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Abstract

Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome caused by ribosomal protein
haploinsufficiency. DBA exhibits marked phenotypic variability, commonly presenting with erythroid hypoplasia, less
consistently with non-erythroid features. The p53 pathway, activated by abortive ribosome assembly, is hypothesized to
contribute to the erythroid failure of DBA. We studied murine embryonic stem (ES) cell lines harboring a gene trap mutation
in a ribosomal protein gene, either Rps19 or Rpl5. Both mutants exhibited ribosomal protein haploinsufficiency and
polysome defects. Rps19 mutant ES cells showed significant increase in p53 protein expression; however, there was no
similar increase in the Rpl5 mutant cells. Embryoid body formation was diminished in both mutants but nonspecifically
rescued by knockdown of p53. When embryoid bodies were further differentiated to primitive erythroid colonies, both
mutants exhibited a marked reduction in colony formation, which was again nonspecifically rescued by p53 inhibition. Cell
cycle analyses were normal in Rps19 mutant ES cells, but there was a significant delay in the G2/M phase in the Rpl5 mutant
cells, which was unaffected by p53 knockdown. Concordantly, Rpl5 mutant ES cells had a more pronounced growth defect
in liquid culture compared to the Rps19 mutant cells. We conclude that the defects in our RPS19 and RPL5 haploinsufficient
mouse ES cells are not adequately explained by p53 stabilization, as p53 knockdown appears to increase the growth and
differentiation potential of both parental and mutant cells. Our studies demonstrate that gene trap mouse ES cells are useful
tools to study the pathogenesis of DBA.
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Introduction

Diamond Blackfan anemia (DBA) is a rare inherited bone

marrow failure syndrome [1,2], characterized primarily by red

blood cell hypoplasia but also associated with congenital anom-

alies, short stature, and cancer predisposition [3]. Atypical

presentations are common, ranging from hydrops fetalis to non-

anemic patients with macrocytosis [2]. Significant differences in

phenotype are apparent among family members and unrelated

individuals with the same mutation, suggesting considerable

influence by modifying genes. Extensive studies have allowed

classification of the majority of cases of DBA within the family of

ribosomopathies [4,5]. About 60–70% of the patients are

heterozygotes for ribosomal protein (RP) gene mutations or

deletions [6], resulting in either a state of haploinsufficiency for

these ubiquitous proteins [7] or possibly a dominant negative

mechanism caused by missense mutations [8]. The gene most

commonly mutated in DBA is RPS19, found in 25% of patients.

RPL5 is mutated in about 9% of patients with DBA. The only

genotype-phenotype correlation observed so far is the high

prevalence of congenital abnormalities in patients with RPL5 or

RPL11 mutations [9,10]. A recent report has also identified a small

subset of DBA patients with an X-linked mutation in erythroid

transcription factor, GATA-1, which now links DBA to non-

ribosomal protein genes [11]. Patients with this and other non-RP

gene mutations expand both the genotype and phenotype of DBA,

and the possibility that RP and non-RP gene mutations lead to

similar molecular defects requires further study [12].
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Although the molecular bases leading to the erythroid lineage

