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Abstract

Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects many types of cells. Previous studies have demonstrated
that oligodendrocytic cells are highly susceptible to HSV-1 infection. Here we analysed HSV-1 infection of a human
oligodendrocytic cell line, HOG, and oligodendrocyte precursor cells (OPCs) cultured under growth or differentiation
conditions. In addition to cell susceptibility, the role of the major cell receptors for viral entry was assessed. Our results
revealed that OPCs and HOG cells cultured under differentiation conditions became more susceptible to HSV-1. On the
other hand, viral infection induced morphological changes corresponding to differentiated cells, suggesting that HSV-1
might be inducing cell differentiation. We also observed colocalization of HVEM and nectin-1 with viral particles, suggesting
that these two major HSV-1 receptors are functional in HOG cells. Finally, electron microscopy assays indicated that HSV-1
may be also entering OLs by macropinocytosis depending on their differentiation stage. In addition, vesicles containing
intracellular enveloped virions observed in differentiated cells point to an endocytic mechanism of virus entry. All these data
are indicative of diverse entry pathways dependent on the maturation stage of OLs.
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Introduction

Several infectious agents, ranging from mycobacteria to

retroviruses, have been proposed to be associated with demyelin-

ating diseases such as Multiple Sclerosis (MS), in which

oligodendrocytes (OLs), the myelin-forming cells in the central

nervous system (CNS), may be the initial target for the pathogenic

onset [1,2,3]. Of all studied organisms, members of the viral family

Herpesviridae are among the most promising candidates

[3,4,5,6,7,8]. In addition to other herpesviruses (for example

Epstein-Barr virus or human herpesvirus 6), herpes simplex virus

type 1 (HSV-1), has been linked to the possible aetiology or

development of several neurodegenerative diseases and virus-

induced demyelination [9,10,11,12]. Previous reports have shown

that a human oligodendrocyte-derived cell line is highly suscep-

tible to HSV-1 [13], and that the virus may play a role in

triggering MS relapses during clinical acute attacks of MS, at least

in the most frequent clinical presentation of the disease, the

relapsing-remitting form. [14]. Besides neurodegenerative diseases,

HSV-1 may also be involved in cognitive alterations in bipolar or

schizophrenia dysfunctions [15].

Herpesviruses usually infect their hosts for life, after the initial

infection of epithelial cells, the virions spread to neurons and

establish latent infections in sensory ganglia [16]. In some cases,

the virus spreads into the CNS to cause encephalitis or meningitis

[17]. HSV-1 entry into a diverse range of cell types has been

described [18]. The entry of HSV into various cell types follows a

complex process [19,20].

The initial attachment of HSV-1 to the cell surface is mediated

by glycoproteins B (gB) and C (gC). This interaction with heparan

sulfate proteoglycans (HSPGs) enables the binding of viral gD to

one of its receptors on the host cell surface. This binding triggers

conformational changes in gD that allow the activation of gH/gL,

which in turn activate the fusion effector gB [21,22]. Cellular

proteins binding to HSV gB have also been identified but their

roles in the entry process or in cell tropism remains unsolved

[23,24,25]. Molecules derived from three structurally different

groups have so far been described as gD receptors in the host,

Herpes Virus Entry Mediator (HVEM), a member of the tumor

necrosis factor receptor family, nectin-1 and 22 from the

immunoglobulin superfamily and distinctive sites in heparan

sulfate (HS) generated by a specific 3-O-sulfotransferase (3-O-

ST) [26,27,28,29]. Nectin-1 and HVEM appear to be the

principal gD-binding entry receptors although they bind distinct

regions of the gD ligand [20]. They are coexpressed in many cells

and used by the majority of tested clinical strains of HSV-1, as well
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as HSV-2 [30]. HVEM expression has been found in liver, kidney,

lymphoid tissues, lung and in several cell lines. Nectin-1 is the

main, although not exclusive, HSV receptor on epithelial and

neuronal cells, whereas nectin-2 use seems to be limited to only

few viral mutant strains [27,30,31,32,33]. It is worth noting that

nectin-1 is an adhesion molecule present at adherent junctions in

polarized cells, such as epithelial and neurons cells, and in cell-cell

contact in some cultured cells [34]. 3-O-ST HS can be used as an

entry receptor for HSV-1 but not HSV-2 in multiple cell lines like

neuronal or endothelial cells [27,35]. Although in all cases,

binding of gD to a specific receptor is required during HSV entry,

membrane fusion can take place directly at the cell surface or, in

some cases, following virus endocytosis. Why the virus chooses one

or another pathway is largely unknown. However, studies with cell

cultures of different origin –SY5Y, HeLa or Vero cell lines–

suggest that nectin-1-mediated internalization may direct HSV to

the endocytic pathway, possibly with the cooperation of integrins

[36,37,38].

Finally, binding of HSV-1 to its cellular receptor –or receptors–

seems to be sufficient for the induction of intracellular signalling

even in the absence of subsequent virion entry [39]. Differential

expression of cellular genes associated with NF-kB, Jak/Stat or

p13K/Akt pathways has been observed by means of microarray

studies, highlighting the effect of HSV-1 glycoproteins, particularly

gD, on this process [39,40].

Oligodendrocyte precursor cells (OPCs) give rise to oligoden-

drocytes during embryonic and postnatal development as well as

in the adult CNS and can be differentiated in vitro into mature

myelin-forming OLs [41,42,43,44]. In vitro, OLs are characterized

by a complex arborisation of cell processes and in vivo, these

processes terminate in flat membranous sheets –rich in myelin

proteins and lipids– that spirally wrap around and insulate neuron

axons [45]. In the present report, we characterize HSV-1 infection

of a human oligodendrocytic cell line, HOG, and OPCs in

primary cell culture. Cells were cultured in growth or differenti-

ation media, their differential susceptibility to viral infection was

determined and the role of the major cell receptors for viral entry

was investigated.

