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Abstract

Traditional permutation (TradPerm) tests are usually considered the gold standard for multiple testing corrections. However,
they can be difficult to complete for the meta-analyses of genetic association studies based on multiple single nucleotide
polymorphism loci as they depend on individual-level genotype and phenotype data to perform random shuffles, which are
not easy to obtain. Most meta-analyses have therefore been performed using summary statistics from previously published
studies. To carry out a permutation using only genotype counts without changing the size of the TradPerm P-value, we
developed a Monte Carlo permutation (MCPerm) method. First, for each study included in the meta-analysis, we used a two-
step hypergeometric distribution to generate a random number of genotypes in cases and controls. We then carried out a
meta-analysis using these random genotype data. Finally, we obtained the corrected permutation P-value of the meta-
analysis by repeating the entire process N times. We used five real datasets and five simulation datasets to evaluate the
MCPerm method and our results showed the following: (1) MCPerm requires only the summary statistics of the genotype,
without the need for individual-level data; (2) Genotype counts generated by our two-step hypergeometric distributions
had the same distributions as genotype counts generated by shuffling; (3) MCPerm had almost exactly the same
permutation P-values as TradPerm (r = 0.999; P,2.2e-16); (4) The calculation speed of MCPerm is much faster than that of
TradPerm. In summary, MCPerm appears to be a viable alternative to TradPerm, and we have developed it as a freely
available R package at CRAN: http://cran.r-project.org/web/packages/MCPerm/index.html.
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Introduction

Meta-analysis is an important method that can improve

statistical power by combining the results of multiple previously

published studies [1,2]. Every year, thousands of meta-analyses of

genetic association studies are published. Some focus on only one

single nucleotide polymorphic (SNP) locus [3–5], while others

consider multiple SNP loci [6–9]. For those meta-analyses based

on multiple loci, multiple testing is a persistent problem. Many

techniques have been devised to correct multiple hypotheses, such

as the Bonferroni and Sidak corrections [10], false discovery rate

[11], and permutation [12]. Although these methods are highly

successful, the traditional permutation (TradPerm) method is still

widely considered the gold standard for accurately correcting for

multiple testing [12,13].

TradPerm is a type of non-parametric method in which the null

distribution of the test statistic is estimated by shuffling uniform

phenotype labels of cases and controls [13,14]. However, it relies

on the original SNP genotype and phenotype data (individual-level

data) to perform a large number of random shuffles [15]. For the

meta-analyses of genetic association studies, individual-level data

are difficult to obtain for several reasons including research project

privacy. Compared with raw SNP genotype data, count-based

summary statistics of genotype data are more readily available, so

most meta-analyses of genetic associations have been performed

using summary statistics from previously published studies.

However, for researchers of meta-analyses, it can be challenging

to perform the permutation test using only the summary statistics

of the genotype when similarly high standards to TradPerm are

expected.

Here, we developed a Monte Carlo permutation (MCPerm)

method for use in the permutation test. MCPerm employs a two-step

hypergeometric distribution to generate random genotype counts in

cases and controls. We used these random genotype counts to

construct the background distribution of meta-analysis P-values and
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to complete the permutation correction. Finally, MCPerm was

evaluated using five sets of real data and five sets of simulation data.

Methods

Data
The five real data sets used to evaluate the MCPerm method

were the AlzGene database (Field Synopsis of Genetic Association

Studies in Alzheimer disease, www.alzgene.org), SZGene database

(Field Synopsis of Genetic Association Studies in Schizophrenia,

www.szgene.org), PDGene database (Field Synopsis of Genetic

Association Studies in Parkinson’s Disease, www.pdgene.org),

MSGene database (Field Synopsis of Genetic Association Studies

in Multiple Sclerosis, www.msgene.org), and AlsGene database

(Field Synopsis of Genetic Association Studies in Amyotrophic

Lateral Sclerosis, www.alsgene.org) [6–9]. We used PERLscript to

extract all records from the five databases. The following criteria

were used to filter the data: (1) all records must have a case-control

design; (2) all records must have SNP genotype counts for both

cases and controls; (3) the minor allele frequency must be greater

than 0.01 for single records; (4) the P-value of the Hardy-Weinberg

equilibrium test in the control group must be greater than 0.001

for single records; (5) each SNP must be reported by at least four

studies (which will be used in the meta-analysis). We also excluded

family-based studies.

