method is well-suited to analysis of electrophys-

iological signals [20].

Given that M1 has massive glutamatergic projections directly to

dStr, we expected that GC would be very strong in the

corticostriatal direction in all phases of behavior. Because dStr is

connected to M1 only indirectly, by way of several basal ganglia

nuclei and then the thalamus, we expected GC would be relatively

weak in the striatocortical direction. Consistent with previous

results [19,20], we found that cortical influence exceeded

striatocortical drive during natural inactivity and anesthesia.

During voluntary movement, however, striatal influence over

cortex increased markedly and became as strong as cortical

influence over striatum in certain frequency bands. To our

knowledge, this is the first report that striatal influence over cortex

can be as strong as cortical influence over striatum. This work

highlights the bidirectional nature of influence between cortex and

striatum, and emphasizes the importance of recording from

naturally behaving animals for understanding basal ganglia

function.

Methods

All procedures adhered to NIH guidelines regarding use of

animals in research, and were approved by the Institutional

Animal Care and Use Committee (Assurance Number A4094-01).

Electrodes
Electrodes were constructed in-house by friction fitting gold

socket connectors to 75 micron stainless steel, Formvar insulated

microwires. Electrode assemblies consisted of eight microwires,

four each to be implanted in M1 and dStr. As M1 lies just dorsal to

dStr, we were able to target both structures simultaneously by

combining all the microwires into a single bundle and cutting the

cortical wires 4 mm shorter than the striatal wires. Relative

distances between electrodes were determined from a stereotaxic

atlas [28] and precise wire length was accomplished by cutting the

wires under a microscope using a sharp pair of surgical scissors.

Though we only analyzed a single trace for each structure, we

implanted multiple electrodes to minimize data loss due to

individual electrode failure or heavy noise on a particular channel.

Channels were inspected for artifacts and the one to be analyzed in

each structure was selected before data were analyzed. Power,

coherence, and causality spectra were not known when selecting

data for analysis.

Surgery and Electrophysiology
Animals were anesthetized with a mixture of ketamine (80 mg/

kg) and xylazine(10 mg/kg). A single hole was drilled over both

M1 (20.5 mm) and dorsal striatum (24.5 mm) (bregma, +1.6 AP,

+/22.5 ML). The dura was plucked with a sharp, angled needle

with great care not to disrupt the underlying cortex. Three to four

additional holes were drilled into but not through the skulls.

Screws inserted into these holes were anchored to the electrode

using dental acrylic. All LFPs were referenced to the potential of a

screw near the midline and contralateral to the recording

electrodes, following prior studies [29]; this screw also served as

the animal ground.

Recording sessions occurred between 9:00 AM and 5:00 PM

during the light cycle. Animals were placed in an open field

consisting of a 48 cm L626 cm W620 cm H Plexiglas cage with a

cardboard floor in lieu of standard bedding to minimize static

noise. The electrode assembly was connected to a flexible harness

equipped with field-effect transistors that provided unity gain

current amplification across all eight recording electrodes. The

open field was placed in an electrically grounded sound-

attenuating Faraday cage. Extracellular electrical activity was

routed through multi-channel preamplifiers that provided 500X

gain and 0.9 to 300 Hz bandpass filtering (Plexon, Inc. Dallas,

TX). Signals were digitized at 1 kHz and recorded (Multichannel

Acquisition Processor, Plexon). Data were stored on an external

hard drive and transferred to a Hewlett-Packard desktop computer

for analysis. For each recording session, the trace with the fewest

artifacts based on visual inspection was selected from each

structure. Traces to be analyzed were selected before any analysis

was performed. These data were transferred to Matlab (The

Mathworks, Natick, MA) for analysis. Animals were awake and

unrestrained during the first thirty to forty-five minutes of the

recording session. The same animals were then administered a

ketamine/xylazine mixture at half a surgical dose and placed on

Deltaphase isothermal pads to provide supplemental heat.

Recordings continued until the animal exhibited spontaneous

movement indicating incomplete anesthesia. Anesthesia lasted 10–

30 min, depending upon individual variations in drug sensitivity.

For consistency, only the first 10 min of anesthesia from each

animal were analyzed. We discarded data gathered after the first

sign of incomplete anesthesia, such as a response to a paw pinch or

a whisker flick.

Histology
Histology was performed as previously described [11,30].

Briefly following recording, animals were deeply anesthetized

using a ketamine/xylazine mixture at double a surgical dose.

Electrolytic lesions were produced at the electrode implantation

sites by applying a 50 microamp current across a randomly

selected working electrode and all three of its neighbors for three

seconds each. Animals were transcardially perfused with saline

followed by a 10% solution of potassium ferrocyanide in neutral,

buffered formalin. Brains were extracted and cryoprotected in

30% sucrose dissolved in formalin for at least 24 hours. 80-micron

coronal sections were obtained on a microtome and inspected to

verify correct electrode implantation (Fig. 1).

Behavioral Analysis
Data sets were separated according to behavioral epochs.

Occurrences of different behaviors were identified offline by two

research assistants trained to recognize each behavior of interest.

Coding consistency was determined by comparing the coded

behaviors observed by each coder to data coded by the primary

author. Near perfect (,95%) agreement between these data sets

was obtained before coders produced data for analysis. For all

coded data sets, the primary author inspected a random sample of

the coders’ time stamps to ensure continued reliability across the

Behavior Modulates Corticostriatal Connectivity
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experiment. Coders were instructed to use conservative standards

and indicate when a particular behavioral epoch was ambiguous.

In these cases, the decision to include a trial in the final analysis

was made by the primary author prior to analysis of the data sets.

