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Abstract

Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising
the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent
diffusion coefficient (ADC) considered so far as the ‘‘gold standard’’. The observed changes exceeded that of the ADC by a
remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis
imaging (DKI) and log-normal distribution function imaging (LNDFI). As shown in our previous work investigating the
animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information.
In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the
Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution
function (GDF), the stretched exponential model (SEM), and the biexponential model. The main goal was to compare the
sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several
models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a
better performance than the conventional method and allow for a significantly enhanced visualization of lesions.
Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In
particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM
metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently
affected by ischemic processes.
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Introduction

Diffusion magnetic resonance imaging (MRI) is known as an

important tool in early diagnostics and assessment of stroke [1,2].

Usually, the apparent diffusion coefficient (ADC) exhibits a strong

reduction within the first half an hour after the onset of infarction

and allows for a visualisation of the ischemic lesion prior to

manifestation by other conventional MRI modalities. Diffusion

changes are associated with a failure of the sodium/potassium

pump, giving rise to an inter-compartmental water shift and cell

swelling (cytotoxic oedema). In spite of the high clinical relevance

and intensive studies, the biophysical mechanisms of the observed

ADC reduction are not yet well understood [3]. They are most

frequently ascribed to the combined effects of restricting more

water in swollen cells and an increased tortuosity of the

extracellular space. Additional mechanisms may include changes

in membrane permeability [4], amount of bound water [5],

destruction of intracellular organelles [6] and cytoplasmic stream-

ing [7]. More recent studies suggest focal enlargements of cellular

projections (the so-called neurite beading) [8–10] as an essential

mechanism of decreasing the diffusion coefficient.

Most of the reported diffusion stroke studies were performed in

the low range of diffusion-weightings (b-value), #1 mm22 ms,

typical for conventional diffusion MRI. In this range, the diffusion-

weighted (DW) signal of water in the brain tissue as a function of

the b-value can be approximated by a monoexponential function,

under the assumption of a Gaussian diffusion propagator [11]. For

larger b-values, the deviations from the monoexponential function

become significant [12–14] and a concept of the ADC [15]

becomes insufficient to describe the signal attenuation curve. The

exact mechanisms underlying these deviations are not yet fully

elaborated. Generally, they are attributed to various motional

restrictions and barriers imposed by tissue microstructure, such as

cellular membranes or myelin, and may involve complex

interactions with cellular proteins and membrane permeability.

Due to the enormous complexity of tissue organisation, various

contributions to the measured DW signal cannot be decomposed

easily. However, as recently emphasized [16], it is imperative to

employ higher b-values in order to get a better access to the

intracellular space and membrane interactions and thus render the

DW signal more representative of the cellular microstructure than

surrounding extracellular water.
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In recent years, non-Gaussian diffusion methods permitting the

analysis of the DW signal over a larger range of b-values have

gained an increasing importance in brain research. During the last

one and a half decades several approaches, such as diffusion

kurtosis imaging (DKI) [17,18], biexponential diffusion tensor

analysis (BEDTA) [13,14,19–21], the statistical model by Ya-

blonskiy [22], the stretched-exponential model (SEM) [12,23] or

its modifications to describe anomalous diffusion [24–28], have

been suggested to account for deviations from the Gaussian model.

Although a link with tissue microscopic features is not straightfor-

ward, all these approaches permit the quantification of the degree

of non-monoexponentiality of the DW signal based on different

assumptions [29,30]. Some approaches, such as DKI, are

empirical in their nature and aim to describe the attenuation of

the MRI signal using a set of phenomenological parameters. Other

models use geometric schemes [31–33], such as a set of oriented

cylinders describing axonal formations in white matter (WM), or a

set of macroscopically disordered cylinders as an approximate of

neuronal processes in gray matter (GM). In particular, DKI is a

model-free extension of conventional diffusion MRI (in particular,

diffusion tensor imaging, DTI), making use of a higher order

quadratic term in the Taylor series expansion of the natural

logarithm of the DW signal. BEDTA represents the simplest

realization of the frequency distribution of the ADCs given by a

discrete sum of two exponentials. It assumes the existence of two

water pools with different ADCs. These pools can be attributed,

for example, to different compartments (intracellular, ICS, and

extracellular, ECS, space) [32], or to free and bound water [5].

The statistical model [22] extends a discrete number of pools to a

continuous distribution of ADCs. In this way it accounts for the

complexity and heterogeneity of the tissue microstructure that

imposes motional restrictions and hindrances on various length

scales and models different local diffusion environments for

diffusion of different spin ensembles. Further models specify

axonal sizes and densities as a source of the ADC distribution and

support the experimental protocols for their determination

[34,35].

These models provide a more accurate approximation of the

DW signal than conventional diffusion MRI in the moderate to

high b-value ranges [36] and enrich the information on the brain

tissue microstructure [37,38]. Nevertheless, regarding their appli-

cations to the study of diseases, non-Gaussian approaches are still

at an early stage since the related progress remained rather slow,

mainly, due to technical problems. In the early implementations,

the impediment to clinical adoption was primarily due to a severe

decrease in the signal-to-noise ratio with increasing b-values,

leading to a prolongation of the acquisition time above the clinical

requirements. In recent years, however, more and more applica-

tions have been reported to provide enhanced information on

microstructural properties of healthy and pathological tissues. A

real breakthrough was achieved with DKI in recent years as it has

been demonstrated to provide promising biomarkers in healthy

aging [39,40], stroke [9,10,41–43] and in neurodegenerative

diseases, such as Parkinson’s [44], Huntington’s [45], and

Alzheimer’s diseases [46]. Besides, DKI has been demonstrated

to be helpful in glioma grading [47,48]. Promising applications of

the SEM have been reported by Bennett et al. to investigate brain

tumours [49], and also BEDTA has been shown to provide

interesting results in the study of tumours [49,50].