Each record included the following information: study ID, the

first author’s name, the year of publication, ethnicity, SNP names,

SNP alleles, SNP genotypes, and genotype counts for cases and

controls. A total of 850 SNP loci were obtained for the meta-

analysis, and each locus had at least four records. These included

287 SNP loci from the AlzGene database (a total of 2,408 records),

Figure 1. TradPerm method. (a) Real individual-level genotype. (b) Shuffled individual-level genotype. (c) Genotype count from real SNP
genotype. (d) Genotype count from random SNP genotype. (e) Completing meta-analysis. (f) Calculating P-values of meta-analysis (real P-values and
N random P-values). (g) Ranking all P-values. (h) Calculating the corrected P-value.
doi:10.1371/journal.pone.0089212.g001

Table 1. The 2|3 genotypic table.

AA Aa Aa Total

Case DAA DAa Daa Ncase

Control CAA CAa Caa Ncontrol

Total NAA NAa Naa Ntotal

doi:10.1371/journal.pone.0089212.t001
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273 from the SZGene database (a total of 2,179 records), 182 from

the PDGene database (a total of 1,625 records), 88 from the

MSGene database (a total of 604 records), and 20 from the

AlsGene database (a total of 161 records).

As TradPerm relies on individual-level data, we also constructed

five simulation data sets. We generated the individual’s genotype

(AA, Aa, or aa) for each record based on the genotype count in

cases and controls. By shuffling these simulated data, we

constructed the random background and completed the Trad-

Perm correction.

Meta-analysis
For ease of understanding, we will first describe the meta-

analysis method. Suppose there are two alleles, A (A is the risk

allele) and a at SNP locus A. Three possible genotypes are denoted

by AA, Aa, and aa. Suppose also that a meta-analysis includes n
previously published studies. Without loss of generality, we mainly

considered the allele model in the present study (the effect of the A

allele vs. the a allele); however, we also provided some findings

about the dominant and recessive models, and used ln OR to

measure the effect size. To carry out a meta-analysis, we first tested

for heterogeneity between studies. The commonly used indicators

are Cochran’s Q-statistics and I2 [16,17]. In this study, we used

Cochran’s Q-statistics to evaluate heterogeneity. The null hypoth-

esis was that the n studies have the same effect, and the significance

level was ahet. It should be noted that the multiple testing problem

ought to be considered for the heterogeneity test in the meta-

analyses of multiple loci, although few researchers do so. We

provided a permutation correction method for the heterogeneity

test, and, after testing for heterogeneity, we combined the effect

sizes and evaluated the statistical association between genotype

and phenotype. If heterogeneity existed (Pvahet), we used a

random effects model (assuming that each study has a specific

effect size) to combine the effect sizes. If heterogeneity did not exist

(P§ahet), we used a fixed effects model (assuming that all studies

share a common effect size) to combine the effect sizes [18].

TradPerm
For multiple SNP loci, the problem of multiple testing

correction should be considered, so we describe below the

TradPerm method for multiple testing corrections.

Suppose that we have obtained the original SNP genotype and

phenotype data (individual-level data) from n previously published

studies (Figure 1a). Each study has a different sample size. For

each study, we can count the number of each of the three

genotypes (AA, Aa, and aa) in the cases and controls (Figure 1c).

Using these genotype counts, we can perform a meta-analysis and

obtain a meta-analysis P-value (Preal ), then carry out a TradPerm

procedure to correct the.Preal .

The principle of TradPerm is if there is no association between

genotypes and phenotypes, then any of the individual phenotype

labels may be associated with any one of the genotypes. Therefore,

the background distribution of the meta-analysis P-value can be

generated by randomly shuffling the phenotype labels of cases and

controls. Specifically, for each study included in the meta-analysis,

we shuffled the phenotype labels (Figure 1b) and re-counted the

number of the three genotypes in cases and controls (Figure 1d).

Using these random genotype counts, we performed a meta-

analysis (Figure 1e) and obtained a random meta-analysis P-value

(Prandom). The entire process was repeated N times to obtain

Prandom1, Prandom2,� � �, PrandomN (Figure 1f). If there is a significant

association between genotypes and phenotypes, the Preal calculat-

ed using the real data will appear small relative to the distribution

of the P-values obtained under permutation (Figure 1g). In other

words, if the association does not exist, the Preal for real data is

unlikely to be obtained. The TradPerm P-value (Pcorrected ) under

the null hypothesis can be calculated as the proportion of P-values

under permutation that are less than or equal to Preal (Figure 1h).

