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Abstract

Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study
differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements
using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia
University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a
validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27
Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation
datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC)
and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes)
that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated
genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway
analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired
immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most
significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes,
whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the
discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were
significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that
targeted these methylated genes may be a future therapeutic goal.
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Introduction

Cancers are now recognized as driven as much by epigenetic as

well as genetic changes [1]. Among epigenetic alterations that

occur during oncogenesis, aberrant gene promoter hypermethyla-

tion is the most commonly investigated. However, there have been

few studies that evaluated differential promoter methylation across

the entire genome in glioblastoma multiforme (GBM), which is the

most common type of malignant brain tumors in adults [2–5]. The

primary goal of some studies, such as the Cancer Genome Altas

Project (TCGA), was to characterize methylation patterns in

tumors and to correlate with other genomic alterations such as

gene mutations, copy number alterations and expression [6]. The

investigation of differential methylation poses a challenge, because

unlike colon, breast or prostate cancers, it is not possible to obtain

matching ‘‘normal’’ tissues during surgery for GBM. The

alternative method, which is to procure a substantial number of

unrelated normal brain tissues for comparison, is also challenging.

Moreover, previous reports on genome-wide methylation in

normal brain tissues showed methylation patterns varied between

neuro-anatomically distinct regions, and methylation level may

change in the brain with increasing age [7–9]. Thus, an accurate

profile of differential methylation will require appropriate control
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tissues with age and neuro-anatomical distribution matching those

of glioma subjects.

Compared to genome-wide methylation near gene promoters,

methylation derangement in the repetitive elements of the GBM

genome was even less studied. Repetitive elements may comprise

over two-thirds of the human genome, and a high proportion of

them are retrotransposons, whose expression is normally sup-

pressed by methylation of cytosine [10]. Retrotransposons become

hypomethylated early on in oncogenesis. This can lead to

transposable elements insertion, and some of them, such as L1,

can express their RNAs, which then promote DNA damage,

spreading of methylation to promoters and genomic deletions

[11,12]. Despite their abundance and importance in tumorigen-

esis, the sequences and maps of repetitive elements in the genome

have been difficult to ascertain, because repeats created ambigu-

ities in alignment and in genome assembly [13]. Nevertheless,

surrogate markers that estimate global cytosine methylation

content, which indirectly reflects methylation levels in repetitive

elements due to high CpG contents in those regions (.65% of

total genomic CpGs), have been developed and used to study

cancer risk, tumor stage, relationship to other molecular pheno-

types and prognosis [14–18]. One study that measured 5-methyl-

cytosine content using a methyl acceptance assay in one epileptic

specimen and 10 GBM tissues showed global hypomethylation in

tumors [19]. The methylome of other cancers had showed

concurrent global hypomethylation and gene promoter hyper-

methylation [20].

This study had three primary objectives. First, we explored

differential methylation of gene promoters/CpG islands across the

genome, evaluating more than 14,000 genes at single CpG

resolution. To accomplish this goal, we used standard non

parametric and biological pathway based analytical approaches

to compare primary GBM (de novo) with a substantial number of

representative normal brain tissues. Second, we investigated

genome-wide methylation level, which included CpG methylation

levels in the repetitive elements, as potential diagnostic marker in

GBM. We characterized and compared changes in LINE1 (L1

retrotransposon), 5 methyl-deoxycytidine (5m-dC) and 5 hydro-

xylmethyl-deoxycytidine (5hm-dC). Analysis of LINE1 is widely

used as a marker of global cytosine methylation level [10,18].

Analysis of 5m-dC gives a broader and more accurate measure of

global methylation across the genome. 5hm-dC is an oxidized

product of 5m-dC generated by the a-ketoglutarate-dependent

TET dioxygenases [21]. One report showed that 5hm-dC was

strongly depleted in glioma and other cancers [21]. Third, we

evaluated the prognostic values of methylation pathways and

global methylation markers in a multi-variable Cox proportional

hazard model, adjusted for IDH1 mutation, GCIMP status, MGMT

methylation and other clinical factors.

Materials and Methods

GBM and Brain Control Tissues in the Discovery Dataset
This study was approved by the institutional review boards

(IRBs) of Columbia University (CUMC) and Case Western

Reserve University (CWRU). Participants provided written

informed consents. Primary GBMs were retrieved from each

institution’s biorepositories. All tumor tissues were snap-frozen

immediately post resection and were examined neuropathologi-

cally. Only tissues with an estimated 80% tumor nuclei and less

than 50% necrosis were accepted for DNA extraction and

subsequent methylation analyses. Fifty-four (54) de novo GBM

(40 from CUMC and 14 from CWRU) passed these criteria and

were included in this study.

Control brain tissues were obtained from the New York Brain

Bank. We retrieved 24 post-mortem, freshly frozen control tissues

from 24 unique individuals. All control tissues had been previously

examined by a neuro-pathologist and were verified to be without

pathological evidence of other neurological or psychiatric diseases.

These 24 brain controls and the aforementioned 54 GBMs

comprised the discovery dataset. The data of our discovery dataset

was deposited into GEO (accession # 50923).

GBM and Control Brain Tissues in the Validation Dataset
A validation GBM dataset was retrieved from the publicly

available Cancer Genome Atlas Data Portal (TCGA data portal).

This dataset comprised of 163 GBM samples submitted at initial

diagnoses and were analyzed with the Illumina Methylation27

platform (CWRU cases were excluded). The data were from

batches 16, 20, 26, 38 and 62, which were not included in the

previous TCGA marker paper on GBM methylation [6]. The four

control brain tissues used for that publication were not part of the

TCGA dataset and were not available for download in the TCGA

Public Portal (personal communication Daniel Weinsberger).

Instead, we retrieved 140 publicly available brain tissue controls

from GEO accession (# 15745) and dbGAP (phs000249.v1.p1) for

comparison with TCGA tumors. This cohort of control brain

tissues were obtained from consented subjects, at the time of

autopsy, at the University of Maryland, Johns Hopkins University

and the National Institute of Aging. They were examined

neuropathologically to be without any intra-cranial pathology.

The methylation results using Illumina Methylation 27 K platform

were published previously [22].

In addition to having a validation dataset, we also validated the

most significantly methylated CpG sites via pyrosequencing

experiments. We chose those top sites that not only passed our

FDR adjusted criteria but also showed at least 4 fold increased or

decreased in methylation compared to control tissues. For

correlation of validated methylation probes with gene expression,

we used the corresponding TCGA gene expression dataset for the

same 162 GBM patients (Agilent 244k Custom Gene Expression

G4502A-07) to calculate overall Spearman correlation coefficients.

DNA Methylation and Illumina Infinium Human
Methylation 27 K Platform

DNA was extracted by standard proteinase K/RNase treatment

and phenol/chloroform extraction. Bisulfite modification of 1 mg

of DNA was conducted using an EZ DNA Methylation Kit (Zymo

Research, Irvine, CA). The HumanMethylation27 DNA Analysis

BeadChips (Illumina) were used to interrogate 27,578 highly

informative CpG sites at single nucleotide resolution, covering

14,495 genes. The array hybridization was conducted under a

temperature gradient program, and the array was imaged using a

BeadArray Reader. Image processing and intensity data extraction

was performed as described previously [23].