Regarding stroke, an enhancement of DKI metrics in ischemic

lesions was observed by Jensen et al. [10] in humans and a similar

enhancement was reported in the animal stroke model by

Grinberg et al. [41]. Interestingly, the amount of change in DKI

parameters reported in these two works was very similar in spite of

the differences in the substrate tissues carrying the lesions, that is,

WM in the human brain [10] and GM in the rat brain [41]. In

both tissue types, the ADC has changed by 30–40%, typical for

stroke, whereas the mean kurtosis (MK) changed up to 100–150%

within the first 24 hours after symptom onset. A larger absolute

percent change in kurtosis metrics in comparison to the ADC was

also reported by Hui et al. [9] for a large group of stroke patients

(retrospective study of 44 patients) who underwent investigations

within the first 2 weeks after the onset. Based on a WM model that

describes the microstructure in terms of extra- and intra-axonal

environments, the observed changes in diffusion metrics were

attributed to a significant drop in the intra-axonal diffusion

microenvironment as a dominating factor, consistent with a

proposed mechanism of axonal beading [8].

In our previous work [41], the DKI study of the animal stroke

model was complemented by the investigation of another non-

Gaussian model called log-normal distribution function imaging

(LNDFI). It is based on the statistical approach and describes the

diffusion behaviour in terms of the log-normal distribution

function of ADCs. It was shown to provide a good signal

description of the DW signal down to 4% of the initial non-DW

value. Previous results have demonstrated that the peak diffusivity,

DLD, and the scale parameter, sLD, of the LNDFI model exhibit

an enhanced sensitivity to ischemic lesions, i.e. ,60% change in

sLD and ,50% in DLD.

These findings raised our interest in the following question:

what are the advantages of other non-Gaussian models suggested

in the literature and how they will perform in the assessment of

stroke in comparison to each other? In this work we provide a

characterisation of the ischemic lesions in animals by three non-

Gaussian models: a) SEM, b) the statistical model based on the

gamma distribution function (GDF), and c) BEDTA. Our goal was

to investigate the applicability and sensitivity of the quantitative

metrics in these models as biomarkers of stroke-induced micro-

structural changes in animals. We compared the performance of

these models with previously investigated DKI and LNDFI. We

hypothesized that simultaneous application of several models can

provide added value in the assessment of stroke.

Theoretical Background

Monoexponential and kurtosis models
In isotropic non-confined media, diffusion is described by the

Gaussian propagator. The conjunct normalised DW signal (i.e. the

signal intensity divided by its value in absence of diffusion-

weighting gradients), S(b), is given by a monoexponential function

[51]

S(b)~exp({bDm), ð1Þ

where Dm is the diffusivity and b is the diffusion-weighting factor

depending on the strength, duration, and separation intervals of

the magnetic field gradient pulses. In isotropic ordinary liquids,

Eq. (1) provides an estimate of the intrinsic diffusion coefficient

determined merely by viscosity and temperature. In brain tissue,

Eq. (1) provides a good approximation of the signal decay only for

low b-values used in conventional diffusion MRI. However, the

experimental values of Dm appear reduced with respect to the

intrinsic diffusivity value due to the influence of various motional

barriers (cellular membranes, myelin sheaths, organelles, etc.) and

other interactions during the typical observation times. Moreover,

in macroscopically anisotropic media, such as WM, the experi-

mental values of Dm are reduced by an amount that depends also

on the direction of the diffusion-weighting magnetic field
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gradients. Using the measurements of the DW signal in at least 6

gradient directions DTI describes the diffusion behaviour in terms

of scalar metrics such as mean diffusivity (MD) or fractional

anisotropy (FA) [52]. In complex media, the measured metrics will

depend not only upon the genuine features of the underlying

microstructure itself but also on the experimental parameters such

as sequence timings. To keep these factors in mind, the diffusion

coefficient evaluated from the pulsed field gradient MRI

experiments in brain tissue is conventionally referred to as the

ADC [15].

DKI accounts for deviations from the pattern of Gaussian

diffusion by including a second-order term in the Taylor

expansion of the natural logarithm of the DW signal. The DW

signal then can be written as [17]

S(b)&exp({bDKz
1

6
b2D2

K K) ð2Þ

where DK and K denote the apparent diffusivity and the apparent

kurtosis for an individual gradient direction, respectively. DK

determines the initial slope of the signal attenuation curve

{ lim
b?0

LS bð Þ
Lb

~DK , ð3Þ

and coincides with the ADC evaluated for the same gradient

direction under the assumption of monoexponential approxima-

tion in the low b-value range. MK can be evaluated as the

arithmetic average of K along various gradient directions [37].

Due to the truncation of higher order terms, applicability of DKI

is limited to a moderate range of b-values, bƒ3=DK K .

Statistical model
Generally, heterogeneous systems give rise to more than one

single diffusion coefficient. Assuming a continuous distribution of

diffusion coefficients, P(D), the DW signal can be written as

follows

S bð Þ~
ð

P Dð Þexp {bDð ÞdD ð4Þ

with the initial slope of the attenuation curve yielding the mean

diffusivity, SDT, of the distribution

{ lim
b?0

LS bð Þ
Lb

~

ð
P Dð ÞDdD:SDT: ð5Þ

A comparison with the monoexponential model shows that SDT
will be close to Dm evaluated via Eq. (1) in the range of very low b-

values. It should be noted that a similar differentiation between the

intrinsic and reduced diffusion coefficients as in the case of

monoexponential function applies for distributed diffusivities. As

an example, the diffusivity distributions in polymer solutions are

most frequently due to a distribution of macromolecular sizes. In

that case, the measured distribution refers to intrinsic diffusivities

and allows one to deduce information on polymer polydispersity

[53,54]. In contrast, the statistical model of diffusion in biological

tissue [22] attributes the distribution to a large number of spin

packets each characterised by its individual reduced (or apparent)

diffusivity. The reason for the distribution is that, because of

restrictions and hindrances in a disordered media, various spin

packets tend to explore somewhat different local environments

during the observation time. In general, the individual spin packets

are due to heterogeneity of the environment and do not necessarily

require an existence of separated physical compartments in the

tissue. The distribution of reduced diffusivities due to motional

barriers, giving rise to non-monoexponential signal attenuations,

can originate also from the same compartment as was demon-

strated, for example, by Monte Carlo simulations [55] and

phantom studies [56] for diffusion in the interstitial space between

oriented cylindrical objects.