Pcorrected is defined as follows: [19].

Pcorrected~
(no: of PrandomiƒPreal)

(total no: of Prandomi)

where Preal is the real meta-analysis P-value, and Prandomi is the P-

value generated by permutation. Similarly, the P-value of the

heterogeneity test can be corrected by shuffling the phenotype

labels of cases and controls.

MCPerm
As described above, TradPerm relies on individual-level data

which are very difficult to obtain. Therefore, our MCPerm

method only uses count-based summary genotype data. MCPerm

employs a two-step hypergeometric distribution to generate the

random genotype counts in cases and controls.

Step 1: Simulate genotype count of AA in cases. First, we

will consider one study in a meta-analysis. We suppose that there

are a total of Ntotal samples, including Ncase cases and

Ncontrolcontrols in this study (Table 1). Consider locus A, where

the counts of the three genotypes in cases and controls were

denoted as: DAA for AA in cases, DAa for Aa in cases, Daa for aa in

cases, CAA for AA in controls, CAa for Aa in controls, and Caa for

aa in controls. The total number of counts of the three genotypes

in all samples was denoted as: NAA for AA, NAa for Aa, and Naa for

aa. Next, we generated the genotype counts, DAA, by stochastic

simulation.

First, we will introduce the hypergeometric distribution in

statistics. Suppose an urn contains M balls of which K are black

and M{K are white. Consider an experiment in which m balls

are drawn without replacement from the run. The number of

black balls in the sample of m obeys a hypergeometric distribution:

X *H m,K,Mð Þ.
Now we will consider the entire TradPerm process. There are a

total of Ntotal samples of which Ncase are cases and Ncontrol are

controls (where Ncontrol~Ntotal{Ncase). When we randomly shuffle

the phenotype labels of cases and controls, the count of genotype AA

in all samples is unchanged (that is, NAA is a constant). This is

equivalent to randomly drawing NAA samples without replacement.

Therefore, the count of genotype AA in case samples obeys a

hypergeometric distribution DAA *H NAA , Ncase , Ntotalð Þ; i.e.,

Table 2. Summary of simulated methods of six genotype
counts.

genotypes counts
generation
methods

AA in case DAA hypergeometric random number generated in step1

Aa in case DAa hypergeometric random number generated in step2

aa in case Daa Ncase{DAA{DAa

AA in control CAA NAA{DAA

Aa in control CAa NAa{DAa

aa in control Caa Ncontrol{CAA{CAa

total Ntotal

doi:10.1371/journal.pone.0089212.t002

Monte Carlo Permutation Method
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P(X~DAA)~

Ncase

DAA

� �
Ntotal{Ncase

NAA{DAA

� �
Ntotal

NAA

� �

Finally, we used the hypergeometric random number to simulate

the count of genotype AA in case samples (that is, DAA).

Kachitvichyanukul’s method [20] was used to generate the

hypergeometric random number. This can be achieved by the

function ‘‘rhyper’’ in R language. Because NAA~DAAzCAA is a

constant when we randomly shuffle, we can deduce that

CAA~NAA{DAA (where DAA is a hypergeometric random

number generated by Kachitvichyanukul’s method).

Step 2: Simulate genotype count of Aa in cases. At this stage,

we have fixed the counts of genotype AA in case and control samples.

As randomly shuffling is equivalent to randomly sampling without

replacement, the remaining count of samples is Ntotal{NAA. When

we randomly shuffle the phenotype labels, the count of genotype Aa

remains unchanged (that is, NAa is a constant). This is equivalent to

randomly drawing NAa samples from the Ntotal{NAA remaining

samples without replacement. Therefore, the count of genotype Aa

in case samples also obeys the hypergeometric distribution

DAa *H NAa , Ncase { DAA , Ntotal { NAAð Þ; i.e.,

P(X~DAajDAA)~

Ncase{DAA

DAa

 !
(Ntotal{NAA){(Ncase{DAA)

NAa{DAa

 !

Ntotal{NAA

NAa

 !

Therefore, we still employ Kachitvichyanukul’s method [20] to

generate the hypergeometric random number. Because

NAa~DAazCAa is a constant, we can deduce CAa~NAa{DAa

(where DAa is a hypergeometric random number generated by

Kachitvichyanukul’s method).