Materials and Methods

Antibodies and Reagents
Anti nectin-1 monoclonal antibody CK41 and anti-HVEM

polyclonal antibody R140 have been described previously [46,47].

Horseradish peroxidase-conjugated secondary anti-IgG antibodies

were purchased from Millipore (Billerica, MA, USA). Anti-green

fluorescent protein GFP rabbit polyclonal serum A6455, Alexa

488-, Alexa 647- and Alexa 594-conjugated secondary antibodies

were obtained from Molecular Probes (Eugene, OR, USA). DNA

size marker was from Invitrogen. Polyclonal rabbit anti-HSV-1

antibody was from DAKO. Monoclonal mouse anti-PLP MAB388

antibody was from Millipore. Anti-nectin-1 mouse monoclonal

antibody CK6 was from Santa Cruz Biotechnology. Anti-HVEM

mouse monoclonal antibody, low-glucose DMEM, fetal bovine

serum (FBS), human insulin, triiodothyronine (T3), apo-transfer-

rin, sodium selenite, putrescine, dibutyryl cyclic AMP (dbcAMP),

carboxymethylcellulose sodium salt (CMC) medium-viscosity and

protease inhibitor cocktail were purchased from Sigma Chemical

Co. (St. Louis, MO, USA). Mowiol was from Calbiochem (Merck

Chemicals, Germany). HS4C3 antibody was a kind gift of Dr. R.

Longnecker, (Northwestern Medical School, Chicago, USA).

Cells and Virus
The HOG cell line, established from a surgically removed

human oligodendroglioma [48] was kindly provided by Dr. A. T.

Campagnoni (University of California, UCLA, USA). Cells were

cultured on Petri dishes in growth medium (GM) containing low-

glucose DMEM supplemented with 10% fetal bovine serum (FBS),

penicillin (50 U/mL) and streptomycin (50 mg/mL) at 37uC in an

atmosphere of 5% CO2. To induce differentiation, cells were

cultured in serum-free differentiation medium (DM) containing

low-glucose DMEM supplemented with antibiotics and 50 mg/ml

apo-transferrin, 0.5 mg/l insulin, 30 nM triiodothyronine (T3),

30 nM sodium selenite and 16.1 mg/l putrescine. Cells cultured in

this medium were also treated with 0.5 mM dbcAMP and IBMX

at a final concentration of 0.5 mM.

OPCs from postnatal P0 mice were generated as described

[42,49,50] in the facilities of Hospital Nacional de Parapléjicos

(Toledo, Spain). All animal experiments were carried out in

accordance with Spanish (RD233/88) and European (2010/63/

EU) regulations, and they were approved by the Animal Review

Board at the Hospital Nacional de Parapléjicos (SAPA001). To

differentiate OPCs, cells were maintained in differentiation

medium [42] for 3 days. Cells cultured in that same medium for

24 h were considered as undifferentiated control.

K26GFP was a kind gift of Dr. Desai (Johns Hopkins University,

Baltimore, USA). It was obtained by fusing GFP to the HSV-1

capsid protein VP26 [51]. The R120vGF, EGFP recombinant

virus was propagated in E5 cells, a Vero cell line expressing the

ICP4 protein of HSV-1 [52]. K26GFP and wild type HSV-1 (F

strain, DNA genome sequence GenBank GU734771) viruses were

propagated and titrated on Vero cells. GFP-MAL2/MAL-

diHcRed/HOG cells areHOG cells stably transfected with GFP-

MAL2,a construct encoding a chimera consisting of GFP fused to

the amino-terminal end of MAL2, and with MAL-diHcRed, a

construction consisting of MAL protein tagged with diHcRed, a

dimeric red fluorescent protein [53].

Viral Infections
For viral infection assays, 1.2x106 HOG cells growing in 25

cm2 flasks were mock-infected or infected with the corresponding

virus. During viral adsorption, cells were maintained in DMEM

with antibiotics in the absence of FCS. Subsequently, cultures were

rinsed and cultured in its corresponding medium. Viral titer was

quantified by an endpoint dilution assay determining the TCID50

in Vero cells, considering the final dilution that shows cytopathic

effect and using the Reed and Muench method.

For plaque assay, confluent monolayers of cells plated in 6-well

tissue culture dishes were infected with serial dilutions of HSV-1.

After viral adsorption, cells were washed and overlaid with CMC.

The CMC solution was prepared in distilled water at 2% (w/v)

and stirred at room temperature for one hour. CMC overlay (1%

final concentration) was prepared by mixing equal volumes of

CMC 2% and 2x concentrated GM or DM. Two millilitres of

CMC overlay were added to each well. Plates were incubated at

37uC in a humidified 5% CO2 incubator for 48 hours. The CMC

overlay was then aspirated, cells were washed with PBS and fixed

in 4% paraformaldehyde for 20 min. Plaques were visualized by

staining with crystal violet.

Construction and Characterization of R120vGF
Recombinant HSV-1 Virus

The recombinant R120vGF virus was obtained by transfecting

plasmid DNA of pUH41GF digested with EcoRI and HindIII into

E5 cells, infected with HSV-1 mutant strain d120 deficient in
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ICP4 [52], using lipofectamine 2000 (Invitrogen). The recombi-

nant progeny was selected by using EGFP expression as a marker.