According to Eq. (4), the distribution function P(D) can be

found from the experimental data via inverse Laplace transform.

However, the latter represents a well-known, ill-conditioned

mathematical problem and leads to unstable computational

solutions [57]. Therefore, for practical purposes, it is more

convenient to assume an explicit form of P(D) and to fit it to the

experimental values. In general, many functional forms may

provide satisfactory fits to the experimental data points. The

choice of such a function is usually done empirically since the

related theories usually do not provide predictions for the specific

shape of the distribution. The principal requirement is that the

distribution function does not contain unphysical negative

diffusivities and is thus asymmetric. Examples are the truncated

normal distribution function [22] and the log-normal distribution

function [58].

In the past, the log-normal distribution function was applied in

the study of polymer diffusion [53] and, more recently, it has been

Figure 1. Photomicrograph showing the cortical lamination pattern in a normal rat brain. Superimposed photomicrograph of NeuN
(antibody against neuronal nuclei), green, and DAPI (49,69-diamidino-2-phenylindole), blue, staining demonstrating the cortical lamination. Scale bar
100 mm.
doi:10.1371/journal.pone.0089225.g001
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used with the animal stroke model [41]. Being positive-definite it

does not require an artificial cut off for negative diffusivity values.

However, the disadvantage of this function is that, in combination

with Eq. (4), it does not yield an analytically tractable integral and

therefore requires time consuming numerical solutions. As an

alternative, the gamma distribution function, PG(D) has been

suggested recently and applied in the study of polymer diffusion

[54]:

PG D,k,hð Þ~Dk{1 exp {D=hð Þ
C kð Þhk , ð6Þ

where C is the gamma function, h is the scale parameter of the

same dimensionality as the diffusivity, and k is the shape

parameter. Replacing P(D) in Eq. (4) by PG(D), Eq. (6), gives

the following expression for the DW signal attenuation [54]:

Figure 2. Experimental DW signal, fits and residuals. Diffusion-weighted signal as a function of b-value for two selected voxels in the ischemic
and healthy regions. The fits (A, B, C) are shown for the gamma-distribution function (A), the stretched-exponential model (B), and the biexponential
diffusion tensor analysis (C) for two fitting ranges. Absolute residuals (D–G) as a function of b. The bars indicate standard deviations around the
means.
doi:10.1371/journal.pone.0089225.g002
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S bð Þ~ 1zbhð Þ{k: ð7Þ

The free parameters, h and k, can be expressed through the mean

diffusion coefficient and standard deviation, sG, as [54]:

h~s2
G

�
SDT, ð8Þ

k~SDT2
�

s2
G: ð9Þ

In application to polydisperse polymers, Röding et al. [54] have

shown that both functions, log-normal distribution function and

GDF, provide strongly correlated estimates. However, the

computational speed for GDF was much faster than for the log-

normal distribution function making it a preferable choice in

studies of macromolecular polydispersity.

Biexponential model
The biexponential model represents a simple realisation of the

distribution function with only two mode contributions

Table 1. The values of fit parameters for GDF (h, s), SEM
(DDC, aSE), and BEDTA (ADCf, ADCs, and ff) in two fitting
ranges; the values of SADCTGD and sGD correspond to fit
parameters of GDF.

b = 3.5 ms mm22 b = 6.0 ms mm22

model parameter healthy stroke healthy stroke

GDF SADCTGD 0.7160.02 0.5260.03 0.7260.02 0.5160.02

sGD 0.3060.05 0.4960.06 0.3560.04 0.4760.04

h 0.1360.04 0.4660.12 0.1760.04 0.4360.08

k 5.6061.89 1.1360.30 4.2360.99 1.1860.22

SEM DDC 0.6360.01 0.3260.01 0.6260.02 0.3160.01

aSE 0.9260.03 0.7860.04 0.8960.03 0.7460.03

BEDTA ADCf 0.7460.01 0.6660.19 0.7760.05 0.8960.15

ADCs 0.0160.49 0.0160.19 0.1560.01 0.1560.03

ff 0.9360.14 0.7260.26 0.8860.08 0.4660.09

The experimental curves together with their fits are shown in Figure 2. All
diffusivity values are in ms21 mm2.
doi:10.1371/journal.pone.0089225.t001

Figure 3. Dependence of the x2-maps on the fitting range. Anatomical RARE (Rapid Acquisition with Refocused Echoes) images (upper panel)
and x2-maps (lower panel) for various b-values and four slices in animal 1. The errors increase throughout the image with increasing b. In lesions and
white matter regions the increase is especially strong, leading to a more clear contrast at larger b. The regions-of-interest used for averaging of the
measured parameters are shown in RARE images in cyan and green. Red arrows indicate the locations of the voxels used in Figure 2.
doi:10.1371/journal.pone.0089225.g003
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S bð Þ~ff exp {bDfð Þz 1{ffð Þexp {bDsð Þ, ð10Þ

where Df and Ds are the (apparent) diffusivities of the fast and slow

attenuation components, and ff and fs:1{ff are the relative

fractions of the fast and slow components, respectively. The

biexponential function has been frequently evoked in the frame of

‘‘two-compartment’’ models [32,59] for water in the extra-cellular

and intra-cellular spaces, respectively. An alternative interpreta-

tion attributes the biexponential behaviour of the diffusion signal

to the presence of ‘‘bound’’ and ‘‘free’’ water pools [5] that may

exist within the same compartment. Statistically uniform but

disordered media can also exhibit quasi-biexponential behaviour

which then reflects the presence of distinct disorder length scales

rather than the presence of separate compartments or pools [60].

Under certain circumstances, in the short time limit, a quasi-

biexponential behaviour can be caused by the so-called ‘‘edge

enhancement effects’’ due to restricting boundaries within the

same compartment [61,62]. In general, interpretation of the fast

and slow diffusion processes in the brain tissue remains elusive [15]

and requires caution in its application. Nevertheless, the

biexponential function remains a useful model, especially in

WM, as it captures significant features of the diffusion behaviour.