We analyzed the following spontaneous behavioral events:

rearing (when the rat’s front two paws were off the bottom of the

cage), immobile alertness (when the rat was sternal and passively

observing its surroundings with no gross motor output), general-

ized exploration (when the rat was actively moving about the cage

but stopping every two to three steps to observe its surroundings),

and sleep (characterized by a curled posture and complete lack of

movement lasting at least one minute). Data gathered during free

behaviors – excluding sleep – were divided into 2 sec epochs and

pooled into ensemble averages of at least ,90 and at most ,200

events. If a behavioral epoch lasted longer than 2 sec, only the first

two seconds were used for analysis in order to maintain a

consistent spectral resolution across all trials and behaviors. We

chose 2 sec epochs so as to ensure that only one behavior was

expressed during each interval to be analyzed. This conservative

approach to categorizing behavior did not compromise the

analyses we could perform on these 2 sec epochs, as explained

below. Data recorded during sleep and anesthesia was treated as

long stationary trials. We recognize that sleep and anesthesia are

not homogenous states and that it is possible for the neuronal

signal to exhibit different spectral properties at different phases of

anesthesia and sleep. We confirmed that the spectral decompo-

sition was consistent across trials using a multiwavelet method

[31,32]. Briefly, this method computes unbiased single-trial power

and coherence using a weighted average of mutually orthogonal

eigenspectra. Using this method, we are able to construct

spectrograms without the use of a sliding window or multitrial

average. We confirmed that the spectral content of the LFPs did

not vary across sleep and anesthesia (see results for representative

spectrograms). These data sets were divided into five-second

periods separated by two-second buffers to reduce serial correla-

tions. As very low-frequency oscillations (1–4 Hz) are known to

characterize in-vivo LFPs recorded during anesthesia and sleep,

we chose a longer window in order to better resolve very low

frequency components. This was feasible for sleep and anesthesia

since these data sets can be arbitrarily divided into segments of any

length. Data gathered during spontaneous behavior, conversely,

are constrained by the average amount of time the rats spent

engaged in a particular behavior.

Signal Processing and LFP Analysis
Data sets were downsampled to 240 Hz using an in-house linear

interpolation algorithm. Power spectral densities were inspected

both before and after downsampling to guard against aliasing.

Power at the native sampling rate vanished before the down-

sampled Nyquist frequency of 120 Hz, obviating the need for an

anti-aliasing filter. Power line noise at 60 Hz was reduced using a

multitaper method [33]; this method is most effective when the

sampling rate is an integer multiple of the noise frequency, hence

our chosen downsampling method. Epochs contaminated with

obvious artifacts or for which the behavioral state was ambiguous

were removed prior to any analysis. Coders were blind to the

behavioral state corresponding to a particular epoch while

removing artifacts in order to guard against biased data selection.

Epochs were detrended, the ensemble mean was subtracted point

wise, and each data point was divided by the temporal standard

deviation to give all trials equal weights in the ensemble averages.

Our use of LFP signals follows that of previous investigators in the

basal ganglia [14,34] and in cortex [35–37], who have reported

that LFPs can be used to indicate regional brain activation at a

scale that is intermediate between single units and fMRI.

Spectral Estimation and Granger Causality
We selected GC from among multiple available causality

metrics, as it is well characterized and suitable for our

experimental design. Unlike dynamic causal modeling [38], GC

does not require a prior model, making it well-suited to

exploratory experiments. Although Schreiber’s transfer entropy

[39] admits a wavelet-based representation in scale space that

maps directly to frequency [40], applying transfer entropy to

continuous signals raises a number of technical issues [41,42]. GC,

in contrast, derives directly from standard linear systems theory

[27] and naturally describes continuous systems.

The mathematical details of GC are well described in Ding et

al., 2006 and Seth, 2010. In simple terms, GC attempts to quantify

how much knowledge of system A’s past improves the ability to

predict system B’s future. Usually, knowledge of B’s past can

provide some ability to predict B’s future. For example, knowing

that the amplitude of local field potential B has been increasing for

the past 10 milliseconds usually will provide some information

about how B’s amplitude will behave in the next 10 milliseconds.

If knowledge of system A’s past further improves this prediction

(beyond some small amount that would be expected by chance),

then we say that A is ‘‘Granger causal’’ to B. To continue the

example, when an increase in amplitude of LFP A often precedes

an increase in amplitude of LFP B, then we say that A is Granger

causal to B. Granger causality is used quite often [43] in

neuroscience studies [24,25,44] as a way of assessing influence,

regardless of patterns of synaptic connectivity.

Power, coherence, and GC were obtained by fitting an

autoregressive model to each trial and averaging over all model

coefficients. This is a standard procedure for estimating ensemble

properties such as power, and it was implemented with the

BSMART toolbox [43]. We pooled all the data for each behavior

1 m m

Figure 1. A representative histology section. Asterisks indicate
the location of electrode tips, as revealed by metal ion deposits marked
by ferrocyanide.
doi:10.1371/journal.pone.0089443.g001
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into the same ensemble and combined data from all five animals

into the spectral estimate for each behavior. We performed an

inter-subject variability analysis to validate this procedure (see

below). The covariance matrix is similarly constructed by

estimating the temporal variance of the model residuals and

averaging these values across trials. Power and coherence were

derived from the regression coefficients using standard parametric

spectral estimation, and GC was derived using methods described

by Ding and colleagues [27]. We determined the model order,

which is the number of lagged observations used to construct the

regression model, by minimizing the Bayesian information

criterion (BIC) as a function of parameter number. Brovelli et al.

(2004) report that the commonly used Akaike Information

Criterion failed to converge in their study of cortical LFPs in the

monkey, and Ding et al. (2006) suggest the use of either the AIC or

BIC depending upon the particulars of the data. With this in mind,

we chose the more conservative BIC to determine the model

order. The BIC is minimized at an optimal trade-off between

model accuracy and over-fitting [45]. The BIC generally

converged at high model orders (from 40 to 49 model parameters,

Table 1). As overparamaterization can introduce spurious spectral

peaks [46], we analyzed the data sets using multiple model orders

(data not shown) to ensure robustness against variation in the

number of regression parameters. Furthermore, we compared

parametric and non-parametric GC spectra (see results) in order to

ensure that idiosyncrasies of model fitting did not substantially

influence our analysis. To estimate non-parametric GC, we used

code provided by Mukeshwar Dhamala to implement the

derivation of GC directly from the spectral matrix. Power and

coherence were estimated using standard Fourier analysis. For

Table 1. Peak Granger causality for each behavior (shown in bold) with the 95% intersubject confidence interval, determined by a
bootstrapping procedure described in the methods.