Recombinant virus was plaque-purified five times in E5 cells. The

amino terminal deletion of the vhs gene was confirmed by PCR

characterization of viral DNA of R120vGF. This was carried out

with primers HTK6D (sense) (59-GCAAGAAGCCACG-

GAAGTCC-39) and HTK6R (antisense) (59- ATGAGGGCCAC-

GAACGCCAG-39) for the HSV-1 TK gene, HL41S (sense) (59-

ACAATTGACCTGCCATGG-39) and HL41AS (antisense) (59-

CGAATACAGAACAGATGC-39) for the HSV-1 UL41 (vhs) gene

and p41HS (59-TTGGAAGAGGCAATGAGC-39) and GFP-AS

(59TAGGTCAGGGTGGTCACG-39) for the chimeric EGFP

gene of recombinant virus. PCR products were analyzed by 1%

agarose gel electrophoresis, and the specificity of the amplification

products was confirmed by DNA sizes of 479 bp for the HSV-1

TK (nt 102 to 581 of coding TK sequence), 540 for the UL41 (nt

213 to 527 from ATG of UL41) and 658 bp for the chimeric

EGFP gene, respectively (Fig. 1E). The replacement of the EGFP

cassette by the SphI-EcoRV UL41 fragment in R120vGF virus was

confirmed because specific fragments from the TK and UL41

genes were amplified from DNA of parental HSV-1 strain d120

(Fig. 1E, lanes B and F) and DNA of HSV-1 strain F (Fig. 1E, lanes

C and G). Using DNA of the R120vGF virus as template, specific

fragments could be amplified from the TK gene by using HTK6D

and HTK6R primers (Fig. 1E, lane A) but not from the UL41

gene by using HL41S and HL41AS primers (Fig. 1E, lane E), since

this had been replaced by the EGFP chimeric gene amplified by

p41HS and GFP-AS primers (Fig. 1E, lane I). DNA from infected

cells was isolated by QIAamp DNA Micro Kit (QIAGEN).

Antibody Blocking Assay
HOG cells cultured in a 24-well tissue culture dish were washed

with free-serum DMEM and incubated with 10 ml of antibodies

(1:10 dilution) to block their corresponding receptor: R140 to

block HVEM and CK41 to block nectin-1. Incubation with both

antibodies simultaneously was also performed. Following incuba-

tion at 4uC for 1 h, an equal volume of K26GFP diluted in free

serum medium was added to cells at an m.o.i of 1. Virus was

incubated at 4uC for 1 h. After viral adsorption, cells were washed

with PBS, incubated for 20 h with their respective media

containing blocking antibodies and processed for flow cytometry.

Cells not blocked with primary antibody were used as controls.

Detection of Heparan Sulfates
To visualize HSPGs, we cultured HOG cells in GM or DM.

After 24 hours, cells were washed with free-serum DMEM and

incubated for 20 minutes at 4uC with WGA-594 (5 mg/ml). Then,

cells were washed twice in PBS, fixed in 4% paraformaldehyde for

20 min and washed in PBS. Finally, cells were incubated with TO-

PRO-3 to stain nuclei. To detect 3OS-HS we used HS4C3

antibody. HOG cells were cultured in GM or DM. After 24 hours,

cells were fixed in 4% paraformaldehyde for 20 min, washed in

PBS and permeabilized with 0.2% Triton X-100. After that, cells

were blocked with 3% bovine serum albumin in PBS for 30 min

and incubated with HS4C3 antibody (diluted 1:10 in blocking

solution) for 1 hr at room temperature. Both incubations were

performed in the presence of 0.5 M NaCl to avoid unspecific

crossreaction of the antibody.

Immunoblot Analysis
Samples were subjected to SDS-PAGE in 10% acrylamide gels

under reducing conditions and transferred to Immobilon-P

membranes (Millipore). After blocking with 5% non-fat dry milk,

0.05% Tween 20 in PBS, blots were incubated for 1 h at room

temperature with primary antibodies. After several washes with

0.05% Tween 20 in PBS, blots were incubated for 1 h with

secondary antibodies coupled to horseradish peroxidase, washed

extensively, and developed using an enhanced chemiluminescence

Western blotting kit (ECL, Amersham, Little Chalfont, UK).

Real-time Quantitative RT-PCR Assay
Real-time quantitative RT-PCR assay was performed as

previously described [54]. Briefly, total RNA from triplicate

samples of HOG cells infected with HSV-1 cultured in 60-mm

dishes under growth or differentiation conditions was extracted

using RNeasy Qiagene Mini kit (Qiagen, Valencia, CA, USA).

RNA integrity was evaluated on Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA) and quantification of RNA was

carried out in a Nanodrop ND-1000 spectrophotometer (Thermo

Fisher Scientific). All the samples showed 260/280 ratio values

around 2, which correspond to pure RNA. RNA Integrity

Number (RIN) values were between 9.3 and 10, corresponding

to RNA samples with high integrity. Genomic DNA contamina-

tion was assessed by amplification of representative samples

without reverse transcriptase (RT). RT reactions were performed

using the High Capacity RNA-to-cDNA Master Mix (Applied

Biosystems PN 4390712) following manufacturer’s instructions.

Primer sequences (59–39) were as follows: for nectin-1,

ACTCGCTCTCGGCTTGAC and CCATACATG-

GAGTCGTTCACC; for HVEM, ATCCTGC-

TAGCTGGGTTCC and GGAAGGTGAGATACAGCACCA.

We used the NormFinder algorithm to identified 18S as the most

suitable genes for the normalization due to its high stability.