BEDTA allows one to evaluate a single parameter, aBEDTA,

quantifying the degree of non-monoexponentiality and sensitive to

the presence of a slow diffusion fraction [14]:

aBEDTA~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ff Df{SDTð Þ2z(1{ff ) Ds{SDTð Þ2

q
SDT

, ð11Þ

where SDT:ff Dfz 1{ffð ÞDs. aBEDTA = 0 corresponds to a

monoexponential decay, which implies that either Df = Ds = Dm

or one of the component fractions is equal to 0 or to 1. In the

opposite limit of the strongest non-monoexponentiality,

aBEDTA = 1, both fractions are equal to each other (ff~0:5) and

one of the diffusivities is negligibly small (for instance,

Ds = 0 mm2 ms21).

Stretched-exponential model
The stretched-exponential function is well known with regard to

the global time relaxation behaviour of a disordered system that

can be described by a superposition of independently relaxing

exponential modes [63]. Bennett et al. [12] adapted this model to

characterize heterogeneity of the DW signal as follows

S(b)~S0 exp { b|DDCð ÞaSEf g, ð12Þ

where DDC is the distributed diffusion coefficient, and aSE is the

stretching exponent characterising deviations from the mono-

exponential behaviour (the so-called heterogeneity index,

0#aSE#1). For the Gaussian model, aSE = 1. Note that the initial

slope of the function does not provide the mean diffusivity, since

the first derivative of Eq. (12) exhibits a singularity at b = 0.

Obviously, the characteristic parameter of this model, DDC, does

not coincide with the mean diffusivity except for aSE = 1.

The stretched exponential function also arises in the context of a

continuous time random walk model [64]. This model gives rise to

anomalous diffusion behaviour by assuming that either jump

lengths or time steps obey the power law distribution. In the

anomalous and fractal model approaches [23,25,28], lower aSE

values indicate increasing disorder of the microenvironment in

which the molecules diffuse.

Figure 4. Estimates of the goodness-of-fits. x2- and R2-maps and the corresponding histograms in ranges 1 and 2.
doi:10.1371/journal.pone.0089225.g004
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Materials and Methods

Animals
Transient middle cerebral artery occlusion (MCAO) was

induced [65] in three animals (300 g, Sprague-Dawley male rats)

for the stroke experiments. The rats underwent a 90 min transient

occlusion and were imaged 24 hours after reperfusion. The

animals were anaesthetised with isoflurane (2%) administered in

a mixture of air/oxygen through a nose cone and maintained at

constant temperature (37uC) using a feedback-controlled air

heating system (MR-compatible small animal heating system, SA

Instruments, Inc., NY). The diffusion weighted acquisitions were

respiration triggered. All experiments complied with French

legislation and guidelines for animal research. The animal protocol

was approved by the Comité d’EThique en Expérimentation

Animale Commissariat à l’Energie Atomique et aux énergies

alternatives Direction des Sciences du Vivant Ile de France

(CETEA CEA DSV IdF).

Immunohistochemistry and fluorescence microscopy
Brains were perfused with a saline solution and, after complete

blood removal, with 4% paraformaldehyde, and extracted. They

were kept in paraformaldehyde for 2 h for tissue fixation, in 15%

sucrose solution for 12 h and in 30% sucrose solution for 24 h for

cryoprotection. 10 mm thick tissue slices were sectioned using a

cryostat (Microm HM 560, Thermo Scientific, Courtaboeuf

Cedex, France). Fluorescence microscopy was performed on an

Axio Observer Z1 microscope (Carl Zeiss MicroImaging, Jena,

Germany). One slice was treated with an antibody against

neuronal nuclei (NeuN, Millipore, MAB377X, alexa 488 conju-

gated) and with 49,69-diamidino-2-phenylindole (DAPI) staining in

order to highlight the different cell densities within the cortex.

Figure 1 demonstrates NeuN/DAPI labeled photomicrograph

showing the cortical lamination. Scale bar = 100 mm.

MRI experiments
MRI experiments were performed on a 7T system (Bruker,

PharmaScan) equipped with magnetic field gradients with

maximum strength of 760 mT/m and a home-built RF surface

coil (2.5 cm diameter). Rapid Acquisition with Refocused Echoes

(RARE) T2-weighted images were acquired to localize the lesions

(TR = 5530 ms, effective TE = 76 ms, FOV = 363 cm2, matrix

size = 1286128, slice thickness = 1 mm, NEX = 2). Four-segment

DW SE EPI images were acquired with the following acquisition

parameters: TR/TE = 3000/30 ms, FOV = 363 cm2, matrix size

1286128, in-plane voxel size 2346234 mm2, slice thickness 1 mm,

number of slices 4, slice gap 0.2 mm, diffusion field gradient

duration d = 5 ms, NEX = 4, and interpulse spacing between the

gradient pulses D = 17 ms. The number of gradient directions was

Figure 5. Parameter maps (animal 1). The maps of the investigated
model parameters of the four slices in animal 1. The numbers on the
scale bars that refer to ADCm, h, SADCTGD , DDC, ADCf, and ADCs, are
in units ms21 mm2.
doi:10.1371/journal.pone.0089225.g005

Figure 6. Zoomed regions. Zoomed regions of the maps shown in
Figure 5 for selected parameters best representing the layered structure
in the lesions (left, slice 1) and WM tracts (right, slice 3).
doi:10.1371/journal.pone.0089225.g006
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20 (we omit a specification of the unit vectors since this

investigation is focused mainly on the orientationally averaged

parameters). The following five b-values were used for all animals:

0, 0.5, 1, 2.5, 3,5 mm22 ms. Two more b-values at 5 and

6 mm22 ms were added to the measurement protocol of animal 1

in order to produce a stronger attenuation and check its influence

on the fitting procedure. In the following, the fitting ranges with

b#3.5 mm22 ms and b#6 mm22 ms will be denoted as range 1

and range 2, respectively.

Data analysis
Bias in the DW images due to the background noise was

corrected using the power-images method [66,67]. Computation

of parameter maps was performed with in-house Matlab scripts

(Matlab, The MathWorks, Natick, MA, USA). The normalized

DW signal intensities, S(b), were fitted on a voxel-by-voxel basis

using the functions described above, Eqs. (1, 2, 7, 10, 12), with the

help of the nonlinear least-squares Nelder-Mead algorithm in the

range of b-values indicated above, except for the monoexponential

fits which were performed for b#1 mm22 ms. An upper boundary

constraint (#3 mm2 ms21) was set according to the diffusivity of

free water at 37uC.