Levels of 5m-dC, 5hm-dC and LINE1 Methylation
To determine the overall percentages of 5m-dC and 5hm-dC,

we first measured concentrations of dC, 5m-dC and 5hm-dC. We

modified a previously published method by adding determination

of 5hm-dC levels, using [15N3]-5m-dC as the internal standard for

5hm-dC and [15N3]-dC as the internal standard for dC [24].

UPLC/MS/MS positive ionization mode was used to monitor the

mass to charge (m/z) transitions of dC: 228.1R112.0; [15N3]-dC:

231.1R115.0; 5m-dC: 242-1R126.0; [15N3]-5m-dC: 245-

1R129.0 and 5hm-dC: 258.1R142.1. Standard curves were

prepared by plotting the analyte/[15N3]-labeled 5m-dC internal
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standard ratio (M+0/M+3) against nucleoside concentration, and

the concentrations of dC, 5m-dC and 5hm-dC in each sample

were calculated. Percentages of 5m-dC and 5hm-dC were

obtained by dividing the concentrations of 5m-dC and 5hm-dC

by the total concentrations of cytidine nucleosides (dC +5m-dC

+5hm-dC).

LINE-1 DNA methylation levels were determined by pyrose-

quencing as previously described [25–27]. Each set of amplifi-

cations included bisulfite-converted CpGenomeTM (Millipore)

universal methylated, unmethylated and non-template controls.

Percent methylation within a sample was subsequently determined

by averaging across all three interrogated CpG sites. Non-CpG

cytosine residues were used as internal controls to verify efficient

sodium bisulfite DNA conversion. The inter- and intra-assay

coefficients of variation were 1.90 and 1.30%, respectively. All

samples were run blinded to tissue status.

Determination of Glioma CpG Island Methylator
Phenotype (GCIMP) Status

In both the discovery and validation datasets, we found those

probes in the Illumina 27 K array that corresponded to the

validated GCIMP markers as documented by Noushmehr et al

[6]. They were ANKRD43, HFE, MAL, LGALS3, FAS, RHO-F

and DOCK5. Although the paper documented 2 FAS markers:

Table 1. Demographic, clinical and pathological characteristics of subjects in this study.

Demographic/pathological &
clinical features

Discovery GBM
(n = 54)

TCGA‘ GBM
(n = 162)

NYBB* controls
(n = 24)

Publicly available controls
(n = 140)#

Age (median, IQR*) 57 (52–66) 59 (50–67) 67 (57–80) 43 (27–59)

Women (%) 22 (40.74) 64(39.51) 11(45.83) 44 (31.43)

Ethnicity (%)

Caucasian 48 (88.89) 145 (89.51) 22 (91.67) 140 (100)

African American 2 (3.70) 9 (5.56) 2 (8.33) 0 (0.00)

Hispanic 2 (3.70) 0 (0.00) 1 (4.17) 0 (0.00)

Oriental 2 (3.70) 3 (1.85) 0 (0.00) 0 (0.00)

Unknown 0 (0.00) 5 (3.09) 0 (0.00) 0 (0.00)

Anatomical location (%)

Frontal 23 (42.59) 51 (31.48) 8 (33.33) 70 (50.00)

Parietal 10 (18.52) 27 (16.67) 7 (29.17) 0 (0.00)

Temporal 11 (20.37) 4 (26.54) 4 (16.67) 70 (50.00)

Occipital 6 (11.11) 10 (6.17) 2 (8.33) 0 (0.00)

Insula 1 (1.85) 0 (0.00) 2 (8.33) 0 (0.00)

Cerebellum 1 (1.85) 0 (0.00) 1 (4.17) 0 (0.00)

Midbrain/Pons/Medulla 1 (1.85) 0 (0.00) 0 (0.00) 0 (0.00)

Basal Ganglia 1 (1.85) 1 (0.62) 0 (0.00) 0 (0.00)

Missing information 0 (0.00) 30 (18.52) 0 (0.00) 0 (0.00)

Postmortem interval (hours) (median, IQR*) NA NA 5 (4.00–8.50) 14.5(10.00–18.00)

Clinical information

Surgery (%) NA NA NA

Biopsy 2 (3.70)

Subtotal resection 20 (37.04)

Gross total resection 32 (59.26)

KPS score (median, IQR*) 80 (70–90) 80 (60–80)

Concomitant radiation with
Temozolomide (%)

NA NA

None 0 (0.00) 46 (28.40)

Received combined therapy 54 (100.00) 107 (66.05)

Information missing 0 (0.00) 9 (5.56)

Treatment with Bevacizumab at disease
progression/recurrence (%)

NA NA

No 25 (46.30) 114 (70.37)

Yes 29 (53.70) 38 (23.46)

Missing 0 (0.00) 10 (6.17)

*IQR = interquartile range; NYBB = New York Brain Bank.
‘TCGA GBM cases did not include CWRU TCGA GBM cases.
# Publicly available brain tissue controls were from Brain Banks at the University of Maryland, Johns Hopkins University and National Institute of Aging.
doi:10.1371/journal.pone.0089376.t001
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Figure 1. Heat map of differential methylation in the discovery dataset. Heat map based on a set of 1864 CpG sites that significantly
segregated GBM and control brain tissues into six methylation classes in the discovery dataset. Methylation class numbers are marked inside the
annotation bar. The heat map columns represented CpG probes, and the rows are tumor and control brain samples. In the color scale, relative
hypermethlyation is denoted by a shift towards the red color, and relative hypomethylation towards blue. Neutral methylation is gray.
doi:10.1371/journal.pone.0089376.g001

Table 2. The top 10 most differentially hypomethylated genes in the discovery dataset.

Gene
symbol*

Genomic
Location Biological Function*

Median of
normal
methylation
levels (b)

Median of
tumor
methylation
levels (b)