Immunofluorescence Microscopy
Cells grown on glass coverslips were fixed in 4% paraformal-

dehyde for 20 min and rinsed with PBS. Cells were then

permeabilized with 0.2% Triton X-100, rinsed and incubated

for 30 min with 3% bovine serum albumin in PBS. For double and

triple-labeled immunofluorescence analysis, cells were incubated

for 1 h at room temperature with the appropriate primary

antibodies, cells were then rinsed several times and incubated at

room temperature for 30 min with the relevant fluorescent

secondary antibodies. Controls to assess labeling specificity

included omission of the primary antibodies. After thorough

washing, coverslips were mounted in Mowiol. Images were

obtained using an LSM510 META system (Carl Zeiss) coupled

to an inverted Axiovert 200 microscope. Processing of confocal

images and colocalization analysis was made by FIJI-ImageJ

software.

Flow Cytometry Analysis
To perform FACS analysis, HOG cells were dissociated in

0.05% trypsin/0.1% EDTA (Invitrogen) for 1 minute at room

temperature, then washed and fixed in 4% paraformaldehyde for

15 minutes and, finally, rinsed and resuspended in PBS. Cells were

analyzed using a FACSCalibur Flow Cytometer (BD Biosciences).

Electron Microscopy
HOG cells cultured at 37uC in GM or DM were mock-infected

or infected with HSV-1 at an m.o.i. of 50. At different time points

post-infection, cells were fixed in 4% paraformaldehyde in 0.1 M

sodium phosphate buffer, pH 7.4, at 37uC for 2 hours. Then, they

were washed in PBS containing 20 mM glycine and processed by

freeze substitution as previously described [13]. Samples were

examined with a JEM 1010 transmission EM (Jeol, Tokyo, Japan).

Effect of Differentiation on HSV1 Infection of OLs
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Results

Culturing HOG Cells in Differentiation Medium Increases
Susceptibility to HSV-1

The susceptibility of a human oligodendrocyte-derived cell line

was previously assessed in our laboratory [13]. Here, we analyze

the effect of oligodendrocytic differentiation on HSV-1 infection.

HOG cells were cultured in GM or DM and infected with HSV-1.

Plaque assay showed a significantly larger number of plaques in

cells cultured in DM compared to cells cultured in GM when cells

are infected with the same viral dose (Figure 1A). Similar results

were obtained by flow cytometry analysis of HOG cells infected at

an m.o.i. of 0.5 with GFP-tagged HSV-1 K26GFP. As shown in

Figure 1B, a significant increase in the number of GFP-expressing

cells 24 hours after infection was confirmed in cells cultured in DM

compared to GM cultures. Immunoblotting assay also showed an

increase in viral protein detection in cells cultured in DM

compared to those cultured in GM (Figure 1C). To avoid

differences in the number of cells in GM and DM cultures, we

took into account the growth rate of GM and DM cells, so that at

the time of infection, the number of cells in both cultures were the

same. Although at 20 h p.i. the number of cells did not vary

significantly, to control the amount of protein loaded, we

performed the experiment either loading equal number of cells

or equal amount of protein, obtaining similar results in both cases.

Finally, HOG cells were cultured in GM or DM and infected at

an m.o.i of 0.1 with HSV-1. Progeny virus was titrated to

determine the 50% tissue culture infective dose (TCID50)/ml.

After 20 h p.i., viral yield in DM-cultured HOG cells was

significantly higher compared to cells cultured in GM (Figure 1D).

To investigate whether the increment in viral yield was due, at

least in part, to an increase in viral entry, we carried out the

infection of HOG cells using R120vGF, an EGFP-expressing

recombinant HSV-1 lacking ICP4. Figure 1E shows PCR

amplification of the genes encoding thymidine kinase (TK), virion

host shutoff (vhs, UL41) and chimeric EGFP from R120vGF DNA

(lanes A, E and I respectively); parental HSV-1 strain d120 DNA

(lanes B, F and J respectively) and HSV-1 strain F DNA (lanes C,

G and K respectively). Negative PCR controls without DNA are

also shown (lanes D, H and M). After entry into cells, R120vGF

expresses EGFP and immediate early proteins, but is unable to

complete the viral cycle due to the absence of ICP4. Using this

tool, we can measure GFP signal and immediate early protein

production to estimate whether HSV entry is altered in HOG cells

cultured under differentiation conditions. This novel viral

construction allows to estimate HSV-1 entry determining either

GFP fluorescence –by flow cytometry or immunofluorescence– or

by immunoblot, providing new methods to the study of HSV-1

entry into cells. HOG cells cultured in GM and DM were infected

with R120vGF at an m.o.i. of 0.1. After 24 h p.i., equal amounts

of protein were subjected to SDS–PAGE and analyzed by

immunoblotting with anti-GFP antibody. As in the previous

experiments, an increase in viral signal was observed in HOG cells

cultured in DM (Figure 1F), suggesting that differentiation is

affecting viral entry. As indicated above, we observed an increase

in the number of plaques in HOG cells cultured in DM compared

to cells cultured in GM. However, the average size of plaques

corresponding to cells cultured in DM was also increased,

suggesting that other factors –apart from viral entry– might also

be involved.

To extend the results obtained with HOG cells to primary

cultures, we studied HSV-1 infection in mouse OPCs. Primary

OPCs cultured in differentiation medium for 24 h (undifferenti-

ated) or 3 days (to allow spontaneous differentiation) were infected

at an m.o.i. of 1 with HSV-1, and the viral productivity was

titrated 20 h p.i determining the TCID50/ml. Viral yield in

differentiated cells was significantly higher compared to undiffer-

entiated cells (Figure 1G). Also, immunoblotting assay showed an

increase in viral protein detection in differentiated OPCs cultured

for 3 days compared to undifferentiated cells cultured for 24 hours

(Figure 1H).