The fits of the investigated models were compared for two b-

value ranges (range 1 and range 2). The fit quality was quantified

via evaluation of x2- and R2-maps according to:

x2~
1

g

XN

i

yi{S bið Þ½ �2, ð13Þ

R2~1{

PN
i

yi{S bið Þ½ �2

PN
i

yi{�yy½ �2
, ð14Þ

where yi is the normalised signal amplitude of the i-th
experimental point, S(bi) is value of the fitting function,

g~N{n with n being the number of free parameters and N
being the number of experimental points, �yy is the mean of the

normalized signal amplitude. The mean absolute residuals were

evaluated for each b-value as S rj jTi~S yi{S bið Þj jT, where the

average is taken over all voxels in a region of interest (ROI) in all

slices and all animals. x2-maps were evaluated also for the

monoexponential fits for different b-value ranges in order to

visualize the deviations for increasing b.

The anisotropy of the DW signal in all ROIs was practically

negligible since the ischemic lesions studied were located only in

GM. Therefore, to enhance the SNR, the non-Gaussian models

were fitted to the mean experimental curves averaged over all

gradient directions. In the following, to appreciate the ‘‘apparent’’

nature of the evaluated diffusivities, we shall denote them as ADCs

with subscripts indicating the model (‘‘m’’ for monoexponential,

‘‘K’’ for DKI, ‘‘GD’’ for GDM, ‘‘LD’’ for LNDFI. Subscripts ‘‘f’’

and ‘‘s’’ will denote fast and slow diffusivities in BEDTA. The

maps were constructed for DDC and aSE (SEM), h and k (GDF),

and ADCf, ADCs, and fs (BEDTA). In addition, we evaluated

SADCTGD and sGD with Eqs. (8, 9) in order to enable a

comparison with typical parameters such as the mean ADC and

standard deviation. The histograms of the investigated parameters

were taken over all slices for animal 1. The average values of

different metrics were evaluated for two ROIs located in the

ischemic lesions, and compared with the corresponding values in

healthy counterparts. The ROIs were placed in the cerebral cortex

(CT) and caudate putamen (CPu). The relative changes of the

parameters in lesions compared to the healthy counterparts were

evaluated, in per cent, as the ratio of the difference between the

average values of a given parameter in the ischemic and healthy

ROIs with respect to the average value in the healthy ROI. The

averages were taken over all slices and animals (12 slices in total).

Further details regarding the MR experiments and data processing

are described elsewhere [41].

Results

Typical diffusion attenuation curves for two representative

voxels located in healthy and affected regions are shown in

Figures 2a–2c, together with their fits using GDF, SEM and

BEDTA, respectively. Fit parameters are listed in Table 1. The

monoexponential function is shown as a black dashed line for the

healthy voxel as an example. Clear deviations from the

monoexponential behaviour occur for b.1 mm22 ms. In

Figure 3, x2-maps of the monoexponential fits visualise how these

deviations increase with increasing b-value. The maps are shown

for 4 different slices in animal 1. At b = 1 mm22 ms, the x2-maps

look rather homogeneous but exhibit increasing contrast between

Figure 7. Parameter maps (all animals). Anatomical RARE ((Rapid
Acquisition with Refocused Echoes)) images and maps of ADCm, h, k,
SADCTGD , sGD, DDC, aSE for one selected slice best representing the
ischemic lesion in each of the three animals. All diffusivities are in units
ms21mm2. The regions-of-interest used for averaging of the measured
parameters are shown in RARE images in cyan and green.
doi:10.1371/journal.pone.0089225.g007
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GM and WM (see the ‘‘brightening’’ of WM tracts such as the

corpus callosum) in accordance with similar findings in human

brain [68]. Moreover, stroke lesions cannot be recognised in x2-

maps for b#1 mm22 ms (see anatomic RARE-maps for their

locations) but become strikingly enhanced for larger b. Thus, the

x2-maps provide a clear evidence for that the degree of non-

Gaussianity is higher in stroke lesions than in healthy tissue.

The fit values (see Table 1) were similar for both ranges of b-

values with the exception of ADCs in BEDTA. The overall fit

quality by all three models was good in both fitting ranges as

demonstrated in Figure 4 by the corresponding x2- and R2-maps

and their histograms averaged over all slices in animal 1, as an

example, as well as in Figures 2d–2g by the analysis of the mean

absolute residuals as a function of b-value. In both ranges, the x2-

and R2-maps look similar to each other for all three models

demonstrating a satisfactory homogeneity across most parts of

images with rather low values for x2, and values close to 1 for R2.

Somewhat increased lesion-to-tissue and WM-GM contrasts can

be recognised for SEM in range 2 (when comparing to range 1 and

to other models), indicating larger errors. A more detailed

statistical analysis is represented by the values of S rj jT evaluated

separately for the four ROIs studied (CT healthy, CT lesion, CPu

healthy, CPu lesion) and averaged over all slices in animal 1. The

mean residuals exhibited no tendency for systematically increasing

errors with increasing b-values, indicating robustness of the fits

regarding the range. At any b-values, the values of S rj jT did not

exceed approximately 60.02 for GDF and BEDTA, and 60.04

for SEM. SEM shows, in general, larger errors than GDF and

BEDTA. However, based on the analysis of the residuals and of

standard deviations of the fitted values, both the GDF and SEM

models provided satisfactory fits. For BEDTA, a satisfactory

reliability of the fitted parameters was found only in the range 2,

whereas the standard deviations of the fitted parameters in range 1

were too high, see Table 1. This is because, in range 1, the DW

signal was dominated by the fast component, and the slow

component could not be reliably estimated. Therefore, we omitted

the results of the statistical analysis for BEDTA in range 1 from

further consideration.