Median b
difference P-value

FDR
adjusted
P value

LTC4S 5q35.3 Production of leukotrienes
from arachidonic acid

0.40 0.16 20.24 8.20E-07 0.001

TNFRSF1A 12p13.31 Receptor for TNF; activate
NF-kappab

0.32 0.06 20.26 1.00E-06 0.001

TMEM71 8q24.22 Transmembrane protein localized
to the ER with unknown function

0.31 0.09 20.23 2.20E-06 0.001

CCL8 17q12 Mediates chemotactic activity
for leukocytes

0.33 0.12 20.21 2.30E-06 0.001

PYGM 11q13.1 Enzyme involved in
glycogenolysis

0.40 0.11 20.30 2.40E-06 0.001

PDCD1LG2 9p24.1 Regulates activated T cell
functions

0.48 0.17 20.31 2.50E-06 0.001

PPP1R3B 8p23.1 Regulates glycogen synthesis 0.38 0.13 20.24 2.60E-06 0.001

GUCY2D 17p13.1 Membrane guanylyl cyclases 0.40 0.09 20.31 2.70E-06 0.001

MMP14 14q11.2 Activates MMP2 and mediates
oncogenesis

0.39 0.09 20.30 2.80E-06 0.001

WNT4 1p36.12 Involves in inflammation,
development and oncogenesis

0.44 0.21 20.23 2.90E-06 0.001

*LTC4S: leukotriene C4 synthase; TNFRSF1A: tumor necrosis factor receptor superfamily, member 1A; TNF: tumor necrosis factor; TMEM71: encoding transmembrane
protein 71; ER: endoplasmic reticulum; CCL8: chemokine ligand 8; PYGM: phosphorylase, glycogen, muscle; PPP1R3B: protein phosphatase 1, regulatory subunit 3B;
GUCY2D: guanylate cyclase 2D; MMP14: matrix metallopeptidase 14; WNT4: wingless-type MMTV integration site family, membrane 4.
doi:10.1371/journal.pone.0089376.t002
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FAS-1 and FAS-2, they represented different regions of the

promoter of FAS gene in the MethylLight assay only (personal

communication, Daniel Weisenberger). The 27 K array contained

only one probe for FAS. Thus our clustering analyses used 7

instead of 8 markers to identify those GCIMP+tumors. In the

TCGA validation dataset, we also verified our list of GCIMP+
tumors with those reported in the NCI TCGA Wiki, which

maintained records of genomic analyses of GBM.

IDH1 Mutation
For GBM samples in the discovery dataset, IDH1 mutation

status was determined via pyrosequencing. The portion of IDH1

spanning codon 132 (75 bp amplicon) was amplified. Forward

primer was 59-GCTTGTGAGTGGATGGGTAAA-39 and bioti-

nylated reverse primers was 59-TTGCCAACATGACTTACTT-

GATC-39. Polymerase chain reaction (PCR) and pyrosequencing

assays were performed as previously described [28]. Pyrosequenc-

ing primer provided sequence data that included codon 131 and

the first nucleotide of codon 132 (59-GGGTAAAACCTATCAT-

CATA-39). Negative controls were run with all subjects’ samples.

Sequence data were analyzed using PyroMark Q24 software.

For GBM samples in the TCGA validation dataset, we

determined their IDH1 mutation status by examining their level

2 DNA sequencing data, which was generated using Illumina’s

Genome Analyzer (GA).

MGMT Methylation
For MGMT methylation status in the discovery dataset, we

chose pyrosequencing as the analytical method, because previous

studies showed that it provided the best prognostic value, cost

effectiveness and ease of use [29]. Seven CpG sites in the promoter

region of MGMT were selected based on previous validations, with

a Qiagen kit (PM00149702) [30]. Polymerase chain reaction

(PCR) was performed in a 25-ul reaction mix containing 50 ng of

bisulfite-converted DNA, 1x Pyromark PCR Master Mix (Qiagen),

1x Coral Load Concentrate (Qiagen), and 0.3-uM forward and 59

biotinylated reverse primers, using the cycling conditions and

amplifications as outlined previously [31]. Each set of amplifica-

tions included bisulfite-converted CpGenomeTM universal meth-

ylated (Millipore, Billerica, MA), unmethylated (whole genome

amplified DNA), and non-template controls. The sequencing

reaction and quantitation of methylation was conducted using a

PyroMark Q24 instrument and software (Qiagen). Percentage

methylation was calculated by averaging across all CpG sites

interrogated. As percentage methylation is a continuous variable,

we converted it to a binary variable using a ‘‘cutoff’’ to facilitate

clinical interpretation. There has been no established consensus

cut-off for pyrosequencing percentage values, but in normal brain

tissues, average MGMT promoter methylation ranges between

0% and 10% [29]. Thus, as reported previously, we used 14% as

the threshold to distinguish unmethylated from methylated

MGMT promoter in a given tumor [15].

Since TCGA did not separately provide MGMT methylation

level of their GBMs, we used the CpG probes on the Illumina 27

K array to determine these tumors’ MGMT methylation status.

Two validated MGMT probes, cg12434587 and cg12981137, were

used in prognostic models as a continuous variable, because a

previous study confirmed their prognostic and classification

properties [32].

Pyrosequencing Validation of Differentially Methylated
Genes

For other significant CpG sites that were differentially

methylated, the regions selected for interrogation covered the

particular CpG sites on the Illumina arrays as well as surrounding

sites. PCR and pyrosequencing assays were as described above

using Qiagen kits. Primers were included in Table S1. Percent

methylation of each gene was calculated by averaging across all

CpG sites interrogated.

Statistical Methods
Data assembly. Each methylation data point represents the

fluorescent signals from the M (methylated) and U (unmethylated)

alleles. Background intensity was computed from a set of negative

controls and was subtracted from each analytical data point. The

ratio of fluorescent signals was then computed from the 2 alleles to

reflect the fractional methylation level at each CpG site (b-value),

which is between 0 and 1 as the proportion of methylation for a

given CpG site. Beta values were generated using Illumina

BeadStudio software. For quality control, methylation measures

with a detection P value .0.05 and samples with CpG coverage ,

75% were removed (for 7 probes total). All X and Y chromosome

probes (including 1,085 in X and 7 in Y) were dropped, leaving

26,486 probes for all further analyses. We performed two major

types of analyses: 1. Locus by locus comparison between GBM and

control brain tissues; 2. Unsupervised hierarchical clustering of

tumors and control tissues.

Locus-by-locus analyses. For both the discovery and

validation datasets, we first filtered out those CpG sites with

median |Db| ,0.2, as studies in the past had shown that this

methylation array cannot accurately detect b difference at or

below 0.17 [23]. Then we used the non-parametric Wilcoxon

Rank Sum test to compare each CpG site’s methylation levels

between normal brain tissues and controls; Benjamin-Hochberg

false discovery rate (FDR) was used to adjust for multiple

comparisons. Significance level was set at FDR #0.05. Due to

influence on differential methylation by neuroanatomical region

and age, we also performed an adjusted analysis using a published

method based on logistic regression: logit (P) = mij+A*bij+B*agej+
C*locationj+eij, where P is the probability to be a tumor; b= beta

for the CpG probe i of sample j; m= intercept for the CpG i of

sample j; age = age of the patient from sample j; location = brain

location of sample j; e= error term of the CpG i of sample j [33].

Histograms were generated to show median |Db| distributions of

hyper- and hypomethylated CpG sites.

Unsupervised hierarchical clustering. To explore data

patterns, we performed unsupervised hierarchical clustering on

those differentially methylated CpG sites (FDR #0.05) using

Euclidean distance metric and Ward linkage. The same clustering

algorithm was applied to the discovery and validation datasets. To

further reduce the dimensionality of our datasets, we also used

principal component analyses (PCA) with correlation matrix for

data reduction.