Behavior Number of Trials Model Order Peak GC with 95% CI

Anesthesia 252 (5 Sec) 40 M1-.dStr

3 Hz [0.320, 0.33, 0.339]

8 Hz [0.057, 0.063,0.067]

15 Hz [0.015, 0.018, 0.021]

dStr-.M1

3 Hz [0.071, 0.077, 0.082]

8 Hz [0.048, 0.053, 0.057]

15 Hz [0.028, 0.031, 0.035]

Sleep 301 (5 Sec) 48 M1-.dStr

4 Hz [0.157, 0.171, 0.178]

dStr-.M1

No Peaks

Alert and Inactive 229 (2 Sec) 49 M1-.dStr

2 Hz [0.087, 0.11, 0.178]

8 Hz [0.036, 0.044, 0.054]

dStr-.M1

6 Hz [0.006, 0.009, 0.014]

Exploration 103 (2 Sec) 40 M1-.dStr

2 Hz [0.095, 0.126, 0.172]

8 Hz [0.046, 0.058, 0.077]

dStr-.M1

9 Hz [0.043, 0.06, 0.079]

21 Hz [0.035, 0.044, 0.057]

35 Hz [0.015, 0.024, 0.028]

Rearing 93 (2 Sec) 40 M1-.dStr

2 Hz [0.056, 0.084, 0.11]

8 Hz [0.011, 0.018, 0.028]

dStr-.M1

9 Hz [0.047, 0.071, 0.094]

The second column shows the number of realizations used to generate the ensemble average, and the duration of each realization in parentheses. Model order refers to
the number of parameters used to generate the regression model, using data from all animals engaged in a particular behavior.
doi:10.1371/journal.pone.0089443.t001
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each trial, we obtained the energy of individual signals (the

squared modulus of the Fourier transform) and cross-spectral

density (the product of the Fourier transform of X times the

complex conjugate of the Fourier transform of Y, and vice-versa).

The resulting spectral estimates were averaged across all trials of a

particular behavior in order to obtain the proper ensemble

average. The resulting matrix was factored using a recursive

algorithm to obtain the transfer matrix and residual covariance

matrix. Once these matrices are defined, GC is estimated exactly

as it is in the parametric case. If poor model order selection

compromised our results, we would expect the parametric and

nonparametric analyses to differ substantially, which they do not.

Parametric GC. Granger’s original work followed directly

from early insights by Weiner that control of one system over

another should manifest as increased predictive power when using

lagged observations of one system – a putative cause – to predict

the future states of another. Calling one system X and the other Y,

we conclude that X ‘‘causes’’ Y, in Granger’s sense, if observing

the past of X improves our ability to predict the future of Y after we

have already considered the past of Y. Granger codified this

intuitive concept of causality using autoregressive modeling of time

series. The following system of equations facilitates a mathematical

quantification of the predictive power of both X and Y over one

another:

Xt~
Xm

d~1

a2dXt{dz
Xm

d~1

b2dYt{dze2t ð1Þ

Yt~
Xm

d~1

c2dXt{dz
Xm

d~1

d2dYt{dzg2t ð2Þ

In Eqs. 1 and 2, upper case letters are values of each time series,

lower case letters are regression coefficients, m is the model order

(estimated by minimizing the Bayeisan or Akaike information

criterion), and Greek letters are the temporal model residuals.

Comparing the variance of the residuals from the above equations

to those obtained in a univariate model (one that factors the past of

one time series alone) allows us to derive temporal GC. Here, we

provide only the derivation of spectral GC, as it is the focus of this

paper. We begin by rearranging Eqs. 1 and 2 such that only the

residuals remain on the RHS.

Xt{
Xm

d~1

a2dXt{d{
Xm

d~1

b2dYt{d~e2t ð3Þ

Figure 2. A schematic representation of coherent interactions and causal dynamics revealed by Granger causality. Corticostriatal
interactions during multiple behavioral states as revealed by coherence analysis (A) and Granger causality (B). Line thickness is proportional to the
peak coherence or causality value and inset labels indicate the corresponding frequency range. For legibility some weak connections are omitted in
this plot; see Figs. 4 and 5 for full spectral decompositions. Arrowheads in B indicate direction of influence; these are omitted in A, as coherence
values are symmetric with respect to direction. Note the substantial refinements afforded by Granger causality, which reveals both symmetric and
asymmetric driver/receiver dynamics giving rise to the coherence spectra as well as the contributions of corticostriatal and striatocortical pathways to
different peaks in the coherence spectra.
doi:10.1371/journal.pone.0089443.g002
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Yt{
Xm

d~1

a2dXt{d{
Xm

d~1

b2dYt{d~g2t ð4Þ

Fourier transforming both sides of the above equations and

recasting them as a vector-valued system yields:

1{a(v) {b(v)

{c(v) 1{d(v)

� �
X (v)

Y (v)

� �
~

Ex(v)

Ey(v)

� �
, ð5Þ

where, a(v)~
Pm

d~1 a2de{ivd , and the other spectral regression

coefficients are defined in the same manner. The spectral GC from

X to Y is, intuitively, the portion of X’s power at frequency v
accounted for by Y. To obtain this decomposition, we express the

Fourier transforms of both time series in terms of the spectral

model residuals. Multiplying both sides of Eq. 5 by the inverse of

the coefficient matrix yields:

X (v)

Y (v)