Figure 8. Histograms of parameter metrics. Histograms of parameter metrics of the investigated models evaluated separately for affected and
contralateral hemispheres taken over all slices (animal 1).
doi:10.1371/journal.pone.0089225.g008
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Figure 5 shows the maps of ADCm, h, k, SADCTGD, sGD,

DDC, aSE, ADCf, ADCs, fs, and aBEDTA for animal 1, all of them

providing a clear contrast for two of the ischemic lesions. These

maps refer to the fitting range 2. The values of ADCm, k,

SADCTGD, DDC and aSE, ADCs, and fs and aBEDTA were

strongly decreased in the ischemic regions, whereas h and sGD

were significantly enhanced. The t-tests performed on these values,

comparing healthy against affected ROIs, showed that the changes

in all above parameters were significant (p,0.001).

The contrasts provided by the various model parameters exhibit

essential differences. When comparing them to the conventional

ADCm-map, the most similar contrast was produced by

SADCTGD. This is not surprising since ADCm, evaluated in the

low b-value range must be rather close to the mean diffusivity

represented by SADCTGD, see Eq. (5). This finding confirms the

robustness of the GDF model: the values of SADCTGD were

directly evaluated from the fitted values of h and k using the large

range of b-values, up to 6 mm22 ms, where the signal was reduced

by a factor 5 to 10. The DDC-maps provided a somewhat greater

contrast than the ADCm-maps. Considering BEDTA, we may

state that the corresponding parameter maps were much noisier

than the maps of the other models. Nevertheless, the BEDTA-

maps provided useful information showing that, in stroke, ADCs

decreases more than ADCf, and that fs increases. This emphasises

that the dominant changes in diffusion are associated with the slow

diffusion component. aBEDTA-maps produced much more clear

visualization of the lesions than each of the three fitting parameters

taken separately.

In several maps of non-Gaussian quantities, h, k, aSE and

aBEDTA, an apparent stratified laminar structure of the cortex can

be observed in the lesions whereas it is difficult to be recognised in

the ADCm-maps. This is demonstrated in detail by the zoomed

areas of the selected parameters in Figure 6, left column. The

laminar structure is best visualised in the aSE -map. Interestingly, it

is apparent only in the stroke-affected tissue providing evidence for

differences in the ischemic response by different cortical layers. In

general, the non-Gaussian parameters tended to capture micro-

structural features in more detail than the diffusivity maps: see

Table 2. Relative changes of the model parameters evaluated in two lesions, CT and CPu, averaged for 4 slices in animal 1.

CT CPu

Healthy Stroke

Relative
change
[%] Healthy Stroke

Relative
change
[%]

SADCTGD 0.7960.10 0.4960.11 238 0.7960.05 0.5660.07 228

sGD 0.4160.11 0.4360.14 5 0.4560.07 0.4960.08 8

h 0.2160.09 0.3760.17 75 0.2660.07 0.4260.09 61

k 4.1461.94 1.4360.32 265 3.2360.79 1.3860.21 257

DDC 0.6760.07 0.3360.04 251 0.6560.03 0.3760.04 242

aSE 0.8860.03 0.8160.05 27.9 0.8660.03 0.7960.03 27.6

ADCf 1.0560.25 0.8660.24 218 1.0660.17 0.8560.10 220

ADCs 0.3260.10 0.1560.03 254 0.3060.07 0.1360.02 256

ff 0.6460.14 0.4760.07 226 0.6360.11 0.5760.05 29.4

a 0.4460.08 0.7360.09 65 0.5360.09 0.6460.07 20

All diffusivity values are in ms21 mm2.
doi:10.1371/journal.pone.0089225.t002

Figure 9. Overview of the average parameter changes. Relative changes in per cent of the values of the investigated model parameters
averaged over all slices in each animal and over all three animals; error bars indicate the standard deviations. For a better overview, we included here
the data for DKI (Dm and MK) and LNDFI (DLD and sLD) investigated in the previous work [41].
doi:10.1371/journal.pone.0089225.g009
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WM tracts that appear much brighter in h-, k-, and aSE-maps than

in the ADCm-maps in Figures 5 and 6 (zoomed areas, right panel).

These effects remained when fitting the data over the smaller

range of b-values, b#3.5 mm22 ms, as demonstrated in Figure 7

for one selected slice in each of the animals. Here also the

structural details were more favourably visualised in the h-, k- ,

sGD- and aSE -maps rather than in the ADCm-, SADCTGD- or

DDC-maps.

The observed contrasts were accompanied by significant shifts

of the parameter histograms shown in Figure 8. The histograms of

diffusivities, ADCm, SADCTGD and DDC, exhibit similar shifts of

their substantial parts towards significantly smaller values. The

histograms of non-Gaussianity metrics, k and aSE, were also

shifted towards smaller values with a clear peak-like feature in the

k-histogram compared to a shoulder-like spread in aSE. Shifts

towards higher values were observed in the histograms of h and fs.

Table 2 summarises the average values of various metrics as well

as their relative changes in the affected versus healthy regions (all

parameters refer to animal 1, range 2). When comparing two

models, GDF and SEM, the largest changes were observed for h in

GDF (75% in CT and 61% in CPu) followed by k (265% in CT

and 257% in CPu). The changes of SADCTGD (238% in CT

and 228% in CPu) were similar to that of ADCm (242% in CT

and 232% in CPu). SEM exhibited larger changes of DDC

(251% in CT and 242% in CPu) than ADCm. However, the

relative changes in aSE (about 8%) were low compared to other

metrics. BEDTA parameters exhibited a larger decrease of ADCs

(254% in CT and 256% in CPu) relative to both ADCf (218% in

CT and 220% in CPu) and ADCm.

Figure 9 summarises the relative parameter changes in GDF

and SEM averaged over all slices measured for all three animals

(four slices in each). For a better visual comparison of the new

(GDF and SEM) and old (DKI and LNDFI) models, the data is

complimented by the relative changes observed for parameters

ADCK, MK, ADCLD, and sLD investigated in the previous work

[41]. Most of the parameters tend to show somewhat larger

Figure 10. Scatter plots. Scatter plots for different combinations of parameters: h vs. k (gamma-distribution function, GDF) DDC vs. aSE (stretched
exponential model, SEM), and ADCm vs. each of the GDF and SEM parameters. The Pearson’s, r, and Spearman’s, r, correlation coefficients are shown
in Table 3.
doi:10.1371/journal.pone.0089225.g010

Table 3. The Pearson’s, r, and Spearman’s, r, correlation coefficients for the data shown in Figure 10.