HSV-1 Infection Induces Differentiation in HOG Cells
Once it was established that culturing HOG cells in differen-

tiation medium increased infection by HSV-1, we decided to

ascertain whether viral infection was also able to induce changes

corresponding to a more advanced differentiation stage. For this

purpose, HOG cells grown on glass coverslips were cultured in

GM or DM and subsequently mock-infected or infected at an

m.o.i. of 0.5 with K26GFP for 20 h. As previously observed [55],

we detected an increase of proteolipid protein (PLP) levels in HOG

cells cultured in DM (Figure 2A). Interestingly, an increase in PLP

levels was also detected in cells cultured in GM and infected with

K26GFP (Figure 2A). Surprisingly, PLP increased not only in

infected cells, but also in non-infected cells. It is possible that

contact with non-infectious particles or infected cells may be

sufficient to trigger a response that induces differentiation of non-

infected cells. Alternatively, factors secreted by infected cells might

induce differentiation of non-infected cells. Further experiments

will be needed to test these two possibilities. In addition, myelin-

like sheets and other morphological features corresponding to

differentiated cells were also observed in infected cells cultured in

GM (Figure 2B). Finally, GFP-MAL2/MAL-diHcRed/HOG cells

[53] grown on glass coverslips were cultured in GM or DM and

thereafter mock-infected or infected at an m.o.i of 0.5 with HSV-1.

Cells cultured in GM, exhibited myelin-like sheets enriched in

Figure 1. Effect of cell differentiation on HOG susceptibility to HSV-1 infection. A. Monolayers of HOG cells were infected with the same
dose of HSV-1, overlaid with GM or DM containing CMC and stained with crystal violet. An increase in the number of plaque forming units (p.f.u.) per
ml in differentiated cells compared to cells cultured in GM can be observed. The titration graph corresponds to the titration of a common stock on
DM- and GM-cultured cells using the plaque assay. B. Cells mock-infected or infected at an m.o.i. of 0.5 with HSV-1 K26GFP were processed for flow
cytometry analysis. The percentage of infection in differentiated cells is considerably higher than in cells cultured in GM. C. HOG cells cultured in GM
or DM were mock-infected or infected with HSV-1 at an m.o.i. of 0.1, subjected to SDS–PAGE 24 h p.i. and analyzed by immunoblotting with a
polyclonal rabbit anti-HSV-1 antibody. In cells cultured in DM, detection of viral proteins is increased. D. HOG cells cultured in GM or DM were
infected with HSV-1 at an m.o.i. of 0.1. Viral titers at 20 h p.i. were determined by TCID50/ml. Virus yield was significantly superior in cells cultured in
DM. E. Characterization of virus R120vGF. PCR amplification of the genes encoding thymidine kinase (TK) (lane A), virion host shutoff (vhs, UL41) (lane
E) and chimeric EGFP (lane I) from R120vGF DNA. PCR amplification of the TK (lane B), vhs gene (lane F) and chimeric EGFP (lane J) from parental HSV-
1 strain d120 DNA. PCR amplification of the genes encoding TK (lane C), vhs (lane G) and chimeric EGFP (lane K) from HSV-1 strain F DNA. Negative
PCR controls without DNA (lanes D, H and M). PCR products were electrophoresed in 1% agarose gel. A 1 kb DNA ladder was used as a DNA size
marker (lane L). F. Cells cultured in GM and DM and mock-infected or infected with R120vGF at an m.o.i. of 0.1 were subjected to SDS–PAGE 24 h p.i.
and analyzed by immunoblotting with polyclonal anti-GFP antibody. In cells cultured in DM, the viral-associated GFP signal is significantly higher.
Susceptibility to HSV-1 infection was also evaluated in undifferentiated (UND) or differentiated (DIF) OPCs. Both viral titer at 20 h p.i. determined by
TCID50/ml (G) and immunoblot signal detected with a rabbit polyclonal anti-HSV-1 antibody at 20 h p.i (H) is higher in differentiated cells.
doi:10.1371/journal.pone.0089141.g001
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exogenous MAL –a major myelin protein– (Figure 2C). All these

data suggest that, even in growth medium, HSV-1 infection can

induce a more differentiated stage in HOG cells. Finally, an

unexpected partial colocalization of HSV-1 and exogenous MAL

was observed (Figure 2C), especially in vesicles located at the end

of the processes, suggesting that viral particles could be travelling

into MAL-positive vesicles during viral egress. However, further

studies will be necessary to demonstrate this hypothesis.

Expression of HSV-1 Receptors in HOG Cells
To investigate whether the major cell receptors for HSV-1 play

a role in the increase of susceptibility of differentiated OLs to the

infection, we monitored expression of HVEM, nectin-1 and 3-OS

HS along the process of differentiation. We first analysed

expression of HSPG, which act as an attachment factor for

HSV gC and gB, by immunofluorescence assay. We incubated

HOG cells in GM or DM with wheat germ agglutinin (WGA), a

lectin that binds to N-acetylglucosamine, coupled to Alexa-594.

HSPG was highly expressed on the surface of HOG cells and no

significant changes were observed during differentiation (Figure 3A

and B). In contrast, the detection of the specifically modified 3-OS-

HS, which acts as a receptor for gD, with monoclonal antibody

HS4C3 was negative in HOG cell line under growth and

differentiation conditions (data not shown).