Finally, we can deduce Daa~Ncase{DAA{DAa and

Caa~Ncontrol{CAA{CAa. Table 2 summarizes the methods used

to simulate the six genotype counts.

MCPerm procedure. The MCPerm P-value was calculated

in the same way as for TradPerm. Specifically, for each study, we

randomly generated genotype counts in cases and controls

(Figure 2b). We then carried out a meta-analysis (Figure 2c) and

obtained a random meta-analysis P-value (Prandom). The entire

process was repeated N times, resulting in N random P-values

(Figures 2d and 2e). The MCPerm P-value (Pcorrected ) can also be

calculated as the proportion of P-values under simulation that are

less than or equal to Preal (Figure 2f). Similarly, the P-value of the

Figure 2. MCPerm method. (a) Genotype count collected from previous studies. (b) Genotype count generated by two-step hypergeometric
distribution. (c) Completing meta-analysis. (d) Calculating P-values of meta-analysis (real P-values and N random P-values). (e) Ranking all P-values. (f)
Calculating the corrected P-value.
doi:10.1371/journal.pone.0089212.g002

Monte Carlo Permutation Method
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heterogeneity test can be corrected by simulating the genotype

counts of cases and controls.

Results

As TradPerm is often treated as the gold standard for multiple

testing corrections, we did not compare our MCPerm with other

multiple testing corrections methods. Instead, we compared the

consistency of genotype distributions and permutation P-values

between TradPerm and MCPerm. Our aim was to illustrate that

MCPerm does not change the size of TradPerm P-values, so is a

useful alternative to TradPerm.

Comparing Six Genotype Distributions between MCPerm
and TradPerm

As an example, we randomly selected one SNP, rs778294, from

the SZGene database. There were a total of 12 studies about

rs778294 in the SZ database, and we selected one ( [21]) to

compare six genotype distributions between MCPerm and

TradPerm. We generated the individual’s genotype for this study

based on the genotype counts in cases and controls. First, we used

TradPerm to shuffle the sample labels 1,000 times and calculated

the counts of six genotypes for each shuffle. Then we used

MCPerm to generate the counts of the six genotypes (again 1,000

times). Figure 3 shows the distributions of the genotype counts,

and we can see that the six genotype counts under MCPerm had

similar distributions to genotype counts under TradPerm. This can

also be seen from the cumulative distribution curve (Figure S1).

We next used the Kolmogorov-Smirnov test (KS-test) to

compare genotype distributions between MCPerm and TradPerm.

The null hypothesis was that the genotype counts had the same

distribution between MCPerm and TradPerm, and this null

hypothesis was not rejected after performing the KS-test in all six

tests. The six KS-test P-values were P = 0.069 for AA genotypes in

cases, P = 0.148 for Aa genotypes in cases, P = 0.828 for aa

genotypes in cases, P = 0.069 for AA genotypes in controls,

P = 0.148 for Aa genotypes in controls, and P = 0.828 for aa

genotypes in controls. Because DAA~NAA{CAA, the AA

genotypes in the cases had the same KS-test P-value as the AA

genotypes in the controls (P = 0.999). Similarly, Aa and aa

genotypes in the cases had the same KS-test P-values as the

controls. This indicated that the six genotype counts under

MCPerm had the same distributions as genotype counts under

TradPerm.

We also used the quantile-quantile plot (QQ-plot) to evaluate

the consistency of the genotype distributions between MCPerm

and TradPerm. This plotted the quantiles of the genotype counts

generated by MCPerm vs. the quantiles of the genotype counts

calculated by TradPerm (from 1,000 permutations). Figure 4

shows the QQ-plots of the six genotypes which were all linear,

indicating that the genotype distributions are the same between

MCPerm and TradPerm.

In addition to genotype distributions, we also evaluated the

distributions of the allele model (A allele vs. a allele, Figure S2), the

dominant model (AA+Aa vs. aa genotypes, Figure S3), and the

Figure 3. Distributions of the six genotype counts. AA, Aa, aa in cases, and AA, Aa, and aa in controls. Gray solid bars represent the
distributions obtained under TradPerm, and black hollow bars represent the distributions generated by MCPerm. The distributions are the same
between MCPerm and TradPerm.
doi:10.1371/journal.pone.0089212.g003

Monte Carlo Permutation Method
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recessive model (AA vs. Aa+aa genotypes, Figure S4), and again

observed the same distributions between MCPerm and TradPerm.