specificity as well as other abnormalities in DBA remain largely

unknown, it has been hypothesized to occur in part because the

affected tissues are rapidly proliferating leading to a high demand

for ribosomes [13]. Haploinsufficiency for ribosomal proteins is

believed to lead to the failure of red cell production due to

apoptosis [14,15] and/or decreased proliferation due to cell cycle

arrest of erythroid progenitors [16]. In addition, haploinsufficiency

of ribosomal proteins decreases the efficiency of ribosome

assembly triggering nucleolar stress [17] resulting in enhanced

translation of other ribosomal protein mRNAs (59-terminal

oligopyrimidine tract [59-TOP] containing mRNAs) [18]. Ribo-

somal proteins such as RPL11, RPL5, RPL23, RPS7 and RPS3

[19–22] have been previously suggested to bind to and inhibit the

activity of an E3 ubiquitin ligase, HDM2 (MDM2 in mice) in

contexts of nucleolar stress. HDM2 acts as the major regulator of

steady state levels of p53 by maintaining low levels of p53 in

normal, unstressed cells. In DBA, the inhibition of HDM2 by

excessive free ribosomal proteins in this nucleolar stress pathway

has been proposed to lead to an accumulation of p53 in cells,

which could be the crux that links ribosomal gene mutations with

apoptosis and cell cycle arrest. Animal models have indicated that

p53 activation plays a key role in the disease pathophysiology and

that p53 inhibition can lead to rescue of some or all of the disease

manifestations [23].

We created cellular models of DBA using murine embryonic

stem (ES) cells harboring gene trap mutations [24,25] in Rps19 or

Rpl5. Murine ES cells, which have not been previously used as a

disease model in DBA, are a powerful tool for the study of

hematopoiesis and development in other tissues [26,27]. We used

these gene trap ES cells to successfully form chimeric mice

indicating they are pluripotent cells able to differentiate into all

tissues of the mouse. However, we were unable to obtain germline

transmission possibly due to early embryonic lethality. Embryos

analyzed as early as E6 did not show the presence of the gene trap

vector. Thus, the focus of our studies turned to the in vitro

characterization and differentiation of the mutant ES cells.

Protocols for the hematopoietic differentiation of mouse ES cells

are well established and have been shown to faithfully recapitulate

in vivo erythroid (primitive and definitive) differentiation in the

mouse embryo [28–30]. During mammalian development there

are three waves of erythropoiesis: (i) primitive erythropoiesis from

the yolk sac (ii) a transient wave of definitive erythroid precursors

from the yolk sac that seed the fetal liver and (iii) definitive

erythroid progenitors derived from the hematopoietic stem cell,

originating from the fetal liver during gestation and the bone

marrow postnatally [27]. Primitive erythropoiesis is believed to be

critical to the early postimplantation embryo.

To study the ontogeny of primitive erythropoiesis in our DBA

models, we subjected the ES cells to in vitro differentiation

conditions that stimulate primitive erythropoiesis. Both RPS19

and RPL5 haploinsufficient ES cells exhibited a similar failure of

primitive erythropoiesis. By RNA interference, we demonstrated a

nonspecific rescue of primitive erythropoiesis with p53 knock-

down. The Rpl5 mutant had a severe delay in the G2/M transition

at the ES stage, while no such defect was found in the Rps19

mutant model. There was no rescue of the cell cycle defect in the

Rpl5 mutant cells after knockdown of p53. Mouse ES cells

haploinsufficient for RPL5 demonstrated an early p53-indepen-

dent cell cycle defect and more severe growth impairment, which

appears to distinguish RPL5 from RPS19 haploinsufficient ES

cells.

Methods

Cells
The Rps19 mutant murine ES cell line, YHC074, obtained from

the Mutant Mouse Regional Resource Center, was created by

electroporation of its parental cell line E14Tg2a.4 (mouse strain

129P2/OlaHsd) with the gene trap vector pGT0lxf, resulting in

insertion of the vector within intron 3 of the Rps19 gene. The Rpl5

mutant murine ES cell line, D050B12, obtained from the German

Gene Trap Consortium, was created by electroporation of

parental cell line TBV-2 (mouse strain 129S2/SvPas) with the

rFlipROSAbeta-Geo*+1 gene trap vector, leading to insertion of

the vector within intron 3 of the Rpl5 gene.

Cells were grown in ES maintenance media containing DMEM

high glucose (Invitrogen), 15% fetal bovine serum ES-tested (FBS;

StemCell Technologies), 0.1 mM non-essential amino acids

(StemCell Technologies), 1% penicillin-streptomycin (Invitrogen),

2 mM L-glutamine (Invitrogen), 100mM monothioglycerol (MTG;

Sigma) and 10 ng/mL mouse leukemia inhibitory factor (mLIF;

StemCell Technologies). For growth curves, 56103 ES cells were

seeded in 6 well-plates to provide enough wells for daily triplicate

cell count for 5 days. Cells were trypsinized and counted using

Trypan blue to exclude dead cells.