Biological pathways involved in differential

methylation. Ingenuity Pathway Analysis (IPA, Ingenuity

Systems, Redwood City, CA) was used for canonical pathway

analyses of those validated, differential genes. This bioinformatics

tool was used to provide insights into the most involved biological

pathways in tumorigenesis based on DNA methylation alterations.

Correlation of global methylation markers with

methylation classes. We compared LINE1, 5m-dC and

5hm-dC levels among methylation classes using the non-paramet-

ric Kruskal-Wallis Test, as prior analyses had shown that these

markers were not normally distributed [26]. Post-hoc pairwise

Methylation in Glioblastoma
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comparisons after significant Kruskal-Wallis Tests were conducted

using the Tukey HSD test.

Survival analyses. Prognostic assessments were performed

separately for the discovery tumor dataset and the TCGA

validation dataset, using Cox proportional hazard regression

models. We investigated the value of methylation biomarkers other

than MGMT or GCIMP, such as LINE1, 5m-dC and 5hm-dC, as

potential independent prognostic factors. Moreover, biological

processes do not act through the effect of a single gene but are the

results of combined influences of many genes in a relevant

pathway. Thus we also explored the net effect of the most

important methylated pathways, such as those discovered by IPA,

as prognostic factors. To achieve this goal, we calculated an index

for a top pathway, which is a combination of the cross product of

beta values and univariable Cox regression coefficient of each

involved genes in that pathway. The index for the pathway was

then evaluated in regression models. This method was previously

published in other pathway-based survival studies using genome-

wide microarrays [34]. Standard clinical and molecular pathology

information included MGMT methylation, GCIMP status, IDH1

mutation, age at diagnoses, Karnofsky performance score (KPS) at

the time of diagnoses, extent of surgical resection, bevacizumab

use at recurrence or tumor progression and the center which

provided the specimens. In the discovery dataset, concomitant

chemo-radiation was not included in survival model, as all patients

received combined treatment. In the TCGA dataset, there was no

information on extent of surgery and no global methylation

biomarkers.

Each prognostic factor was first evaluated in a univariable Cox

proportional hazard model analyses. Those factors that reached

significance levels of p#0.1 were entered into the multivariable

Cox model. All prognostic factors in the multivariable model were

then removed one by one via backward elimination if the covariate

p value is .0.05. This process continued until covariates kept in

the model were all significant. Then the eliminated factors were

added one-by-one back into the model to ensure that they were

not significant in the multivariable model. The final model

consisted of all significant factors (p#0.05) in the presence of each

other. For each covariate, proportional hazard assumption was

tested by plotting scaled Schoenfeld residuals against the natural

log of time.

Results

Demographics of GBM Cases and Normal Brain Controls
The clinical, demographic and pathological characteristics of

GBM cases and brain controls are detailed in Table 1. Most GBM

and control tissues came from subjects over age 50. Controls from

GEO/dbGAP had median age younger than other groups. More

men than women were represented in both tumors and controls.

Frontal, parietal and temporal lobes represented the most

common anatomical locations of both tumors and control tissues.

For the group of brain controls retrieved from GEO/dbGAP,

methylation data from four brain locations: frontal, temporal, pons

and cerebellum were available. We only used frontal and temporal

brain controls for comparison with TCGA glioblastoma, because

these tumor tissues were mostly from frontal and temporal lobes.

Table 3. The top 10 most differentially hypermethylated genes in the discovery dataset.

Gene
symbol*

Genomic
Location Biological Function

Median of
normal
methylation
levels (b)

Median of
tumor
methylation
levels (b)

Median b
difference P-value

FDR
adjusted
P value

MTSS1 8q24.13 A putative tumor suppressor
gene in cancers

0.49 0.90 0.41 1.10E-06 0.001

LDB3 10q23.2 A PDZ domain containing
protein that regulates
ion channels

0.55 0.87 0.32 1.50E-06 0.001

HIPK2 7q34 Interacts with multiple
transcription factors

0.39 0.69 0.30 1.60E-06 0.001

PKD2 4q22.1 Involves in calcium
transport and signaling

0.55 0.80 0.26 2.30E-06 0.001

C11orf39 11q25 Function unknown 0.55 0.84 0.29 4.60E-06 0.001

Ells1 7p14.3 Involves in lysine
ubiquitylation and
proteasomal degradation

0.27 0.67 0.40 4.90E-06 0.001

C11orf2 11q13 Involves in steroid
metabolism

0.68 0.90 0.22 6.10E-06 0.001

FLJ36268 9p22.2 Located in a common fragile
site; over-expression
may lead to genomic
instability

0.51 0.79 0.28 6.40E-06 0.001

ZNF146 19q13.1 A Kruppel protein that
regulates telomere

0.57 0.79 0.22 7.50E-06 0.001

GUP1 3p22.1 Negatively regulates
N terminal protein
palmitoylation

0.43 0.75 0.32 8.20E-06 0.001

*MTSS1: metastasis suppressor 1; LDB3: LIM domain binding 3; HIPK2: homeodomain interacting protein kinase 2; PKD2: polycystic kidney disease 2; C11orf39:
chromosome 11 open reading frame 39; Ells1: chromosome 7 open reading frame 41; C11orf2: chromosome 11 opening reading frame 2; FLJ36268: chromosome 9
open reading frame 139; ZNF146: zinc finger protein 146; GUP1: hedgehog acyltransferase-like.
doi:10.1371/journal.pone.0089376.t003
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For NYBB brain controls, the frozen postmortem interval (PMI),

which was calculated from the subject’s reported time of death to

the time the brain was processed, was a median of 5 hours; this

time interval was shorter than that of 14.5 hours of dbGAP brain

controls or other post-mortem brain tissues [8,9]. Causes of death

for NYBB controls were cardiac (n = 14), pulmonary (n = 4), renal

(n = 2), trauma (n = 2), cholangiocarcinoma (n = 1; no brain

metastases) and unknown (n = 1). The causes of death for GEO/

dbGAP controls were unknown.

Differential Methylation between GBM and Control Brain
Tissues in the Discovery Dataset

Methylation in 1864 CpG sites, corresponding to 1639 genes,

differed significantly between GBM and normal brain tissues in

the discovery dataset. Unadjusted and adjusted analyses essentially

gave the same CpG list. Table S2 shows the complete list of

unadjusted, differentially methylated CpG sites in the discovery

dataset. Overall 1389 CpG sites (1175 genes) were hypomethy-

lated in the tumors relative to controls, and 475 CpG sites (464

genes) were hypermethylated. The top 10 most differentially

hypomethylated and hypermethylated CpGs are presented in

Table 2 and 3, respectively. Figure 1 shows two key features of the

unsupervised hierarchical clustering analysis. First, tumors and

controls segregated into six classes, with five classes of tumors and

one of control. Control brains did not form subgroups based on

age or tissue of origin. Class 3 is the dominant tumor class with 29

subjects. Class 5 contained four tumors that were positive for the

Glioma CpG Island Methylator Phenotype (GCIMP+). GCIMP

status was verified using the markers described by Noushemir et al

(Figure S1a). As previously reported, subjects with GCIMP+
tumors were significantly younger than GCIMP– subjects

(p = 0.007). Pyrosequencing analyses showed that five tumors

harbored mutations in IDH1: four R132H and one R132L

mutations. Four of these five IDH1 mutated tumors corresponded

to the four GCIMP+GBMs but one was a GCIMP negative tumor.