� �
~

1{a(v) {b(v)

{c(v) 1{d(v)

� �{1 Ex(v)

Ey(v)

� �
~H

Ex(v)

Ey(v)

� �
ð6Þ

H is the transfer matrix, which maps the amplitude and phase of

the residuals to the spectral representations of X and Y on the

LHS of Eq. 6. In this formulation, we treat each residual term as a

‘‘drive’’ acting upon the oscillators X(v) and Y(v). To derive the

spectral causality from X to Y, consider the definition of Y(v)

given by Eq. 6:

Y (v)~H11(v)Ex(v)zH12(v)Ey(v) ð7Þ

It is clear from the above equation that Y(v) admits a

representation in terms of both model residuals, one arising from

X and the other from Y. The final step is to represent the power

(instead of the raw Fourier transform) of the signal in terms of X

and Y. Note that multiplying both sides of Eq. 7 by its own

complex conjugate transpose yields:

X (v)

Y (v)

� �
� X (v) Y (v)
� �

~H
Ex(v)

Ey(v)

� �
H�

Ex(v)

Ey(v)

� �
ð8Þ

For a single trial, the above definition gives the energy of X and Y

in terms of the errors and when averaged over multiple

realizations of the same event yields the spectral matrix (S). The

diagonal entries in S are auto-spectra and off-diagonal entries are

cross-spectra. After such averaging, we represent the spectral

matrix as follows:

S(v)~H(v)SH�(v), ð9Þ

where S is the covariance matrix of the model residuals. Following

a normalization introduced by Geweke, which sets the residual

covariance equal to zero and produces a modified transfer matrix,
~HH , we can decompose the power spectrum of Y into exactly two

terms, one accounting for Y’s self-influence and one reflecting

causal influence exerted by X. We obtain the following

representation for the auto-spectrum of Y:

S22(v)~ ~HH11(v)Var(e2t)z ~HH22(v)Var(g2t) ~HH�12(v) ð10Þ

which gives rise to the definition of GC from X to Y:

GCx?y(v)~ln
S22(v)

~HH11(v)Var(e2t) ~HH�12(v)
ð11Þ

It is illustrative to consider the case of zero causality. When X

exerts no influence over Y, then the second term on the RHS of

Eq. 10 vanishes and the power of Y at v is exactly equal to the

denominator in Eq. 11. In this case, GC = ln(1) = 0. As the causal

power of X over Y increases, the argument of the logarithm

becomes greater than one, and GC increases accordingly. For a

full derivation of GC see Ding et al. (2006). Other derivations are

provided elsewhere [24,47].

Non-Parametric GC. Estimating GC without deriving a

parametric model hinges on constructing Eq. 9 without utilizing

autoregression. Dhamala and colleagues [48] provide an elegant

solution to this problem based on Wilson’s analysis of a class of

matrices, to which S(v) belongs, for which each member admit the

following decomposition into a set of unique minimum phase

functions [49]:

S~yy� ð12Þ

y(z) is defined in Fourier series on S1 as:

y(eih)~
X?

k~0
Akeikh

where Ak~
1

2p

� �
�
Ð p

{p y(eih)e{ikhdh. Wilson provides a recur-

sive algorithm, implemented using code written by Dhamala and

colleagues, which converges to the theoretical value of y.

Importantly, y admits a holomorphic extension to the inner disk.

This property enables us to define H, S, and y as functions taking

any complex input {|z|#1}. It can be shown that H(0) is the

identity matrix, thus by Eq. 9 S(0) is the covariance matrix.

Considering H(0) and A(0), a real upper triangular matrix with

positive diagonal entries, we have the following definition of the

covariance matrix.

S(0)~H(0)A0AT
0 H�(0)~A0AT

0 ?A0AT
0 ~S

To obtain the transfer matrix, we rewrite Eq. 12 as:

S~yA{1
0 A0AT

0 A{T
0 y�

The terms between the outer most functions reduce to the identity

matrix times itself, hence the above equation is exactly equal to

Eq. 12. Compare the above expression for S with Eqs. 9 and 12. It

is clear that the transfer matrix is defined as follows:

Figure 3. f Power spectral densities generated using LFPs recorded in M1 (A–E) and dStr (F–J) during anesthesia (row 1), sleep (row
2), immobile alertness (row 3), exploration (row 4), and rearing (row 5). Power in both M1 (A) and dStr (F) was higher during anesthesia than
during sleep (B,D). Quantile ranges for some data are too narrow to be discernable in this figure. Gray shaded regions indicate a non-Gaussian
approximation of +/21 standard deviation based on resampling (see methods). Note the variation in contributions to total power from oscillations in
the 1–5 Hz and 7–12 Hz ranges across the three spontaneous behaviors.
doi:10.1371/journal.pone.0089443.g003
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H~yA{1
0

Having expressions for the covariance matrix and transfer matrix,

we are able to proceed as in the parametric case and decompose

the diagonal entries in S into intrinsic and causal terms. GC is

defined as the logarithm of the ratio of a signal’s power to its

intrinsic (non-causal) power. Dhamala’s formulation gives rise to

an inherently spectral metric; however, temporal causality is

bounded from above by the integral of spectral GC over a

complete cycle:

GC(t)ƒ
1

2p

ðp

{p

GC(v)dv

Under general conditions, the equality holds. Hence, temporal GC

can be reconstructed, if desired, using this method.

Significance Testing
Statistical significance for coherence and GC was estimated by

independently permuting the time series for each data set 1000

times. For example, to estimate the statistical cutoffs for rearing,

we randomly rearranged all 93 2 sec epochs such that the

temporal precedence patterns were destroyed (i.e. we might

estimate the causality from a cortical signal recorded during trial

one to a striatal signal recorded during trial fifty). This procedure

maintains the statistical properties of the data set, such as mean

and variance, while randomizing the temporal relationships

underlying causality estimation. We estimated cutoffs for anesthe-

sia in sleep in a similar manner, the only difference being that we

used 5 sec instead of 2 sec epochs, as these data sets were divided

into 5 sec trials to maximize low frequency spectral resolution.