Embryoid body formation
The cells were prepared for differentiation [31] (see Methods

S1) and then plated (26103 cells/mL to 56104 cells/mL) in

triplicate in low-adherence 35 mm Petri dishes (StemCell Tech-

nologies) with primary differentiation media (see Methods S1) to

generate embryoid bodies (EBs). EBs were fed on day 7 with EB

feed media composed of 50% primary differentiation media,

supplemented with 15% FBS, 150mM MTG, 160 ng/mL

recombinant mouse stem cell factor (rmSCF; StemCell Technol-

ogies), 30 ng/mL murine interleukin-3 (rmIL-3; StemCell Tech-

nologies), 20 ng/mL human interleukin-6 (rhIL-6; StemCell

Technologies), 3 U/mL human erythropoietin (Epo; Amgen)

and IMDM (StemCell Technologies). EBs were counted on day

4 for absolute numbers, then on day 10–12 for hematopoietic EB

percentage in a blinded fashion. A hematopoietic EB was defined

as an EB with erythroid and/or myeloid cells clustered at the

edges. They are typically larger in size than non-hematopoietic

EBs. EB counts were normalized to that of the respective parental

cells (quantity of parental EBs set to 100).

Primitive erythroid differentiation
Day 4–5 EBs were harvested, trypsinized, mechanically

disrupted and added to primitive erythroid differentiation media

containing basic methylcellulose, 15% plasma-derived fetal bovine

serum (Animal Technologies), 2 mM L-glutamine, 0.45 mM

MTG, 20% BIT 9500 (StemCell Technologies), 5 U/ml Epo,

50 mg/mL ascorbic acid, 5% Protein Free Hybridoma Medium-II

(Invitrogen) and IMDM to achieve cell concentrations of

16105 cells/mL. Cells were plated in triplicate onto low-adher-

ence 35 mm Petri dishes and primitive colonies were counted in a

blinded fashion on day 7 of culture. Colony counts were

normalized to that of the respective parental cells (quantity of

parental colonies set to 100).

Definitive erythroid differentiation
Day 7 EBs were harvested, incubated in Tryple E (Gibco),

mechanically disrupted and added to definitive hematopoietic

differentiation media containing basic methylcellulose, 15% FBS,

2 mM L-glutamine, 150mM MTG, 20% BIT9500 (StemCell

Technologies), 150 ng/ml rmSCF, 30 ng/ml rmIL-3, 30 ng/ml
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rhIL-6, 3 U/ml Epo and IMDM to achieve a cell concentration of

16105 cells/mL. Cells were plated in triplicate onto low-adher-

ence 35 mm Petri dishes. Definitive erythroid colonies (BFU-E

and CFU-E) were counted on day 7 of culture in a blinded fashion.

Stable transfection
The Rpl5 mutant cell line D050B12 was transfected, using

FuGene HD (Promega), with a pCMV6-A-Puro vector containing

wild type Rpl5 cDNA and a puromycin resistance gene (Origene)

to establish a stably transfected clone overexpressing Rpl5.

Transient siRNA transfections
Twenty-four hours prior to primary differentiation, small

interfering RNA (siRNA) targeting p53, (Dharmacon; see Methods

S1) were transiently transfected into pre-differentiation cell

cultures, using DharmaFect 1 (Dharmacon) transfection reagent

according to the manufacturer’s specifications. Non-targeting

siRNAs (Dharmacon; Methods S1) were used as negative controls

for the experiments.