The second feature of the heatmap showed that hyper-and

hypomethylated CpG sites separated well into two respective

blocks (see columns in Figure 1). Overall, nearly 70% differentially

methylated probes were relatively hypomethylated in the tumors.

Among tumor classes, each class showed variations in the pattern

or degree of hypo and hyper methylation. Class 1 tumors

appeared to have higher degree of hypomethylation than other

tumor classes. Class 3 tumors showed the clearest transition from

hypermethylated to hypomethylated CpG blocks. Compared to

brain controls, Class 5 (GCIMP+) is only hypermethylated at

discrete loci. Figure 2a illustrates the range of values of median

|Db| in the discovery dataset. There were more hypomethylated

than hypermethylated CpGs at moderate |Db| between 0.2 and

0.49; however, hypermethylated CpGs predominated when

|Db| .0.5.

Figure 3a illustrates principal component analyses (PCA) of the

discovery dataset. The 1864 significant CpGs can be reduced to 40

orthogonal principal components (PC) that explained 95% of the

variance of the dataset, with the first three PC explained 67% of

the variance. Overall, controls clustered tightly together, whereas

GBM showed wide dispersion in space due to increase in tumor

variance. Each of the 5 tumor classes had its own elliptical plane

that is orthogonal to each other, though some members of the

classes overlapped each other at the periphery. Figures S2a shows

the top down view of PCA analyses. It illustrates the posterior

position of the GCIMP+ group, which was apart from other

methylation classes but was difficult to fully appreciate from the

frontal view.

Table 4 shows the correlations in methylation level between

MGMT and 5 differentially methylated CpG sites from the

discovery dataset using Illumina’s BeadChip and pyrosequencing

assays. Correlations overall using Spearman’s rho statistics was

Figure 2. Histograms of median |Db| distributions. a. The histogram showing a range of median |Db| of significant CpG sites from the discovery
dataset; b. the histogram of a range of median |Db| of significant CpG sites from the validation dataset. Red bars denote the number of
hypermethylated CpGs, and blue bar represented hypomethylated CpGs.
doi:10.1371/journal.pone.0089376.g002
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.0.8. Thus our results supported previous reports of excellent

validations of this methylation array technology using pyrose-

quencing [3,31].

Results of Validation Dataset and Pyrosequencing
Validation

Comparison of 163 TCGA GBMs with 140 publicly available

controls showed 2445 CpG sites (2018 genes) were differentially

methylated between GBM and normal. Table S3 shows the list of

differentially methylated CpGs. There were 1625 hypomethylated

Figure 3. Principal component analyses (PCA) of the discovery and validation datasets. a. In the discovery dataset, the 5 tumor and 1
control methylation classes were represented by the first 3 principal components (PCs) in x, y and z axes in 3 dimensional space. b. In the validation
dataset, 5 tumors and 2 control classes were represented by the first 3 PCs in 3 dimensional space.
doi:10.1371/journal.pone.0089376.g003
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CpGs (1368 genes) and 820 hypermethylated CpG sites (650

genes). Figure 4 shows the heatmap of the validation dataset,

which also demonstrates hyper and hypomethylated probes

formed two separate blocks. Tumors and controls were clustered

into 7 classes. Similar to the discovery dataset, there were 5 classes

of tumors but 2 of controls. Control subjects in Class 6 were

significantly older than those in Class 7 (p,0.03). Class 1 tumors

contained CpG sites that acquired a higher degree of hypomethy-

lation. Class 5 had 13 GBMs that were GCIMP +. Again, relative

to controls, hypermethylated CpGs were located in discrete loci.

Figure S1b showed unsupervised hierarchical clustering that

identified these 13 GCIMP+tumors, using markers as described

by Noushemir et al. Our results were also confirmed by those

reported in the TCGA Wiki. Out of these 13 GCIMP+ tumors, 6

were IDH1 mutated. Similar to the GBMs in our discovery

dataset, the distribution of median |Db| ranges showed

hypomethylated CpGs were more prevalent in the moderate

|Db| range. But at |Db| .0.5, there were more hypermethylated

probes (Figure 2b).

Figure 3b shows the PCA analysis of the validation dataset,

which reduced 2445 significant CpGs to 112 orthogonal PC that

explained 95% variance of the dataset, and the top 3 PC

accounted for 69% of the total variance. Similar to our discovery

dataset, controls clustered tightly together, whereas GBM showed

a wide range of methylation variability. Supporting Figure S2b

shows the top down view of the PCA analyses, which also

illustrates the posterior and separate position of the GCIMP+
group. The physical relationship between the two control groups is

better visualized in this view as well.

Table 4. The correlations between b values of CpG sites and corresponding mean percentage methylation levels using
pyrosequencing from our discovery dataset.

Gene Symbol
Mean pyrosequencing
level (%) Mean methylation level (b) Spearman’s Correlation (r) P-value

MGMT 31.98 0.64 0.51 ,0.00001

BHMT 55.51 0.63 0.93 ,0.0001

BST2 33.45 0.26 0.94 ,0.0001

DAB2IP 5.90 0.27 0.80 ,0.0001

DGKE 42.84 0.49 0.97 ,0.0001

PCDHGB4 35.38 0.41 0.88 ,0.0001

doi:10.1371/journal.pone.0089376.t004

Figure 4. Heat map of differential methylation in the validation dataset. Heat map based on a set of 2445 CpG sites that significantly
segregated GBM and control brain tissues into seven methylation classes in the validation dataset. Annotations were the same as Figure 1.
doi:10.1371/journal.pone.0089376.g004
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Figure 5. The most significant canonical pathways represented in our validated gene list. a. The horizontal blue bars showed the top10
significant canonical pathways that were altered epigenetically in the hypomethylated gene set, using Ingenuity Pathway Analysis (IPA). The orange
square denotes the ratio of number of genes presented in our dataset over the total number of genes in that pathway. The top horizontal axis
represents FDR (Benjamin-Hochberg) corrected P value, and the bottom one denotes ratio of number of genes presented in the dataset over the total
number of genes. The vertical dotted line (in orange) represents the threshold of statistical significance. b. The 5 significant canonical pathways
enriched in the hypermethylated gene set. Annotation is the same as the hypomethylated gene list.
doi:10.1371/journal.pone.0089376.g005
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Overall, 1548 CpG sites (1307 genes) in the validation dataset

overlapped with the 1864 CpG sites (1639 genes) from the

discovery dataset (83%). Of the 1307 validated genes, 905 were

hypermethylated and 402 were hypomethylated. These differen-

tially methylated CpGs and corresponding genes are included in

Table S4.