Comparing Meta-analysis P-values between MCPerm and
TradPerm

In this section, we will describe the consistency of meta-analysis

P-values between TradPerm and MCPerm. For each of the 850

SNPs, we carried out 1,000 permutations and calculated the

permutation P-values of the meta-analysis (allele model) using

TradPerm and MCPerm. For SNP rs778294, the probability

density (Figure 5A), cumulative distribution curve (Figure 5B), and

QQ-plot (Figure 5C) showed that permutation P-values had the

same distributions between MCPerm and TradPerm. The same

conclusions were obtained for both the dominant model and

recessive model (Figures S5 and S6), and for the other 849 SNP

loci. The comparison results for all 850 loci are shown in

Supporting Information S1, which can be downloaded at http://

www.bioapp.org/research/MCPerm/index.html.

We next plotted a scatter plot of 850 MCPerm meta-analysis

P-values against 850 TradPerm meta-analysis P-values (Figure 6).

This revealed a highly linear relationship between MCPerm

P-values and TradPerm P-values. We also calculated the Pearson’s

Figure 4. QQ-plots of six genotype counts. AA, Aa, and aa in cases, AA, Aa, and aa in controls.
doi:10.1371/journal.pone.0089212.g004

Figure 5. Comparison of meta-analysis P-values between MCPerm and TradPerm. (a) Probability density. (b) Cumulative distribution curve.
(c) QQ-plot.
doi:10.1371/journal.pone.0089212.g005

Monte Carlo Permutation Method
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correlation coefficient of the correlation between MCPerm P-

values and TradPerm P-values (r = 0.999), and the correlation test

P-value was ,2.2e-16. These findings indicate that the MCPerm

P-values are highly consistent with TradPerm P-values. The same

conclusions were obtained for both the dominant model and

recessive model.

Comparing Heterogeneity Test P-values between
MCPerm and TradPerm

For the 850 SNPs, we compared the consistency of heteroge-

neity test P-values. For SNP rs778294, the probability density,

cumulative distribution curve, and QQ-plot results revealed the

same distributions of heterogeneity test P-values between MCPerm

and TradPerm (Figures S7, S8, and S9). The comparison results

for all 850 loci are shown in Supporting Information S1. The

correlation test (r = 0.999, P-value ,2.2e-16) also showed a high

consistency of heterogeneity test P-values between MCPerm and

TradPerm (Figure S10).

Estimating the Variance of lnOR and a Permutation Box
Plot

In general, for a single study, the variance of ln OR(in an allele

model, dominant model, or recessive model) is estimated using the

following formula: var( ln OR)~1=az1=bz1=cz1=d , where a,

b, c, and d represent the observed counts in fourfold tables [22].

The variance of ln ORis used as the weight of a single study when

multiple studies are combined in a meta-analysis. Obviously,

different observed counts cause different estimations of the

variance of ln OR, and over-reliance on the original observed

counts will affect the stability of the results. An advantage of

MCPerm is that we can simulate the background of ln OR by a

two-step hypergeometric random number. This enables us to

directly calculate the variance of ln OR using the simula-

tedln ORvalues, thus increasing the reliability of the meta-analysis

results.

For each study in a meta-analysis, researchers expect to see the

position of a real ln ORin a random background. To represent

this, we designed a permutation box plot as shown for SNP

rs778294 in Figure 7a. This allowed us to readily compare the real

ln OR with the random background. In addition, for each study,

we plotted the distribution of the random background and the

position of the real ln OR(Figure 7b) to deepen our understanding

of the meta-analysis.

Comparing Running Time between MCPerm and
TradPerm

We carried out 1,000 permutations for all 850 SNP loci on a 3.2

GHz desktop PC with a 2G memory running the Windows XP

system. TradPerm took about 6 h of computation time, while

MCPerm only required 18 min of computation time. This suggests

that, for the 850 SNPs examined, MCPerm is about 20 times faster

than TradPerm.

We further simulated three genome-wide data sets (100,000,

500,000, and 1,000,000 SNPs) to compare the running time of the

two methods. Each data set included 10 genome-wide association

studies. We then carried out 1,000 permutations of the three data

sets. For 100,000 SNPs, 500,000 SNPs, and 1,000,000 SNPs,

MCPerm required approximately 1.5 days, 6–7 days, and 13.5

days of computation time, respectively. The running time was not

tested for TradPerm as it would take too long (more than 40 days

for 100,000 SNPs).