Antibodies
Mouse monoclonal antibody against RPS19 was from Abnova

(Taiwan). Rabbit polyclonal antibody to RPL5 was from Abcam

(Cambridge, MA). Rabbit polyclonal antibody, raised against a

full-length human p53 fusion protein, was from Cell Signaling

Technology (Danvers, MA). Mouse monoclonal antibody against

b-Actin was from Santa Cruz Biotechnology (California). Goat

anti-rabbit IgG horseradish peroxidase [HRP]-linked antibody

was from Cell Signaling Technology. Goat anti-mouse IgG HRP-

linked secondary antibody was from Santa Cruz.

Western blot analysis
ES cells and EBs were lysed with protein lysis buffer containing

0.15 M sodium chloride (Kirkegaard & Perry labs/KPL), 1%

Triton X-100 (KPL), 0.05 M Tris-HCl (KPL), 1% protease

inhibitor cocktail (KPL) and distilled water, and 2.5 mg to 10 mg of

total protein suspended in 4x Nupage loading buffer (Invitrogen)

was boiled and loaded on 4–12% Bis-Tris Ready gels (Invitrogen).

After transferring proteins to nitrocellulose membranes (Biorad),

western blots were performed as described previously [32].

Figure 1. Protein haploinsufficiency and polysome defects in Rps19 and Rpl5 mutant mouse embryonic stem cells. For
immunoblotting, ES cell lysates were separated using gel electrophoresis, transferred to a nitrocellulose membrane, and blotted with antibodies
against RPS19 and RPL5. b-Actin was used as a loading control. Rps19 mutant (A) and Rpl5 mutant (C) ES cells showed protein haploinsufficiency
(upper panels); b-Actin confirmed similar protein loading for mutant and parent (lower panels). For analyses of polysome profiles, ES cells were
incubated in the presence of cycloheximide, lysed, and layered onto sucrose gradients. After ultra-centrifugation, polysome profiles were retrieved
using an ISCO density gradient fractionator and UA-6 UV/Vis detector. RPS19 haploinsufficient ES cells (B, lower panel) showed a decreased 40S peak
when compared to the parental line (B, top panel). In contrast, RPL5 haploinsufficient cells (D, lower panel) had a decreased 60S subunit compared
with the parental cells (D, top panel).
doi:10.1371/journal.pone.0089098.g001
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Immunoreactive bands were detected by the enhanced chemilu-

minescence method (Pierce Chemical). Relative quantification of

western blot data was performed using the Image J software.

Polysome profiles
ES cells, grown to 80% confluence, were incubated with 1%

(vol/vol) of 9 mg/mL cycloheximide (Sigma Aldrich) for 10

minutes at 37uC and then trypsinized. Cells were washed with PBS

and lysed at 4uC using a handheld homogenizer (Fisher Scientific)

in polysome buffer containing 50 mM Tris-HCl (Fisher Scientific),

240 mM NaCl (Fisher Scientific), 10 mM MgCl2 (Sigma Aldrich),

5 mM beta-mercaptoethanol (Sigma Aldrich), 250 mM sucrose

(Fisher Scientific), 2% Triton X (Sigma Aldrich), 100mg/mL

heparin (Alfa Aesar), and 90mg/mL cycloheximide. Lysates were

run on 15–55% sucrose gradients containing 25 mM Tris-HCl,

25 mM NaCl and 5 mM MgCl2. Gradients were centrifuged at

28,000 rpm for 7–8 hours using a Beckman L8-M ultracentrifuge.

The gradients were then broken down using an ISCO density

gradient fractionator, retriever and UA-6 UV/Vis detector

(ISCO).

Cell cycle analysis
ES cells, plated at equal density 24 hours prior to cell cycle

analysis, were harvested, washed with PBS and fixed in chilled

70% ethanol for 1 hour. After fixation, cells were incubated with

0.5% RNase A and 4% Propidium Iodide (PI) (Sigma Aldrich) in

PBS for 30 minutes at 37uC. Fluorescence intensity was measured

using a FACSCalibur flow cytometer (Becton Dickinson). All

analyses were performed using FlowJo software v9.2 (TreeStar).