When estimating the cutoff values, we used the same model order

as was used in the analysis of non-permuted data (see Table 1).

This procedure allows us to obtain the peak values of GC under

the null hypothesis that the observed causality is due to chance. As

GC is asymmetric, two cutoffs are needed to assess its significance

and we used Bonferroni’s correction for multiple comparisons.

Surrogate data underwent the same signal processing procedures

as non-randomized trials. For both coherence and GC, we

generated vectors of 1000 elements containing the maximum

coherence or GC value obtained for each randomized trial. Cutoff

values were obtained by taking the 0.995 quantile of this vector,

generating confidence limits with a 0.005 significance level. This is

a well-established procedure for spectral GC, which does not have

a known theoretical null distribution. Coherence cutoffs obtained

in this manner were close to the theoretical value of the coherence

between random Gaussian processes derived by Brillinger [50],

12(12p)1/(M21), where M is the number of data segments used in

the ensemble estimate and p is the significance level.

We generated a coherence cutoff for each behavior by

randomly dividing all the data into epochs lasting as long as the

analysis window for a particular behavior and randomly pairing

these surrogate trials. For instance, we generated the cutoff for

coherence during sleep by randomly sampling 301 trials, each

lasting five seconds, and analyzing them using a model order of 48.

This procedure allowed us to estimate the null distribution

obtained under the assumption that the distribution of coherence

per frequency bin is independent of behavioral state. For GC,

individual cutoff values were generated for each behavior by

randomly matching different trials of the same behavior to

generate a null distribution of data that has the same statistical and

spectral properties as the original set, but for which the temporal

concordance between time series was randomized.

Inter-subject Variability
Spectral estimation from ensemble averages hinges on the

assumption that each individual trial is a realization of the same

underlying process. Depending upon the behavior, we observed at

least 93 and at most 301 realizations of the same behavior. Given

the number of available trials, it is likely that our data provides a

reasonable estimate of ensemble properties, such as power and

coherence. We should, however, consider the possibility that

individual variations among animals biased the spectral estimation

metrics. To control for this, we performed a bootstrap analysis in

which the contribution of each individual animal was randomly

amplified or attenuated. For each data set, we removed

approximately one quarter of the trials. Trials to be removed

were randomly selected using Matlab’s built-in randperm function

and the analysis was constructed such that data from any given

animal was equally likely to be removed. Each surrogate data set

was centered and standardized using the mean and standard

deviation of the ‘‘pruned’’ data set. This analysis allowed us to

determine upper and lower bounds on the distribution obtained

when the individual contribution of any one animal is randomized.

We repeated this procedure 1000 times. As power, coherence, and

GC are average values, the central limit theorem should apply in

theory assuring normality of resampled distributions. We found,

however, that for different data sets anywhere from 10%–25% of

resampled sets failed the Lilliefors test of normality [51].

Therefore, in lieu of using the mean and standard deviation, we

obtained cutoff values by adding and subtracting the 97.5th and

2.5th percent empirical quantile from the mean of each surrogate

distribution. The results of this analysis are summarized in Table 1.

Trial-to-Trial Variability Analysis
As power, coherence, and spectral GC are inherently ensemble

properties, naively estimating variance as the expected difference

between data points and their mean is not appropriate. Consider

power, which is the average squared amplitude of each Fourier

coefficient. Taking the mean squared difference between squared

amplitudes and their average gives the expected difference

between energy and power, not the true variance of the power

spectrum. To circumvent this issue, we once again applied a

bootstrapping procedure, resampling with replacement 1000 times

from all the trials for a particular behavior. For each data set, we

randomly sampled N trials, where N is the number of events

Figure 4. Coherence and causality spectra during multiple behaviors. Coherence spectra (A–E) and Granger causality (F–J) based on data
recorded during anesthesia (row 1), sleep (row 2), immobile alertness (row 3), exploration (row 4), and rearing (row 5). Gray shaded regions indicate a
non-Gaussian approximation of +/21 standard deviation based on resampling (see methods). Bars above each peak indicates the range over
frequency over which GC exceeds a 0.005 cutoff based upon permutation analysis; solid lines denote frequency regimes over which corticostriatal
causality is above chance, and dashed lines denote regimes over which striatocortical causality is above chance. Note the dominance of cortical drive
during both anesthesia and sleep, as well as the complete lack of causality peaks in the striatocortical direction during sleep. Also note the refined
information revealed by Granger causality. The coherence spectra are similar among the three behaviors; however, the relative contribution of
information flow in the corticostriatal and striatocortical directions varies substantially among behaviors.
doi:10.1371/journal.pone.0089443.g004
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obtained for each behavior type. Power, coherence, and GC were

then calculated by taking the appropriate ensemble averages over

the resampled data sets. This procedure approximates drawing

multiple samples from the same underlying population and allows

us to set confidence limits when the individual data points are

themselves average values.

Results

General Observations
We analyzed data from five freely behaving animals as well as

data gathered under anesthesia in four of these five animals. Data

were consistent across animals, and a large number of trials were

collected for each behavior of interest to ensure statistical

robustness. General results are shown in Table 1 and Fig. 2.

Detailed analyses of each behavioral epoch are provided in Figs. 3–

4. GC was derived by fitting a linear model to time-lagged values

of each time series. To ensure that GC was robust against

variations in model order, we inspected data sets generated using

multiple model orders and found them to be very consistent. With

the exception of anesthesia, the BIC converged between an order

of 5 and 50 for all data sets. For data gathered during anesthesia,

the BIC decreased monotonically over this range; however, GC

computed using these data was consistent at model orders of 30,

40, and 50 hence we chose 40 as an appropriate trade-off between

over-parameterization and sufficient spectral resolution. This

method has been applied in past studies in which a parameter-

ization criterion failed to converge [24]. Coherence between

cortex and striatum varies across behavioral states (Fig. 4, A–D)

and different patterns of directed influence as revealed by GC

underlie coherence during different behaviors (Fig. 4, F–J).