In addition, for MCPerm, the genotype counts were directly

simulated rather than calculated from the shuffled data, so the

computation time did not depend on the sample size of a single

study. This is directly relevant for a meta-analysis, as the number

of studies affects the computation time.

MCPerm R Package
To facilitate the use of MCPerm, we developed a freely

available R package, named MCPerm. The package has detailed

instructions and examples and has been uploaded to the

Comprehensive R Archive Network (CRAN). Users can download

the package at the following website: http://cran.r-project.org/

web/packages/MCPerm/index.html. It can be run using both

Linux and the Windows environment. The current version is

v1.1.4. There are a total of 45 functions that facilitate the

implementation of the meta-analysis, TradPerm, and MCPerm. A

detailed list of functions is given in Table S1.

Discussion

Multiple testing is a challenging issue in SNP-based meta-

analysis. Among the many multiple testing correction methods,

TradPerm is usually considered to be the gold standard [4,5]. It

estimates the background distribution of test P-values by shuffling

phenotype labels, and thus is an accurate correcting method.

However, the over-reliance on raw SNP genotype data and the

large amount of computation are two obstacles that limit the scope

of TradPerm. To overcome these limitations, we developed a

MCPerm method that only uses the summary statistics of

genotypes to perform the permutation.

MCPerm simulated the random genotype counts in cases and

controls using a two-step hypergeometric distribution. We used

five real data sets and five simulation data sets to prove that the

genotype count distributions are the same between MCPerm and

TradPerm. Furthermore, we showed that MCPerm can obtain the

same size of permutation P-values of meta-analysis as TradPerm,

and take less computation time than TradPerm to do so.

For the meta-analysis of a single SNP locus, we suggest that a

MCPerm procedure is carried out as the background distribution

of ln ORand the position of ln ORin the background (permutation

box plot) will deepen our understanding of the analytical results. In

Figure 6. Scatter plots of 850 MCPerm vs. 850 TradPerm meta-
analysis P-values. The MCPerm P-values are highly consistent with
TradPerm P-values (r = 0.999; P,2.2e-16).
doi:10.1371/journal.pone.0089212.g006

Monte Carlo Permutation Method
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addition, the procedure will enable the variance to be directly

calculated from the simulatedln ORvalues, increasing the reliabil-

ity of the meta-analysis.

With the arrival of the era of post-association studies, two-step

hypergeometric random numbers in MCPerm may have broader

application prospects than expected. In some gene-based and

pathway-based association studies, researchers combine P-values

for SNPs into an overall P-value for a gene or pathway [23]. In

such studies, the correction of P-values for SNPs is essential.

However, they are usually undertaken by bioinformatics research-

ers who are not always able to collect raw SNP genotype data

because of privacy policies. The two-step hypergeometric random

number in MCPerm will aid these researchers to complete their

permutation corrections using only the summary statistics of the

genotype data such as those provided by the Wellcome Trust Case

Control Consortium [24]. In conclusion, we hope that MCPerm

will be widely used in genome-wide association studies and

genome-wide studies of meta-analysis.

Supporting Information

Figure S1 Cumulative distribution curve of six genotype
counts.

(JPG)

Figure S2 Comparison of the distributions of the allele
model (A allele vs. a allele).
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Figure 7. Real LnOR in a random background. (a) Permutation box plot. (b) Permutation probability density.
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Figure S3 Comparison of the distributions of the
dominant model (AA+Aa vs. aa genotypes).
(JPG)

Figure S4 Comparison of the distributions of the
recessive model (AA vs. Aa+aa genotypes).
(JPG)

Figure S5 Comparison of meta-analysis P-values of the
dominant model.
(JPG)

Figure S6 Comparison of meta-analysis P-values of the
recessive model.
(JPG)

Figure S7 Comparison of heterogeneity test P-values of
the allele model.
(JPG)

Figure S8 Comparison of heterogeneity test P-values of
the dominant model.
(JPG)

Figure S9 Comparison of heterogeneity test P-values of
the recessive model.

(JPG)

Figure S10 Scatter plots of 850 MCPerm heterogeneity
test P-values against 850 TradPerm heterogeneity test
P-values. The MCPerm P-values are highly consistent with

TradPerm P-values (r = 0.999; P,2.2e-16)

(JPG)

Table S1 The functions in MCPerm R package (v 1.1.4).
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http://www.bioapp.org/research/MCPerm/index.html.
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