When we performed similar immunofluorescence assays with

antibodies against nectin-1 (CK41) and HVEM (R140), slight

changes in these two HSV-1 receptors took place between growth

and differentiation conditions. This assay was performed incubat-

ing live cells with the antibodies in serum-free DMEM for 20

minutes at 4uC. After that, cells were fixed and processed for

immunofluorescence analysis as described in the materials and

methods section. Nectin-1 detection was slightly decreased in

HOG cells cultured in DM whereas HVEM expression increased

(Figure 4A and D). Although immunofluorescence provides

important information on the location of receptors and allows a

rough comparison of expression levels, it is not a robust

quantitative measure. To address the quantitative effect, immu-

noblot analysis was performed with anti-nectin-1 (CK6) or HVEM

(mouse monoclonal) antibodies and confirmed these immunoflu-

orescence results (Figure 4B and E). We loaded either equal

number of cells or equal amount of protein, obtaining similar

results in both cases. Finally, to determine whether HVEM and

nectin-1 expression was modified following cell differentiation, we

quantified the mRNA using RT-qPCR in cells cultured either in

GM or DM. Quantitative RT-PCR confirmed an increase of

HVEM and a slight decrease in nectin-1 expression in HOG cells

cultured under differentiation conditions when compared to GM

cultured cells (Figure 4C and F).

Cell Receptors Involved in HSV-1 Entry into HOG Cells
Once the presence of nectin-1 and HVEM in the HOG cell

surface was established, we analysed the role of these two receptors

during the HSV-1 infection. We first carried out an antibody

blocking assay. HOG cells incubated with anti-nectin-1 (CK41) or

anti-HVEM (R140) or both antibodies simultaneously, were

infected with K26GFP. After 20 h p.i, cells were fixed and

processed for GFP flow cytometry as a measure of infection.

Although we detected a slight blocking effect, especially with

HVEM antibodies, neither anti-nectin-1 nor anti-HVEM anti-

body treatment efficiently blocked HSV-1 entry into HOG cells

cultured in GM or in DM as compared to controls without

blocking antibodies. Nevertheless, incubation with both antibodies

simultaneously induced a more significant blocking effect

(Figure 5A). On the other hand, analysis of HOG cells infected

with K26GFP at 4uC for1h and processed for confocal indirect

immunofluorescence analysis with anti-HVEM polyclonal and

anti-nectin-1 monoclonal antibodies 5 minutes after the shift to

37uC, showed partial colocalization of viral particles with nectin-1

and HVEM (Figure 5B). These data suggest that both HVEM and

nectin-1 are functional as HSV receptors in oligodendrocytic cells

and that HVEM may play a bigger role when these cells

differentiate.

Study of Viral Entry by Electron Microscopy
It has been proposed that HSV-1 entry can proceed by

macropinocytosis/endocytosis in a cell-type dependent manner,

regardless of which receptor in used [36,56,57,58]. To determine

whether endocytosis is involved in HSV entry into HOG cells, we

used direct observation by electron microscopy. HOG cells

cultured in GM or DM were mock-infected or infected with

HSV-1 at an m.o.i. of 50. At 5, 10, 20 and 30 minutes p.i., cells

were fixed and processed for observation (see material and

methods). In cells cultured in DM for 20 minutes, membrane

protrusions similar to planar lamellipodia (Figure 6A and B) and

circular ruffles (Figure 6C) were observed in the vicinity of virions.

These structures have been described as a part of the process of

viral entry by macropinocytosis in different cells [58]. Further-

more, enveloped virions were detected in vesicles at 30 min post

infection (Figure 6D), which is indicative of virus endocytosis.

Altogether, these data suggest that macropinocytosis may be

involved in HSV-1 entry into differentiated HOG cells. Finally,

intracellular unenveloped virions were observed in cells cultured

both in GM (Figure 6E) and DM (F) 5 minutes p.i., suggesting that

membrane fusion had occurred. Thus, this pathway does not seem

to be altered during differentiation.

Discussion

HSV-1 can infect a diverse range of cell types and tissues

including, neurons, retinal or conjunctival epithelial cells the as

well as oral and genital mucosa [31,32,59,60]. Previous studies

have shown that OLs are highly susceptible to HSV-1 infection

[13] and glial specific cellular proteins such as myelin-associated

glycoprotein, MAG, have been implicated in viral entry [25]. In

the present work, the effect of oligodendroglial cell differentiation

on HSV-1 infection has been investigated. HOG cells exhibit

characteristics related to immature OLs such as GalC and CNPase

expression. Culturing of HOG cells in DM induces some

differentiation hallmarks, such as proliferation of processes and

the increase in MBP and MOG expression. Nevertheless it is not

possible to find significant quantitative differences in GalC and

CNPase between HOG cells grown in GM versus DM [61]. In a

previous study [53] we observed the presence of myelin-like

membrane sheets –structures previously described in primary and

mixed cultures [62,63,64]– in HOG cells cultured in DM. We also

detected an increment in PLP expression during differentiation of

these HOG cells and accumulations of PLP in myelin-like sheets

[55]. Moreover, these myelin-like sheets contained vesicles

enriched in the apical molecule CD59 and MAL, a major myelin

protein [53]. In summary, HOG cells cultured in DM acquire a

more differentiated phenotype characterized by morphological

features –elongation of processes and emergence of myelin-like

sheets–, biochemical changes –an increase in MBP, MOG and

PLP– and accumulation of myelin proteins –such as PLP and

MAL– in myelin-like sheets. These characteristics make HOG

cells an appropriate model to study changes in HSV-1 infection

between cells with different developmental stages.
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In this study, our results show that culturing HOG cells in DM

or maintaining OPCs in differentiation culture conditions for 3

days enhanced HSV-1 infection. To ascertain possible factors

involved in this increased susceptibility, we first monitored

expression of the best characterized HSV-1 receptors (i.e. HVEM,

nectin-1 and 3-OS-HS) along the process of HOG cell differen-

tiation. Immunofluorescence microscopy revealed that expression

of the attachment HSPGs remained elevated and unchanged

throughout differentiation. In contrast, the specifically sulfated 3-

OS HS was not detected in HOG cells using antibody HS4C3.