Power and Coherence Spectra Vary with Behavioral
States

We characterized LFPs gathered during all behavioral states

using standard spectral estimation techniques. The distribution of

each signal’s spectral content over frequency bins was quantified

by estimating the power spectral density from the signal’s

autoregressive representation. Spectral interdependence between

signals was determined by estimating the (magnitude squared)

coherence, which is normalized and thus bound between zero (no

interdependence) and one (complete synchronization). During

both wakefulness and inactivity, coherence between M1 and dStr

was between 0.5 and 0.9, suggesting strong synchronization

between these structures in all the behavioral states studied in this

experiment.

LFPs collected during anesthesia were characterized by high,

narrow peaks on the power spectra in the 1–5 Hz range for both

M1 and dStr (Fig. 3, A, B). The maximum power spectral density

value was higher than that observed during any other behavioral

state, and the total power was tightly concentrated in the 1–5 Hz

range. The total amplitude of oscillatory activity in both structures

is therefore relatively high during anesthesia and is accounted for

by a very narrow range of low-frequency components. Oscillatory

activity between these structures was strongly synchronized as

indicated by the high coherence in the 1–5 Hz range with a

smaller peak in the 10–20 Hz range (Fig. 4, A).

Natural sleep, like anesthesia, was characterized mainly by low-

frequency oscillations in LFPs gathered from both M1 and dStr

(Fig. 3, B, G). Also, as was the case during anesthesia, cortical and

striatal LFPs exhibited strong coherence during sleep (Fig. 4, B).

LFPs recorded during sleep did, however, differ from data

gathered during anesthesia in both amplitude and spectral content

(Fig. 3, F,G). The maximum power over all frequencies for LFPs

gathered during sleep was about half that of anesthesia, indicating

that the average magnitude of LFPs in these structures is smaller

during natural sleep than anesthesia. Moreover, the roll-off in the

power spectrum was gentler for data gathered during sleep, and

the coherence spectrum decayed monotonically until converging

at a minimum of about 0.4. In contrast, coherence spectra

generated using data gathered under anesthesia exhibited a sharp

drop-off at ,5 Hz followed by a smaller, broader peak in the 10–

20 Hz range (Fig. 4, A).

The maximum power spectral value, which quantifies the

average amplitude of a signal at its dominant component

frequency or frequencies, was largest for anesthesia and decreased

by one half during natural sleep (Fig. 4). The maximum peak

coherence value, conversely, was similar for LFPs gathered during

both anesthesia and sleep (Fig. 4, A, B), suggesting that the average

amplitude of LFPs in each structure, but not the degree of

synchronization between them, differentiates anesthesia from

sleep. LFPs recorded during wakefulness exhibited a substantially

lower maximum power spectral value than those recorded during

sleep and anesthesia. The maximum coherence was also reduced,

although not as dramatically.

LFPs gathered during behavior showed interesting similarities in

their low frequency components across behavioral states (1–5 Hz),

but exhibited different power levels in the 5–10 Hz and (in some

cases) the ,15 Hz range during different behaviors. During all

four wakeful behaviors (alertness, exploration, rearing, and

grooming) a substantial portion of the signal’s power spectrum

was accounted for by oscillations in the 1–5 Hz range (Fig. 3, C–E

and H–J) and was accompanied by corresponding peaks in the

Figure 5. Non-parametric Granger causality during spontaneous behavior. Granger causality derived directly from the Fourier transform of
LFPs gathered during alertness (A), exploration (B), and rearing (C). Note the substantial similarity between these estimates of Granger causality and
those obtained using a regression model. The agreement between these measures lends credence to our analysis and rules out model fitting as a
source of error.
doi:10.1371/journal.pone.0089443.g005
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coherence spectra (Fig. 4, C–E). As can be seen in Figs. 4 and 5,

power and coherence in the 1–5 Hz range vary in their magnitude

across difference behaviors; however, power and coherence in the

5–10 Hz range is the most marked differentiator of behavioral

states.

Identifying Directed Network Dynamics with Granger
Causality

To address directed influence giving rise to corticostriatal

coherence, which is the central issue of this paper, we applied GC

to decompose the coherence spectra into two causal spectra, one

characterizing the corticostriatal pathway and the other the

striatocortical pathway. We differentiated two types of symmetry –

or asymmetry – that can emerge in the GC spectra: spectral

symmetry and directional symmetry. Spectral symmetry refers to

how similar the GC spectra are in the distribution of their total

power over different frequency bins. Directional symmetry refers

to the relative contribution of each connection to the total

causality spectrum.

Sleep and anesthesia were characterized by substantial direc-

tional asymmetry, and corticostriatal GC accounted for most of

the coherence spectrum (Fig. 4, F, G). Though striatocortical GC

is substantially less than corticostriatal GC during anesthesia, it is

still above chance and accounts for a portion of both the 1–5 Hz

and 10–15 Hz peaks in the coherence spectrum.

A coherence peak in the low frequency range was also observed

during natural sleep, although this peak was broader with a gentler

roll-off than the one characterizing anesthesia (Fig. 4, B). In

addition, the corticostriatal GC spectrum closely tracked the

coherence spectrum and was also broader and less sharp (Fig. 4, F,

G). Interestingly, whereas data recorded during anesthesia

exhibited distinct peaks in two frequency bands (Fig. 4, A, C),

data recorded during natural sleep exhibited only a single peak

followed by a monotonic decay in both the coherence and

causality spectra (Fig. 4, B, G). Finally, in addition to the large

corticostriatal causality peak observed during sleep, we also found

that striatocortical causality in the 1 to 20 Hz range is above

chance during sleep, though it is less than corticostriatal causality

by an order of magnitude and does not exhibit substantial spectral

peaks (Fig. 4, G).