Quantitative real time RT-PCR
Total RNA was extracted from ES cells and hematopoietic

colonies using the High Pure RNA isolation kit (Roche) according

to manufacturer’s protocol. First strand cDNA was generated from

RNA with the Transcriptor First Strand cDNA synthesis kit, and

quantitative real-time reverse-transcription PCR (qRT-PCR) was

performed using the LightCycler 480instrument and kit (Roche)

according to manufacturer’s protocol. GAPDH and b-actin were

used as internal controls. Relative changes of mRNA amounts

were calculated using the DDCt method. All target gene primer-

probe sets were designed by Roche (Methods S1).

Statistics
Statistical significance of in vitro differentiation functional studies

was evaluated using 2-tailed paired Student’s t- test. (* p,0.05; **

p,0.01 for all figures). Error bars were generated using the

standard error of the mean.

Results

Rps19 and Rpl5 mutant ES cells exhibit protein
haploinsufficiency and ribosomal subunit assembly
defects

In an attempt to confirm the effects of gene trapping on the

mutant cells, expression levels of the Rps19 mutant (YHC074,

Figure 1A) and the Rpl5 mutant (D050B12, Figure 1C) at the ES

cell stage were assessed by western blot. We observed that both

cells exhibited reduced amounts of their respective ribosomal

proteins. In addition, Rpl5 mutant ES cells were transfected with a

plasmid containing Rpl5 wild type cDNA, and the efficiency of

correction was evaluated by qRT-PCR. A clone that expressed

roughly twice the amount of mRNA as the mutant was then

selected (Figure S1) for rescue experiments.

Mutations in ribosomal proteins often lead to aberrant ribosome

assembly. Therefore, to better characterize the mutant pheno-

types, we analyzed the polysome profiles for both mutants. Rps19

mutant ES cells demonstrated a markedly reduced 40S peak, a

reduced 80S peak and decreased polysome peaks, compared to its

parental cell line (Figure 1B). This pattern corresponds to a

decrease in small ribosomal subunit assembly, consistent with the

Figure 2. Embryoid body (EB) formation is impaired in both
Rps19 and Rpl5 mutants. ES cells were differentiated into EBs and
scored on day 4 to assess total number of EBs formed. Both mutants
showed a reduction in EB formation when compared to the parental
cells (3 independent experiments).
doi:10.1371/journal.pone.0089098.g002

Figure 3. Primitive erythropoiesis is defective in Rps19 and Rpl5
mutants. Day 4–5 EBs were harvested, made into single cell
suspension, and added to primitive erythroid differentiation media.
Colonies were scored on day 7. Both Rps19 mutant (A) and Rpl5 mutant
(B) cell lines exhibited a severe defect in primitive erythroid colony
formation. (Rpl5-5 independent pooled experiments, Rps19-3 indepen-
dent pooled experiments).
doi:10.1371/journal.pone.0089098.g003
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phenotype observed in cells carrying a mutation in a small

ribosomal subunit protein gene. In contrast, the polysome profile

of Rpl5 mutant ES cells showed a reduced 60S peak and a

reduction in polysomes compared to its parental cell line, which is

expected with a deficiency of a large ribosomal subunit protein

(Figure 1D).

Both Rps19 and Rpl5 mutant cells exhibit decreased
embryoid body formation

Functional defects intrinsic to these mutant cells were assessed

by in vitro differentiation assays. Primary differentiation experi-

ments were first used to measure the efficiency of embryoid body

(EB) formation, defined as the number of EBs formed per ES cell

plated, an in vitro representation of the differentiation potential of

the mutant cells. The efficiency of embryoid body generation from

ES cells was significantly reduced in both Rps19 and Rpl5 mutant

cells (Figure 2).

Both mutants exhibit a defect in primitive erythropoiesis
Primitive erythropoiesis assays, performed on day 4–5 EBs, and

definitive erythropoiesis assays, performed on day 7–11 EBs,

produced morphologically distinct erythroid colonies (Figure S2A).