Out of 1307 validated, differentially methylated genes, 1130 had

available matched mRNA expression in the TCGA GBM data

files (Agilent 244k Custom Gene Expression G4502A). All 163

TCGA GBM cases had corresponding methylation and mRNA

expression data. The overall Spearman’s rho was 20.42 (95 CI

20.54, 20.29, p-values = 0.018) for hypermethylated genes, and

20.28 (95% CI 20.42, 20.13, p value = 0.043). In the set of

hypermethylated genes, 71. 89% of methylation-expression pairs

showed significant inverse correlations (p#0.05), whereas 55.36%

of hypomethylated genes-expression pairs were inversely related.

Hence, gene expression and methylation intensity were negatively

correlated for these significant genes, but correlation appeared to

be stronger for hypermethylated genes.

Biological Characteristics of Validated Genes and
Involved Pathways

IPA analyses were conducted separately for hypomethylated

and hypermethylated genes. Our results showed that the top 10

significant canonical pathways involved in hypomethylation were

all related to immune system functions (Figure 5a). In contrast,

only 5 pathways were significant among hypermethylated genes

(Figure 5b); the top one influenced embryonic stem-cell pluripo-

tency, but other significant pathways were involved ubiquitously in

cell signaling, such as cAMP and G-protein.

We then used the top two hypomethylated pathways, which are

related to granulocyte and agranulocyte adhesion and diapedesis

and created a pathway index as mentioned previously in the

Materials and Methods section. This immune index included

CXCL10, C5AR1, CCL7, MYL4, ICAM2, IL1b, MMP14, SELE,

IL18, IL1R1, MMP3, MMP19, CDH5, MYH4, ITGB2 and CCL11.

With the same method, we also created an index for stem cell

pluripotency, which was the top hypermethylated pathway. The

embryonic stem cell (EST) index included GATA4, GATA6,

NEUROG1, HOXB1, ISL1, FOXD3, GBX2 and MYF5. These

indices were later used in survival analyses (see below).

We investigated targets of polycomb repressive complex 2

(PRC2) or histone 3 lysine 27 trimethylation (H3K27me3) in

Figure 6. Enrichment of PRC2 and H3K27me3 in our validated
gene list. Venn diagram showing the frequency of enrichment of PRC2
targets (EZH2, SUZ12, EED) and H3K27me3 in embryonic stem cells from
our list of validated genes. The number of methylated genes for each
enriched target and their overlaps were represented in corresponding
areas inside the ellipses. Please note that overlapping areas are not
drawn to scale.
doi:10.1371/journal.pone.0089376.g006

Figure 7. Levels of global methylation markers among
methylation classes. a. Levels of 5m-dC between brain controls
and tumors, and among methylation classes. Red, yellow and green
lines (dotted) denoted pairwise comparison between two classes and
the P values of their comparisons. b. Levels of LINE1 between brain
controls and tumors, and among methylation classes. c. Levels of 5hm-
dC between brain controls and tumors, and among methylation classes.
doi:10.1371/journal.pone.0089376.g007
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human embryonic stem cells (hESC). To quantify the degree of

enrichment in our validated genes, we queried CHIP-seq datasets

of H1-hESC (Tier 1) in ENCODE and from published papers

[35,36]. We downloaded lists of genes that are targets of

H3K27me3 and PRC2, which included Suppressor of Zeste 12

Homolog (SUZ12), Embryonic Ectoderm Development (EED) and

Enhancer of Zeste Homolog 2 (EZH2). The resulting lists of targets

were matched to our validated gene list. Overall, 164 of 402

validated and hypermethylated genes (40.80%) were targets of at

least one of PRC2 or H3K27me3, whereas 53 of 905

hypomethylated genes (5.86%) were their targets. Hypermethy-

lated genes were enriched with PRC2 or H3K27me3 targets

(x2 = 245.42, df = 1, p = 0.0001). In total, 217 of 1307 genes

(16.60%) were targets of PRC2 or H3K27me3. Figure 6 illustrates

the frequency and overlap of enrichment of PRC2 and

H3K27me3 in our validated, differentially methylated CpG sites

using a Venn diagram.

Correlation of Methylation Classes with Biomarkers of
Global Methylation Levels

LINE1, 5m-dC and 5hm-dC levels were all significantly lower

in GBMs compared to control brain tissues (p,0.0001 for all 3

markers). However, 5m-dC level was most capable in discrimi-

nating among various methylation classes (Figure 7a). In both 5m-

dC and LINE1, global methylation levels were lowest in Class 1

tumor, and their levels successively rose from Class 1 to 5

(Figure 7a and 7b). Class 4 and 5 tumors had 5m-dC and LINE1

levels that were not statistically different from those of control

brains. With respect to 5hm-dC levels, tumors were uniformly low

compared to control tissues, but there were no differences in levels

among tumor classes. (Figure 7c).

Survival Analyses
Univariable and multivariable survival analyses results are

shown in Table 5 and 6, respectively. Overall the median survival

of the discovery population is 20.09 months (IQR: 9.11–34.39

months). In this dataset, age at diagnosis, KPS, study center

(CWRU versus Columbia), LINE1 methylation level, MGMT

methylation (50% methylated in control brains and 67%

methylated in tumors), immune index and ESC index were all

statistically significant prognostic factors in univariable analyses.

Gross total resection and methylation Class 4 and 5 (GCIMP)

showed trends towards favorable prognoses in the Univariable

Cox models. When these variables were included in a multivar-

iable Cox proportional hazards model, high level of LINE1

methylation (higher level of genomic stability), methylated MGMT,

along with high KPS and gross total resection were all significant

favorable prognostic factors. High levels of methylation in genes

Table 5. Univariable Cox proportional hazard regression results of the discovery and validation datasets.

Discovery dataset Validation dataset

Factors HR (95% CI) P value Factors HR (95% CI) P value

Age at diagnosis 1.03 (1.01–1.06) 0.006 Age at diagnosis 1.03 (1.02–1.05) 0.0001

KPS 0.94 (0.91–0.96) 0.0001 KPS 0.97 (0.95–0.98) 0.0001

Surgery Surgery

Biopsy Reference Biopsy NA

Subtotal resection 0.31 (0.068–1.40) 0.13 Subtotal resection NA

Gross total resection 0.28 (0.063–1.23) 0.093 Gross total resection NA

Bevacizumab Concomitant XRT/TMZ

None Reference No Reference

Received therapy 0.85 (0.46–1.55) 0.60 Yes 0.59 (0.40–0.86) 0.006

LINE1 level 0.93 (0.88–0.97) 0.003 Bevacizumab

5m-dC level 0.75 (0.33–1.25) 0.34 No Reference

5hm-dC level 0.95 (0.58–4.40) 0.43 Yes 0.60 (0.40–0.91) 0.017

MGMT methylation MGMT methylation

Unmethylated Reference Cg12434587 0.43 (0.19–0.99) 0.048

Methylated 0.39 (0.21–0.75) 0.005 Cg12981137 0.46 (0.23–0.92) 0.028

Methylation class Methylation class

Class 3 Reference Class 2 Reference

Class 1 0.95 (0.33–2.73) 0.92 Class 1 0.59 (0.36–0.97) 0.039

Class 2 0.65 (0.23–1.86) 0.42 Class 3 0.59 (0.35–0.99) 0.048

Class 4 0.49 (0.21–1.14) 0.098 Class 4 0.81 (0.49–1.34) 0.41

Class 5 (GCIMP) 0.28 (0.066–1.19) 0.085 Class 5 (GCIMP) 0.21 (0.065–0.67) 0.009

ESC index 1.33 (1.04–1.69) 0.024 ESC index 3.91 (1.31–11.72) 0.015

Immune index 1.22 (1.07–1.38) 0.002 Immune index 2.04 (1.28–3.24) 0.003

Participating Center Participating Center

Columbia Reference Other 10 centers Reference

Case Western Reserve University 3.68 (1.89–7.18) 0.0001 Center 41 4.10 (1.86–9.04) 0.0001