Intriguingly, we found that for spontaneous behaviors the

relative influence of striatum over cortex increases depending on

the behavior. During alertness, when the rat is immobile but

clearly awake and aware of its surroundings, cortical drive exceeds

striatal drive, and accounts for both peaks in the coherence

spectrum (Fig. 4, H). When the rat is actively exploring its

surroundings, a behavior characterized by small movements and

limited locomotion, striatal influence increases, particularly in the

,5 Hz and ,15 Hz range (Fig. 4, I). Finally, when the animals

are rearing, a behavior that involves recruitment of more muscle

groups and greater coordination than alertness or exploration,

striatal drive in the ,5 Hz and ,15 Hz range actually exceeds

cortical drive, though both remain above chance and thus

contribute to the coherence spectrum (Fig. 4, J).

Comparison to Nonparametric Techniques
In order to ensure that our data were robust against parameter

estimation errors, we applied nonparametric GC (Dhamala et al.,

2008) to the data. This method derives GC directly from the

Fourier transform of the time series using the factorization of the

spectral matrices (Wilson, 1972). We found excellent agreement

between GC derived using parametric and nonparametric

methods, lending credence to our results and suggesting that

complications from model estimation did not significantly affect

our results (Compare Fig. 4, H–J with Fig. 5).

Spectral Stationarity During Anesthesia and Sleep
Our decision to treat LFPs recorded during anesthesia as single

long trials that could be split into epochs of arbitrary length rests

on the assumption that the spectral content of the fields does not

vary significantly across multiple stages of anesthesia and sleep. To

validate this assumption, we constructed time-frequency plots of

individual trials using a multiwavelet transform (Brittain et al.,

2007) and concatenated consecutive trials into a single spectro-

gram. Inspecting these spectrograms, we were able to confirm that

the spectral content of LFPs recorded during anesthesia and sleep

is constant. The multiwavelet method produces ensemble averages

from individual trials, and can thus produce unbiased estimates of

power, by averaging over multiple pairwise independent estimates

of the signal’s squared amplitude in the space spanned by the

generalized Morse wavelets (Olhede and Walden, 2002). A

representative spectrogram, using data recorded in M1 during

anesthesia, is shown in Fig. 6.

Discussion

Importance of main findings
Here, for the first time, we examined directed influence between

M1 and dStr using animals engaged in voluntary behaviors.

Contrary to our expectation, we found that effective connectivity

became bidirectional in freely behaving animals. In agreement

with previous reports, effective connectivity was unidirectional,

from cortex to striatum, during natural sleep and anesthesia. Early

theoretical perspectives, informed by the reentrant structure of the

BG, emphasized the role of this system in refining and shaping

cortical information for behavioral output [7,13], while recent

advances in BG modeling highlight the complex dynamic

Figure 6. Time-frequency content of LFPs recorded in M1
during anesthesia in all rats showing consistent spectral
content in multiple signals recorded in multiple animals. This
figure was generated by wavelet transforming each epoch using
multiwavelet estimation and estimating the average squared ampli-
tude. The resulting single-trial spectrograms were concatenated to form
the image shown. The color bar gives the averaged squared amplitude
of the wavelet coefficients at each point in time-frequency space. Note
the concentration of power in the 1–3 Hz range across all epochs of
anesthesia.
doi:10.1371/journal.pone.0089443.g006
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unfolding across the entire cortico-BG network [52–55]. Our

results provide empirical support for models that emphasize

dynamic interactions between cortex and subcortex as opposed to

unidirectional drive. These results also highlight the refinements to

conventional spectral analysis afforded by causality detection

methods. Finally, we expect this approach will be useful for future

work where it will be important to monitor effective connectivity

under different movements or behavioral conditions.

Interpretation and uses of effective connectivity
There is often a strong tendency for researchers to interpret the

results of an effective connectivity measure in terms of physical

connectivity. In the present study, it would seem natural to

attribute strong GC in the corticostriatal pathway to the direct,

monosynaptic, physical connections from cortex to striatum.

While this may be the case, the experiments done here, by

themselves, are not sufficient to justify this conclusion. Similarly, it

is extremely likely that strong GC in the striatocortical pathway is

produced by the known polysynaptic loop from striatum, through

the BG, to thalamus and back to cortex. Again, this physical

pathway may be contributing significantly to the measured GC,

but the experiments reported here cannot establish this conclusion.

The inability of GC to establish physical connectivity has been

clearly documented in the elegant work of several researchers [56–

58]. These papers demonstrate, for example, that common drive

with different delays can produce strong GC measurements

between recording sites even in the case where there are no direct

synaptic connections. In spite of these constraints, effective

connectivity metrics are powerful tools when their results are

interpreted with appropriate caution, given the limited availability

of data and the complexity of the systems under analysis. Our

interpretations of our results are theoretically strong given current

knowledge of the BG and cortex. That being said, further work is

necessary to determine exactly how much of the GC observed

between these nodes is mediated by their reciprocal connections

and how much is accounted for by other sources of input.

Granger causality differences during anesthesia and
natural sleep

Although previous work has reported corticostriatal GC under

anesthesia [20], our work extends these results by comparing GC

under anesthesia to GC during natural sleep. The total amplitude

of both cortical and striatal LFPs increased during inactivity

relative to wakefulness along with a corresponding increase in their

coherence. In tandem, these results show both that the magnitude

of LFP oscillations and their synchrony across different structures

increases during periods of natural and drug-induced inactivity.

This is a well-established phenomenon, as low-frequency oscilla-

tions are known to characterize anesthesia and sleep in both cortex

and striatum [59]. To date, no research has addressed the driver/

receiver dynamics giving rise to these coherence patterns. We

found that during both rest and anesthesia, GC in the

corticostriatal direction exceeds the amplitude of the reciprocal

connection by an order of magnitude. This result shows that,

during inactivity, striatal oscillations are strongly driven by cortical

input and that the increased low frequency power observed in

striatal LFPs is largely independent of autonomous dynamics

within striatum itself.