GDF SEM

h vs. k ADCm vs. h ADCm vs. k DDC vs. aSE ADCm vs. DDC ADCm vs. aSE

r healthy 20.89 0.58 20.40 20.09 0.88 20.54

stroke 20.70 0.47 0.26 20.04 0.95 20.33

r healthy 20.99 0.56 20.44 20.06 0.83 20.53

stroke 20.71 0.46 0.25 20.08 0.95 20.34

All correlations were statistically significant (p,0.001) except for DDC vs. aSE.
doi:10.1371/journal.pone.0089225.t003
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changes in CT than in CPu. All data refer to range 1. It should be

noted that the larger range would be inapplicable for DKI. On the

contrary, BEDTA requires a larger range of b-values and,

therefore, is not included in this overview. Figure 9 shows that

both non-Gaussian models, GDF and SEM, are more sensitive to

lesions than conventional diffusion MRI. Amongst the two models,

GDF and SEM, better sensitivity was provided by GDF: the

parameters h and k exhibited relative changes of ,75% and

,260%, respectively, versus 2(40–46)% for DDC and ,9% in

aSE. However, a comparison between four models (GDF, SEM,

DKI and LNDF) has shown that DKI provides the largest

sensitivity followed by GDF, LNDF and SEM.

Figure 10 demonstrates the scatter plots for the model

parameters, h and k, and DDC versus aSE, as well as between

ADCm and h, k, DDC or aSE, for ROIs in lesions and

contralateral tissue. The data refer to animal 1 and all slices.

One can clearly see that the scatter plots allow one to separate the

voxels belonging to the affected and healthy tissue with practically

no overlap. The corresponding Pearson’s, r, and Spearman’s, r,

correlation coefficients are represented in Table 3 for complete-

ness. However, more detailed analysis of these coefficients was

outside the focus of this paper.

Discussions and Conclusion

Development of non-Gaussian diffusion imaging is emerging as

a novel tool providing clinically useful information on brain tissue.

Related to stroke, investigation of non-Gaussian models has a very

short history represented by a few papers published during the last

couple of years [9,10,41–43]. These works have shown promising

potentials in using those models for stroke assessment. In the

present work we examined three additional non-Gaussian

approaches, SEM, GDF and BEDTA. The two former models

have not been previously applied to stroke. Moreover, while GDF

was used to characterise the distribution of axon diameters [34]

and of macromolecular diffusivities in polymers [54], it has not

been used to model the diffusion response in the brain tissue. We

compared the results with the conventional monoexponential

model and two previously investigated models, DKI and LNDFI,

using the same data sets. To date, few reports exist in which

several non-Gaussian models are compared on the same data sets

of in vivo [36,69] or in vitro [70] experiments. The emphasis of

those studies was put more on the methodological issues such as

goodness-of-fit, influence of noise, or model ranking. While we also

made an estimations of the fit quality, our main interest was

focused on the comparison of the performance of the non-

Gaussian metrics as biomarkers of the pathological state. Given

the effect of ischemic events on the tissue microstructure and

diffusion properties, the animal stroke model is well suited for a

comparison of various methods. Similar to DKI and LNDFI, the

GDF and SEM models demand a minimum of 3 b-values so that,

with no extra time for measurements, all parameters of these 4

models can be obtained in post-processing based on the same data.

We assume that our comparative investigation should contribute

to further development and improvement of diagnostic tools in

stroke.

Ideally, one would like to fit the experimental curves over the

largest b-value range possible, to yield maximal attenuation of the

signal from its initial value. However, various factors limit the

usable b-value range, with noise being the most typical problem at

high b-values. An applicability of each model is, in turn, another

important issue. As well-known examples, DTI is limited to the

low b-values range (b#1 mm22 ms), whereas DKI can be applied

to more extended but also limited (bƒ3=(D|MK)) range. The

applicability of DKI in our work corresponds to the range 1. If the

applicability range is limited, more caution is required when

comparing results obtained by different research groups since the

evaluated metrics and their variation may significantly depend on

the selected range of b. Although a detailed analysis of the b-value

dependence of fitting parameters was beyond the scope of this

work, we checked the applicability of the investigated models in

two fitting ranges, moderate and extended. GDF and SEM, to

their advantage, occurred to be relatively robust with respect to

the selected range of b-values. The same applies also to LNDFI

studied in the previous work [41]. BEDTA, on the other hand, was

applicable only in range 2. In comparison to the other investigated

models, BEDTA is less robust as it contains one more fitting

parameter (3, if signal intensities are normalised), and is more

vulnerable to low signal-to-noise ratio [36,68]. Therefore, it is less

beneficial for stroke analysis as it demands more scanning time.

Nevertheless, application of BEDTA allowed us to receive

additional useful information as it directly showed that the

dominant contribution to the reduction of the mean diffusivity is

due to the slow diffusion component and includes both the

decrease of ADCs and increase of fs. An increase of fs in ischemic

human brain was reported also in Ref. [71], although the authors

observed an increase rather than a decrease of ADCs. In ouabain

induced cell swelling in a perfused rat hippocampal slice, Buckley

et al. [72] also observed an increase of fs, however, not

accompanied with any significant changes in the values of ADCf

and ADCs. Based on observations related to biexponential

behaviour, Le Bihan et al. [5,15] emphasized the dominant role

of membranes, bound water and the residence times near tissue

boundaries affecting the diffusion behaviour in stroke.