doi:10.1371/journal.pone.0089376.t005
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that affect stem cell pluripotency or promote differentiation, as

indicated by higher score of the ESC index, remained a significant

poor prognostic factor. However, age at diagnosis, GCIMP, study

center and immune index were no longer significant in the

presence of these other variables.

We found 3 factors that were strongly associated with more

advanced age at diagnoses and might have eliminated its effect in

multivariable survival analyses: 1. A higher ESC index (p = 0.001);

2. A higher immune index, which denotes less hypomethylation in

genes that control leukocyte trafficking (p = 0.032); 3. Low LINE1

methylation levels (p = 0.05). Due to our limited sample size and

only 4. GCIMP+ tumors, we were unable to confirm GCIMP’s

prognostic ability. However, GCIMP+ tumors showed strong

correlation with MGMT methylation (p = 0.017).

The median survival of the TCGA validation dataset was 14.53

months (IQR: 7.63–21.30 months). Univariable Cox model

showed that age at diagnosis, KPS, concomitant radiation with

temozolomide (TMZ), treatment with Bevacizumab, study center

41, MGMT methylation, immune index and ESC index were all

significant prognostic factors on their own. When the dominant

Methylation Class 2 was served as a reference, Class 1, 3 and 5

(GCIMP) showed favorable prognoses, with GCIMP+ group having

the best prognosis. In the multivariable model, younger age at

diagnosis, higher KPS, concomitant treatment with radiation and

TMZ and methylation Class 3 were significant favorable

prognostic factors. Higher scores of the immune index or less

degree of hypomethylation in immunity related genes, high ESC

index and study center 41 remained significant poor prognostic

factors. Of note, methylation Class 5 (GCIMP) was no longer

significant in the multivariable model. Instead, methylation Class 3

(with Class 2 as reference) showed a favorable survival after

adjustment by other covariates.

When we evaluated factors that most influenced GCIMP status

in logistic regression, younger age of onset and a lower score in the

immune index (higher degree of hypomethylation) were the

strongest factors associated with the GCIMP+ group (p = 0.03 and

p = 0.01, respectively). Thus, in multivariable survival analyses,

these 2 factors had overshadowed GCIMP as more significant

prognostic factors. Similarly, MGMT methylation level based on

probes on the Illumina array was no longer a significant prognostic

factor in the multivariable survival model. Again, high level of

demethylation in immune related genes might have accounted for

MGMT’s effect, as MGMT methylation was most strongly related

to a lower score in the immune index (p = 0.007) and also GCIMP+
status (0.01).

Based on our analyses, the ESC index is a novel pathway-based

biomarker for overall survival, and we were able to validate its

prognostic significance in the TCGA dataset. Consistent between

the two study populations, higher degree of methylation in genes

that promote differentiation of stem cells is a poor prognostic

factor. Figures 8a and 8b show the adjusted Cox survival curves

based on EST index at 25th, 50th and 75th percentiles, for both the

discovery (a) and validation cohorts (b). In both datasets, tests of

proportional hazard assumptions on all covariates did not show

any violation of this assumption.

Discussion

This study validated more than 1500 differentially methylated

sites and discovered 5 patterns of methylation changes across

tumor samples in both the discovery and validation datasets. To

our knowledge, it included the largest numbers of control brain

tissues used for the investigation of differential methylation in

glioma. The increase in brain control samples have helped us to

better detect epigenetic alterations in de novo GBM. However,

our PCA scatterplot illustrated that tumor methylation showed a

wider amount of variability compared to the variability in controls.

This finding may agree with that of another study that evaluated

139 cancer-specific differentially methylated regions (cDMRs)

using a custom Illumina bead array. The investigator showed that

differential methylation was characterized by increased stochastic

variation in methylation level within each tumor type, suggesting a

general disruption of the integrity of the cancer epigenome [33].

One feature of our differential methylation analyses is that there

were more than twice as many hypomethylated CpGs as

hypermethylated loci in the tumors. This finding is supported by

differential methylation studies in other types of cancers, which

suggested that hypomethylated loci are at least as numerous as, or

often more abundant than hypermethylated CpGs [31]. However,

hypomethylated loci, though more numerous, tended to show

more moderate b changes compared to controls, whereas

hypermethylated CpGs manifested larger changes even though

they were fewer in numbers. A reason for this phenomenon may

relate to differences in epigenetic remodeling, such as changes in

chromatin marks, which lead to gene promoter hypomethylation

Table 6. Multivariable Cox proportional hazard regression
results of the discovery and validation datasets.

Discovery dataset

Factors HR (95% CI) P value

KPS 0.94 (0.91–0.97) 0.0001

Surgery

Biopsy Reference

Subtotal resection 0.20 (0.038–1.05) 0.058

Gross total resection 0.13 (0.025–0.73) 0.02

MGMT methylation

Unmethylated Reference

Methylated 0.27 (0.13–0.60) 0.001

LINE1 methylation 0.95 (0.89–0.99) 0.048

ESC index 1.50 (1.17–1.91) 0.001

Validation dataset

Age at diagnosis 1.03 (1.02–1.05) 0.0001

KPS 0.97 (0.96–0.99) 0.0001

Concomitant XRT/TMZ

No Reference

Yes 0.53 (0.35–0.81) 0.003

ESC index 4.70 (1.45–15.16) 0.010

Immune index 2.23 (1.42–3.91) 0.005

Participating Center

Other 10 centers Reference

Center 41 2.91 (1.24–6.84) 0.014

Methylation class

Class 2 Reference

Class 1 0.73 (0.40–1.33) 0.31

Class 3 0.46 (0.26–0.83) 0.010

Class 4 0.57 (0.32–1.01) 0.054

Class 5 (GCIMP) 2.22 (0.53–9.29) 0.28

doi:10.1371/journal.pone.0089376.t006
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versus those chromatin alterations that affect hypermethylation

[37].

There were only 4 GCIMP+tumors and 5 IDH1 mutant tumors

in the discovery dataset. This supported the finding that GCIMP

and IDH1 mutations are uncommon findings in de novo GBM. In

both datasets, strong correlation existed between methylated

MGMT, or younger age of onset and GCIMP+ status, which

confirmed findings from previous investigations [2,6]. However,

hypermethylation relative to controls were found in discrete loci,

or ‘‘blocks’’ and did not appear to be uniform across all CpGs.