Figure 2. Effect of HSV-1 infection on cell differentiation of HOG cells. Cells cultured in GM or DM were mock-infected or infected at an m.o.i
of 0.5 with K26GFP for 20 h. Then, cells were fixed and processed for confocal immunofluorescence analysis with an anti-PLP monoclonal antibody
detected with an Alexa Fluor 555 secondary antibody. PLP signal is increased in mock-infected cells cultured in DM and in infected cells cultured in
GM (A). In addition, membrane processes and myelin-like sheets (arrows) can be noticed in cells cultured in GM infected with HSV-1 or K26GFP (B). C.
GFP-MAL2/MAL-diHcRed/HOG cells cultured in GM or DM were mock-infected or infected at an m.o.i of 0.5 with HSV-1 for 20 h. Cells were then fixed
and processed for confocal immunofluorescence analysis with an anti-HSV-1 polyclonal antibody and an Alexa Fluor 647 secondary antibody. Myelin-
like sheets enriched in exogenous MAL (arrow) can be observed in infected cells cultured in GM. All images correspond to the projection of the planes
obtained by confocal microscopy. In panel A nuclei were stained with TO-PRO-3. DIC: Differential Interference Contrast. To make the cells more
visible, DIC contrast of the whole images has been adjusted.
doi:10.1371/journal.pone.0089141.g002
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Furthermore, by means of immunofluorescence microscopy,

immunoblot analysis and RT-qPCR, we have detected an increase

of HVEM and a slight decrease of nectin-1 in HOG cells cultured

in DM in comparison to GM treated cells. Previous works have

Figure 3. Expression of HSPGs in HOG cells. Cells previously cultured in GM or DM were incubated for 1 hour at 4uC with WGA-594 diluted in
DMEM without serum. Cells were then washed with PBS, fixed and processed for immunofluorescence microscopy analysis (A) or FACS (B). A. Images
show no significant changes between GM and DM cultures. Confocal images correspond to the projection of the planes obtained by confocal
microscopy. Nuclei were stained with TO-PRO-3. B. Percentage (%) of max designates the number of cells relative to the maximum fraction. Control
cells correspond to HOG cells incubated for 1 hour at 4uC in DMEM without WGA-594.
doi:10.1371/journal.pone.0089141.g003
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Figure 4. Expression of nectin-1 and HVEM in HOG cells. A. Cells cultured in GM or DM were fixed and processed for confocal
immunofluorescence analysis with CK41 anti-nectin-1 antibody. Primary antibody was detected using an Alexa Fluor 555 secondary antibody. Images
correspond to the projection of the planes obtained by confocal microscopy. B. HOG cells were subjected to SDS–PAGE and analyzed by
immunoblotting with an anti-nectin-1 polyclonal antibody. Immunoblot assays showed a slight decrease of nectin-1 in cells cultured in DM. C.
RTqPCR quantification of relative nectin-1 mRNA expression levels in HOG cells cultured in GM or DM showed a decrease in nectin-1 expression in
differentiated cells compared to cells cultured in growth conditions. D. Cells cultured in GM or DM were fixed and processed for confocal
immunofluorescence analysis with R140 anti-HVEM antibody. Primary antibody was detected using Alexa Fluor 555 secondary antibody. Images
correspond to the projection of the planes obtained by confocal microscopy. E. HOG cells were subjected to SDS–PAGE and analyzed by
immunoblotting with an anti-HVEM polyclonal antibody. Immunoblot assays showed an increase of HVEM in cells cultured in DM. C. RTqPCR
quantification of relative HVEM mRNA expression levels in HOG cells cultured in GM or DM showed a significant increase in HVEM expression in
differentiated cells compared to cells cultured in growth conditions. DIC: Differential Interference Contrast.
doi:10.1371/journal.pone.0089141.g004

Figure 5. Role of HVEM and nectin-1 on viral entry in HOG cells. A. Antibody blocking assay was performed incubating HOG cells with R140
anti-HVEM or CK41 anti-nectin-1 or both antibodies simultaneously at 4uC for 1 h. Cells were then infected with an equal volume of K26GFP diluted in
free serum medium at an m.o.i of 1 for 1 h at 4uC. After viral adsorption, cells were washed with PBS, incubated for 20 h with their respective media
containing blocking antibodies and processed for flow cytometry. Controls correspond to cells not blocked with primary antibody. The percentage of
infection in differentiated cells blocked with both antibodies simultaneously is lower than control without blocking antibodies (C). B. HOG cells
cultured in DM and infected at an m.o.i. of 1 with K26GFP were fixed and processed for confocal indirect immunofluorescence analysis with R140 anti-
HVEM and CK41 anti-nectin-1 monoclonal antibodies. Panels correspond to three confocal slices of 0.8 mm. Arrows point to colocalization of virus
with receptors. DIC: Differential Interference Contrast.
doi:10.1371/journal.pone.0089141.g005
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demonstrated that nectin-1 has a major role in HSV-1 entry into