Hemoglobin qRT-PCR was used to confirm the identity of these

colonies. As expected, primitive erythroid colonies showed a

markedly higher ratio of mouse embryonic hemoglobin (Hbb-bh1)

mRNA expression to mouse adult hemoglobin (Hbb-b1) mRNA

expression, compared with definitive BFU-Es (Figure S2B). There

were less definitive erythroid colonies formed in the Rps19 and

Rpl5 mutants compared to the parental lines (Figure S3), consistent

with the failure of definitive erythropoiesis in the majority of DBA

patients. Primitive erythropoiesis, assessed by the total number of

colonies formed, was markedly decreased in both the Rps19 and

Rpl5 mutants (Figure 3A and B). The significance of this failure of

primitive erythropoiesis is unclear, as the majority of DBA patients

present postnatally.

Figure 4. The differentiation defects observed in Rps19 and Rpl5 mutants are nonspecifically rescued by p53 inhibition. (A) Western
blot analyses were performed from mutant ES cells with antibodies against p53, using b-Actin as a loading control. ES cells from the Rps19 mutant
cells showed an increase in p53 expression. In contrast, the Rpl5 mutant expressed no increase in p53, compared with the parental line. Image J
quantification of western blots from 3 independent experiments demonstrated that the Rps19 mutant ES cells had approximately a 4-fold increase in
p53 protein compared to the wild type cells. (B) qRT-PCR performed on these ES cells showed an increase in p21 mRNA only in the Rps19 mutant ES
cells (3 independent experiments) while there was no similar increase in the Rpl5 mutant ES cells (4 independent experiments). siRNA targeting p53
was used to transiently transfect ES cells 24 hours prior to primary differentiation, obtaining .90% p53 knockdown by qRT-PCR. Both mutants (C)
showed a significant increase in EB formation with p53 knockdown (4 independent pooled experiments). This effect was nonspecific, as p53
knockdown of parental cells also increased EB formation (D). The primitive erythroid colony defect was partially compensated in the Rps19 mutant
after p53 inhibition and overcompensated in the Rpl5 mutant (E) (3 independent pooled experiments). This augmentation of colony formation was
again nonspecific, as there was an increase in primitive colony formation with p53 knockdown in both parental ES cells when compared with the
control siRNA (3 independent pooled experiments for Rpl5 parent and 4 independent experiments for Rps19 parent) (F).
doi:10.1371/journal.pone.0089098.g004
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Differentiation defects in both Rps19 and Rpl5 mutants
can be rescued non-specifically by p53 knockdown

p53 expression was evaluated at the protein level in both the

Rps19 and the Rpl5 mutant ES and EB cells by western blot. As

shown in Figure 4A (left panel), while a marked increase in p53

was observed in the Rps19 mutant ES cells, no changes were found

in the Rpl5 mutant ES cells. This data was reproducible, as

assessed by quantification of the western blots (Figure 4A, right

panel), and similar results were obtained at the EB stage (Figure

S4A). Note that basal expression levels for p53 differ in the two

parental ES cells. This may be explained by differences in the

mouse genetic background from which the ES cells have been

produced [33]. In order to further validate the difference in p53

levels in these two mutants, p21, a downstream target of p53, was

analyzed. Rps19 mutant ES cells had a significant increase in p21

mRNA levels, while there was no change in p21 transcription in

the Rpl5 mutant (Figure 4B). This data was consistent with the

results seen in the p53 western blot.