This may be due to the fact that brain controls were already

hypermethylated in many CpG sites. Moreover, as one recent

systematic review pointed out, there has been a lack of consensus

on the precise definition of CIMP in cancers [38].

For genes that were differentially methylated in our dataset, we

were able to demonstrate that different pathways are involved in

hypo- and hypermethylated genes. We found genes that regulate

the immune system, affecting both innate and cellular immunities,

were aberrantly hypomethylated in the tumors. Previous publica-

tions had focused primarily on gene hypermethylation; thus this

finding will hopefully prompt future studies on how immune

pathways, through epigenetic alterations, will relate to the

generation of immune-suppressive tumor environment, or the

host’s ability to detect and eliminate GBM.

Figure 8. Adjusted Cox proportional hazard survival curves based on ESC index percentiles. a. Adjusted Cox survival curve of the
discovery dataset, illustrating survival of subjects at the 25th, 50th and 75th percentiles of ESC index. b. Adjusted Cox survival curve of the validation
dataset, illustrating survival of subjects at the 25th, 50th and 75th percentiles of ESC index.
doi:10.1371/journal.pone.0089376.g008
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Our IPA canonical pathway results showed different pathways

were affected by hypermethylation. The top pathway confirmed

that epigenetic regulation was crucial to maintenance of stem cell

pluoripotency in GBM. Related to this finding is that almost 40%

of hypermethylated CpG sites were targets of PRC2 or

H3K27me3. PRC2 was up-regulated in glioblastoma stem-like

cells [39]. PRC2 targeted developmentally important genes,

induced compact chromatin, repressed expression of target genes

and maintained ‘‘stemness’’ in embryonic stem cells [40]. These

same genes were targets of hypermethylation in cancer, via

transformation from a polycomb-dependent silencing to methyl-

ation-dependent silencing during cancer development. Moreover,

it appeared that the DNA demethylating agent, 5-deoxy-aza-

cytidine (DAC) was able to reverse methylation and induce gene

expression in cancer cells that were marked by both repressive

chromatin marks (positive for H3K27me3) and methylation, but

histone deacetylase inhibitor (HDACi) was not able to re-activate

these genes [1,36]. These results indicated that hypermethylated

genes in cancer, even if they were maintained in a suppressed state

by polycomb marking, are competent to reactivate upon removal

of the methylation mark. Nevertheless, in GBM, demethylating

agents have not been considered in clinical trials because promoter

MGMT methylation is related to temozolomide (TMZ) response

[41]. Moreover, in view of the fact the genes involved in immune

system functions were hypomethylated in their promoters, and

repetitive elements of de-methylation may trigger further genomic

instability, broad-spectrum, demethylating drugs may potentially

bring on undesirable consequences and genomic instability.

Consistent with findings from other cancers, GBM also showed

global hypomethylation when compared to control tissues. Our

three biomarkers consistently demonstrated that tumors were

hypomethylated compared to control brains. Since these markers

measured cytosine methylation across compartments in the human

genome, and repetitive elements consisted of .65% of genomic

CpG sites versus 5.5% of them in promoters of protein coding

genes, demethylation in the repetitive elements may contribute to

a significant degree of global hypomethylation in GBM compared

to control tissues [42]. Nevertheless, since LINE1 and 5m-dC

levels in methylation Class 4 and Class 5 (GCIMP) were similar to

controls, the epigenetic alterations of these tumors might involve a

lesser degree of wide-spread, concomitant de-methylation of the

repetitive elements. Future studies using bisulfite next gen

sequencing will help to further define boundaries between hypo-

and hypermethylated domains in the GBM epigenome, as one

study had recently done in other cancer types [33].

The reasons for the strong and uniform depletion of 5hm-dC in

GBM were not clear. TET1, which converts 5m-dC to 5hm-dC,

has not been shown to be mutated or over-expressed in GBM.

Although it is also a global methylation marker and is closely

related to 5m-dC, 5hm-dC is enriched within the gene body,

promoters and transcription start site, whereas 5m-dC and LINE1

were primarily located in heterochromatin and repetitive elements

[43]. In the evaluation of prognostic marker, LINE1, was a

significant prognostic factor for overall survival in the discovery

dataset, even after it was adjusted for the effect of other known

prognostic factors such as MGMT methylation, extent of surgical

resection and KPS. This marker is worthy of further validation in

larger study or clinical trial, as the TCGA does not have

information on this biomarker.

We were able to show that higher ESC index score was a poor

survival factor in the discovery dataset, and the TCGA dataset

validated its prognostic significance. Thus, high levels of methyl-

ation of genes involved in this pathway may maintain these cells in

the pluripotent state and promote treatment resistance. However,

therapeutic design to re-differentiate this gene set cannot be ‘‘off-

the shelf’’ demethylating agents. The approach will have to target

other epigenetic components that promote these methylation

markers, or specific enhancers/suppressors of these genes.

Future studies may also want to elucidate factors that lead to

methylation changes in GBM, such as alteration in chromatin

states, and local DNA features. Some studies have suggested that

the presence of SINE and LINE may predispose methylation

spread into nearby gene promoters, unless certain insular DNA

elements, such as the presence of CTCF, SP1 or USF1, protect

against such spreading into downstream promoters [44–46]. This

study illustrated that repetitive element demethylation and

epigenetic alteration in gene promoters occur hand-in-hand, but

whether destabilization of repetitive elements may enhance

methylation spread into adjacent genes in GBM will need further

laboratory evaluation.

Supporting Information

Figure S1 Heat map showing unsupervised hierarchical
clustering using GCIMP markers. a. Using GCIMP

markers, four GBM subjects were found to be GCIMP+ in the

discovery dataset (red lines on the row dendrogram). They

corresponded to 4 of the 5 IDH1 mutated subjects. b. Using

GCIMP markers, 13 GBM subjects were found to be GCIMP+ in

the validation dataset (red lines on the row dendrogram). Six of

them had IDH1 mutations.

(TIF)

Figure S2 Top down views of PCA analyses. a. In the

discovery dataset, the separate, posterior location of the GCIMP+
group was best appreciated from this view; b. In the validation

dataset, GCIMP+ group occupied a similar location posteriorly.

Also, segregation of the 2 control groups was better visualized in

this view.

(TIF)

Table S1 List of pyrosequencing primers used in
pyrosequencing validation studies.

(PDF)

Table S2 The complete list of 1864 differentially
methylated CpG sites, their median b difference and
statistical significance levels from our discovery dataset.

(XLSX)

Table S3 The complete list of 2452 differentially
methylated CpG sites, their median b difference and
statistical significance levels from our TCGA validation
dataset.

(XLSX)

Table S4 A list of 1548 CpG probes and associated gene
names that were differentially methylated in both the
discovery and validation datasets.

(PDF)
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