A possible explanation for this result is that, during rest, cortex

drives a brain-wide network into a strongly synchronized resting

state characterized by low frequency oscillations. The reciprocal

connectivity from striatum suggests that subcortico-cortical feed-

back persists, even during anesthesia, but plays a substantially

reduced role in network-level control. This result dovetails with

prior research, which shows that during sleep and anesthesia

thalamic neurons shift from transfer mode to burst mode due to

hyperpolarization from reduced inputs [60]. This is known to

attenuate the influence of sensory inputs to cortex via the

thalamus. The increased causal power and sharpness of the GC

peak associated with anesthesia relative to natural sleep suggests

that strong, unidirectional coupling in a small range of frequencies

is a key feature of anesthesia. We note that we only analyzed data

gathered under ketamine/xylazine anesthesia. As different anes-

thetics have different mechanisms of action, it would be revealing

to explore if and how different anesthetics differ in their effects on

this systems. The observed difference between spontaneous and

drug induced inactivity is interesting nevertheless.

Granger causality differences during free behaviors
Here we have not only shown that, in keeping with previous

studies, the frequency content of LFPs varies robustly with

behavior, but we have also demonstrated for the first time that

reciprocal influence of striatum over cortex is a key feature of

information processing during voluntary behavior.

Spontaneous behaviors differ substantially in their causality

spectra as well as their coherence spectra. Though the total power

remained relatively constant (,1.5–2.0 a.u.) across all behaviors,

the relative contributions of low and high frequency components

varied robustly across behaviors. Coherence in the 1–5 Hz range

persisted across all trials, but the magnitude of the 5–10 Hz and

15–20 Hz components increased during exploration and rearing.

Though further work is required to fully elucidate the physiolog-

ical significance of LFPs, our findings bolster the prevailing view

that they are robust neurological markers of behavioral events and

thus provide important information about neuronal processes

[15,61,62]. Importantly, we found that corticostriatal and

striatocortical influence contribute to different components of the

coherence spectra. For instance, low frequency power in striatum

arises largely from cortical input across all behavioral states,

whereas coherence in higher frequency bands arises from both

corticostriatal and striatocortical interactions. In fact, striatal

influence over cortex in the 5–10 Hz band exceeds that of cortex

over striatum, though the GC in both directions remains above

chance.

The total interdependence between cortex and striatum, as

measured by the sum of GC values across all frequencies, is

relatively stable across behaviors; however, the relative magnitude

of the low frequency components decreases, while concordantly

the contribution of higher frequency components to the overall

coherence and causality spectra increases. The shift of power and

causal influence from low to high frequency bands during periods

of motor output is particularly interesting when considered in

tandem with our findings during sleep and anesthesia. Slow wave

activity is a well-known marker of anesthesia and general

inactivity. Moreover, our group has found evidence that the

emergence of hyperkinesia in HD mice is associated with increased

power in the ,25 Hz range [8]. Fast and slow wave oscillations

are associated with a variety of behaviors and our data suggest that

they play different roles in the facilitation of information flow

between two motor processing regions. Due to the diversity of

physiological phenomena that contribute to LFPs, it is difficult to

know the exact relevance of different frequency bands at the

neuronal level. Nevertheless, the concordance between LFPs and

behavioral output is striking, and recent work has expanded our

understanding of how LFPs can facilitate neuronal processing

[63].

We emphasize that our results are all based on data gathered

from freely-behaving, untrained animals. Knowing the neural
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correlates of untrained behaviors is critical to understanding the

role of the BG in selecting among multiple possible courses of

action. We have shown that distinct coherence patterns charac-

terize different spontaneous behaviors. Moreover, we have applied

novel methodologies to elucidate the causal dynamics giving rise to

coherence between cortex and striatum. Combining coherence

and effective connectivity in the analysis of data gathered during

free behavior allowed us to track changes in information flow as

animals spontaneously transition among different behaviors.

Equal contributions of cortex and striatum during free
behavior

Our data clearly indicate that behaviorally relevant coherence

between cortex and striatum is mediated equally by effective

connections in both directions. These systems share extensive

synaptic connections that surely account for a portion of the

information flow observed in this study. At the same time, other

sources of input, such as time-lagged input from thalamus, may

artificially inflate the observed causality and further experiments

are required to address this issue. Though we cannot address

sources of striatocortical causality using these data, further lines of

research can clarify this issue. For example recent findings by

Saalmann and colleagues show that a thalamic system exerts

substantial behaviorally-relevant influence over intra-cortical

processing during a selective attention task [44]. As striatum

influences cortex via thalamic output neurons, Saalmann et al.’s

results support our findings and suggest a mechanism of reciprocal

information flow from striatum to cortex.

Conclusions
We have presented an assessment of interactions between M1

and dStr during spontaneous behaviors and various stages of

inactivity. Using GC, we provide new insight into the network

dynamics underlying coherence between these structures. We

found that anesthesia and rest are accompanied by increased

corticostriatal drive as opposed to decoupling, suggesting an

important role of cortico-subcortical input in maintaining resting

state dynamics. Furthermore, we provide insight into how

interactions between M1 and dStr produce voluntary, non-evoked

behaviors. We caution that while LFPs are robust markers of

behavior output, they have a complex and not fully understood

relationship to spiking activity from individual neurons that

warrants further attention. Nevertheless, LFPs have great value

as they reflect large-scale activity across hundreds of neurons,

making them well suited for the study of population-level

dynamics. We provide evidence that GC is a valuable tool in

the study of neural networks in keeping with a rapidly growing

body of literature. Lastly, our results and design can be built upon

to extend the scope of research into the BG and other systems.
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