Several parameters map studied in this work were able to

provide a better visual contrast than the conventional ADCm map

and exhibited larger relative changes in ischemic versus healthy

tissues. The smallest change was detected for aSE in SEM. In

contrast, the DDC of this model provided a somewhat larger

change than ADCm. Analogously, smaller sensitivity of the

stretched exponent, aSE, in comparison to other non-Gaussian

parameters, was observed also as a function of fibre density, which

modulates the tortuosity of the interstitial space, in the physical

diffusion fibre phantoms [73]. A cancer study using SEM has

shown that, in tumours, aSE had similar values to that in WM but

much lower values than the typical tumours in GM [49]. In

general, based on the amount of the average change over all slices

and animals, the parameters of the four models (GDF, SEM, DKI,

and LNDFI), see Figure 9, demonstrate that the largest changes

were observed in MK, followed by h, k, sLD, DDC, ADCLD,

ADCK, ADCm, and, finally, by aSEM. The non-Gaussianity

metrics (with the exception of aSE) provided a spectacular gain

in contrast relative to the ‘‘gold standard’’, ADCm.

More detailed information can be gathered from the analysis of

the histograms and scatter plots. The histograms of various

parameters exhibited significant differences in their shapes that

can explain the different sensitivities to stroke of the mean values.

In particular, the histogram of DDC exhibits a splitting into two

distinguished peaks similar to that of ADCm (attributed to the

healthy and affected areas). In contrast, the histogram of aSE shows

a continuous broadening towards the lower values. Although the

associated change of the mean is not very large, we see that a

significant part of the histogram does not overlap with that of the

healthy counterpart. This can explain an observed high laminar

contrast in lesions produced by aSE-maps although the sensitivity

of the mean value was low.

In most of the studies, the model parameters were usually

analysed separately from each other. At the same time, their
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simultaneous changes may be more informative. We demonstrated

that ischemic lesions tend to be well separated from the healthy

tissues using the correlation plots. We expect this kind analysis to

be helpful in diagnostics, as it should allow one to increase the

certainty and reliability of the pathological state assessment. The

scatter plots may also be valuable for post-stroke monitoring of the

patients as, with time after onset, the diffusivity values begin to

normalise and do not provide clear characteristics for the tissue

state. The same approach can be useful regarding other

pathologies, especially if they are related to GM. This is because

DTI metrics important in WM, such as FA and axial or radial

diffusivities, are not predicative in GM due to its isotropy. Non-

Gaussianity parameters, in contrast, are thought to quantify the

complexity of the tissue microstructure rather than its anisotropy.

An interesting finding of this work is the appearance of laminar

cortical structures in stroke lesions. The genuine differences in

cortical layer microstructure are well-known from histology, as

shown in Figure 1. However, observation of cortical layers with

MRI is a challenging task [74–76] and requires special efforts,

such as using manganese-enhanced methods [75]. In healthy

regions, no clear laminar contrast was observed but became

distinguishable in the lesions represented via aSE- , h- and k-maps.

Retrospectively, the laminar structure can also be recognised in

sLD-maps of LNDFI shown in Figures 2 and 4 of the previous

work [41]. However, it is hardly visible in the diffusivity maps. Our

finding allows us to propose that the cascade of ischemic processes

tends to non-uniformly affect the cortical layers differentiating by

their cyto- and myeloarchitecture [74]. Based on diffusion studies,

such phenomenon has not been reported before. However, a

significant difference between cortical layers in the time profile of

eosinophilic neurons in the post-ischemic cortex was reported by

Sun et al. [77]. Furthermore, the layered structure as a response to

stroke was observed in MRI images one week after MCAO [78].

Sbarbati et al. [78] observed three layers and interpreted their

origin due to enlargement of the pial space in the external layer,

degenerating nervous tissue accompanied by a massive accumu-

lation of macrophages in the middle layer, and by the presence of

edematous nerve tissue without a marked accumulation of

macrophages in the deepest layer. In our study, in difference, a

stratified structure was observed only 24 hours after stroke.

Selective vulnerability of cortical layers to ischemia can also be

due to higher metabolic demand and denser concentration of

receptors for excitatory amino acids [79]. In this context, it should

be noted that the larger parameter changes observed in CT (GM)

than in CPu (mixture of GM and WM) might also be due to

microstructural differences in these anatomical regions and

different susceptibility of GM and WM to ischemic injury.

However, elucidation of the underlying mechanisms requires a

special focus in a dedicated future work, and was beyond the scope

of this paper.

Understanding of how ischemic processes are related with the

fine microstructural features could greatly improve our knowledge

of the biophysical mechanisms of the ischemic damage [80]. These

mechanisms have not been understood in detail so far and remain

a subject of debate. Swollen cells, increased tortuosity of the ECS,

changes in membrane permeability, increases in the amount of

bound water and, proposed more recently, neurite beading may all

come into play [81]. In this context, non-Gaussian metrics provide

complementary data to infer valuable microstructural information

for comparison with existing models of stroke. Useful models

should be able to explain not only the average decrease of the

mean diffusivity by about 40% but also a simultaneous large

increase of deviations from the Gaussian model as quantified

above. For example, increasing tortuosity of the ECS alone is not

likely to be sufficient to explain the amount of the observed

changes. This consideration is based on a comparison of our

results with those obtained for anisotropic fibre phantoms [73],

where the tortuosity was modulated by the fibre density. It was

shown that changing fibre density from 0.45 to 0.7 (close packing

density) is accompanied by a three-fold decrease of the diffusivity

whereas kurtosis and sLD have increased by rather moderate 50%.

Qualitatively, our results would be compatible with the model of

cell swelling accompanied by neurite beading already suggested to

explain observed increases in kurtosis in human stroke [9,10]. This

model would non-uniformly increase the contribution of slow

diffusion fractions by more restricted environments both in the

ICS and ECS. Also increases in the amount of bound water or a

reduction in the membrane permeability could lead to an increase

in the slow diffusion fraction. More work is required to understand

the complex cascade of pathological processes in stroke that

change an environmental landscape for diffusing water molecules.

Among others, one needs to perform the studies with a large group

of animals in order to reduce inter-subject variability and enhance

a statistical significance. However, with further theoretical and

experimental developments, these biophysical changes can be

expected to be better quantified with non-Gaussianity metrics.

In conclusion, we have shown that non-Gaussian metrics are

useful in the elucidation of stroke and provide potentially valuable

information. This refers, in particular, to enhanced contrast of the

lesions and its quantification with respect to healthy tissue and to

the fine microstructure differences within the lesions, such as the

observation of cortical laminar structures. Two-dimensional

scatter plots allow one to delineate affected tissue with better

reliability.
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