neurons [33,65]. In our oligodendroglial model, the expression of

this receptor in HOG cells is rather low, but we observed some

colocalization with viral particles. HVEM expression in HOG cells

was higher than nectin-1, and, again, we observed colocalization

of HVEM with viral particles. These results suggest that both

nectin-1 and HVEM are functioning as HSV-1 receptors in HOG

cells. Accordingly, blocking with either anti-nectin-1or anti-

HVEM antibodies did not induce a significant decrease in viral

infection since preventing the use of one receptor may lead the

virus to take advantage of the other more extensively. In addition,

blocking with both antibodies simultaneously induced a decrease

in viral infection in differentiated cells, supporting the functional

role of these receptors in viral entry into HOG cells depending on

the differentiation stage. The fact that the combined effect is

greater in differentiated HOG cells, where HVEM is more highly

expressed, suggest that a basal level of nectin-1 activity is present in

all cells. However in differentiated cells the anti-HVEM antibody-

alone and in combination with anti-nectin-1 is more potent,

thereby highlighting the predominant role of HVEM in differen-

tiated cells. It is noticeable that under our experimental conditions,

anti-HVEM and anti-nectin-1 antibodies together did not

completely block entry. In other systems, 3-OS HS is the major

receptor for HSV-1 [66]. Because nectin-1 and HVEM are not the

Figure 6. Study of viral entry by electron microscopy. HOG cells cultured in GM or DM were mock-infected or infected with HSV-1 at an m.o.i.
of 50. At 5, 10, 20 and 30 minutes p.i., cells were fixed, washed and processed by freeze substitution. In cells cultured in DM membrane protrusions
similar to planar lamellipodia (A and B) and circular ruffles (C) were observed at 20 minutes p.i., suggesting viral entry by macropinocytosis. Vesicles
containing intracellular enveloped virions (D) (arrows) were also observed in cells cultured in DM at 30 minutes p.i., suggesting entry by endocytosis.
Intracellular unenveloped virions were observed in cells cultured in GM and DM at 5 minutes p.i. (E and F), suggesting entry by fusion. Samples were
examined with a JEM 1010 transmission EM (Jeol, Tokyo, Japan). N = nucleus. M = plasma membrane.
doi:10.1371/journal.pone.0089141.g006
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only receptors for HSV, we attempted to address the role of 3-OS-

HS as an entry receptor in these cells. In preliminary experiments,

we were unable to specifically detect 3-OS-HS in HOG cells using

antibody HS4C3. However, these data do not allow us to rule out

a role for 3-OS-HS in HSV-1 entry into oligodendrocytes. Such

an activity could partly account for the residual entry observed in

the presence of antibodies blocking nectin-1 and HVEM. 3-OS-

HS are generated by six isoforms of HS 3-O-STs. At the moment,

there are no available data about the set of 3-O-STs expressed in

human oligodendrocytes. Expression of 2-O-ST, the enzyme

responsible for 2-O-sulfation, is downregulated during maturation

of OLs, although an increase in 2-OS-HS has been observed after

injury to the adult rat brain [67]. 3-O-STs are often co-expressed

in various combinations. While the isoforms 3-O-ST-3, 25 and 2

6 are most commonly expressed, isoforms 3- O-ST-2 and 24 were

undetectable in other cell lines examined [35]. This complexity

warrants further experiments to determine the expression pattern

of 3-OS-STs during oligodendrocyte differentiation and determine

whether 3-OS-HS plays a role in HSV entry in these cells.

MAG is a cell-surface molecule expressed in myelin sheath

[68,69]. MAG is involved in myelin maintenance and in myelin-

axon interactions, acting as an inhibitor of axonal regeneration

[70,71] It has been reported that MAG is associated with HSV-

1 gB, suggesting that it is involved in HSV infection of neural

tissues [25]. In our cellular model, preliminary studies by

RTqPCR revealed a negligible expression of this myelin protein

in HOG cells even in differentiation culture conditions (data not

shown), thus suggesting that the role of this protein in viral entry

into HOG cells is very limited at best.

HSV-1 can enter different cell types using different pathways:

fusion at a neutral pH, low-pH-dependent endocytosis and low-

pH-independent endocytosis [56,57,72]. We used electron mi-

croscopy to define the entry pathways of HSV-1 into OLs. This

approach is useful to directly observe virions at various stages of

entry. However, interpretation of EM snapshots needs to be

related with functional data to validate the fact that observed

virions reflect a functional entry pathway. In cells cultured in DM

membrane protrusions similar to planar lamellipodia and circular

ruffles [73] were observed, suggesting that HSV-1 may be entering

OLs by macropinocytosis (depending on their differentiation

stage). Similar cellular protrusions have been associated to HSV-1

during entry by phagocytosis-like uptake involving re-arrangement

of actin cytoskeleton and trafficking of the viral particles in

phagosome-like vesicles. This pH-dependent and clathrin-inde-

pendent viral entry is characterized by the presence of cell surface

protrusions and clustering of gD receptors in large vesicles [58]. In

addition, vesicles containing intracellular enveloped virions were

also observed in cells cultured in DM, suggesting entry by

endocytosis. Further studies will be necessary to define the role of

pH in this pathway.

Finally, viruses like HBV, HPV and HIV have been shown to

induce cell differentiation [74,75,76,77]. Therefore, we wanted to

ascertain not only whether differentiation triggered changes in

HOG cell susceptibility to HSV-1, but also whether HSV-1 was

able to drive changes in cell morphology compatible with cell

differentiation. After infection, immunofluorescence microscopy

revealed an increase of PLP in cells infected with HSV-1 cultured

in growth conditions. Also, morphological changes corresponding

to differentiated cells were also observed in infected cells cultured

in GM. Moreover, HSV-1 infected MAL-expressing HOG cells

cultured in GM exhibited myelin-like sheets enriched in exogenous

MAL. Altogether, these observations indicate that HSV-1

infection can induce the formation of structures corresponding

to more differentiated stages of oligodendrocytes. Unexpectedly,

partial colocalization between HSV-1 and exogenous MAL was

detected, but the significance of that observation remains unclear.

Colocalization of HSV-1 and exogenous MAL appears most

prominently in vesicles located at the end of the processes. This

raises the possibility that MAL-positive vesicles may be involved in

delivering viral particles towards the end of the processes and

subsequently, outside the cells. However, further studies will be

necessary to specifically address the potential role of MAL in

HSV-1 egress.
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