Transient p53 knockdown of both mutant ES cells was achieved

by the addition of short interfering RNA (siRNA) to ES cells one

day prior to EB generation. qRT-PCR performed 24 hours after

addition of the siRNA resulted in .90% reduction in p53 mRNA

transcription in all experiments (Figure S4B). Cells were subjected

to primary differentiation, followed by secondary differentiation to

primitive erythroid colonies. Knockdown of p53 in both mutants

resulted in a significant increase in both non-hematopoietic and

hematopoietic EB generation (Figure 4C). As a control, transfec-

tions using a non-targeting siRNA did not increase the EB

Figure 5. Rpl5 mutant ES cells exhibit a p53-independent cell cycle arrest. Cell cycle analyses were performed by fixing ES cells with 70%
ethanol, followed by staining with PI solution containing RNase A. Quantification of cell cycle phases (A), along with flow cytometry profiles (B) of
Rps19 mutant ES cells show no difference, compared to the parent. In contrast, the cell cycle profile of the Rpl5 mutant ES cells exhibited a three-fold
increase in the G2 phase with a concomitant decrease in the G1 and S phases, consistent with a delayed G2 phase transition (A, C) (three independent
pooled experiments). Stable transfection of the Rpl5 mutant with a vector containing Rpl5 cDNA showed complete correction of the cell cycle defect;
however, siRNA knockdown of p53 was unable to rescue the defect (D).
doi:10.1371/journal.pone.0089098.g005

Figure 6. Rpl5 mutant ES cells exhibit more severe growth
defect than Rps19 mutant cells. Cells were seeded in 6 well plates at
a concentration of 56103 per well with ES maintenance media, and live
cell counts were performed daily for 5 days using Trypan blue. The total
number of cells from the two mutants were normalized to their
respective parental line and represented as a percentage. From days 3–
5 of culture, the Rpl5 mutant ES cells expanded at a significantly slower
rate, when compared with the Rps19 mutant ES cells (three
independent pooled experiments).
doi:10.1371/journal.pone.0089098.g006
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formation efficiency in either mutant. However, knockdown of

p53 in the parental lines resulted in a similar increase in EB

formation, indicating that the effect of p53 knockdown on EB

formation is not specific for the mutant cells (Figure 4D).

Transient p53 knockdown in the Rps19 and Rpl5 mutant cells

led to a significant increase in primitive erythroid colony

formation, whereas the control siRNA had no effect on colony

formation (Figure 4E). Knockdown of p53 in Rps19 mutant cells

augmented primitive erythropoiesis to a lesser extent than the Rpl5

mutant. In both of the wild type ES cells, p53 knockdown

increased primitive colony formation relative to the effect of the

control (non-targeting) siRNA, attesting to the lack of specificity of

the p53 knockdown effect (Figure 4F). Of note, parental cells

transfected with control siRNA had decreased colony formation

when compared to non-transfected cells, implying inherent toxicity

of the transfection process.

Rpl5 mutant shows p53 independent G2/M cell cycle
delay at the ES stage

Cell cycle analyses at the ES cell stage showed a difference

between the Rps19 mutant and the Rpl5 mutant. The cell cycle

status of the Rps19 mutant was essentially unchanged, compared to

its parent cells (Figure 5A &B). On the other hand, the Rpl5

mutant exhibited a significant increase in the percentage of cells in

the G2/M phase with a concomitant decrease of cells in the G1

and S phases, consistent with a G2 cell cycle delay (Figure 5C &D).

The delay observed in the cell cycle was rescued by transfection of

the mutant with wild type Rpl5 cDNA. To get further insights into

the putative involvement of p53 in the observed cell cycle defect,

p53 was knocked down in the Rpl5 mutant. However, despite the

high efficiency of the knockdown (97%), as evaluated by qRT-

PCR, no difference was observed in the cell cycle. This data

strongly suggests that the G2 phase defect observed is due to a

mechanism independent of p53.

Rpl5 mutant ES cells grow more slowly compared to
parental and Rps19 mutant cells

Both mutants showed a growth defect starting at day 3 of

culture when compared to their respective parental cells (Figure

S5). Mutant cell counts were normalized to their parental cell

counts and represented as a percentage. The Rpl5 mutant ES cells

had a more severe growth defect when compared to the Rps19

mutant cells from days 3–5 of culture (Figure 6). This difference

may correlate with the early cell cycle abnormality seen in the Rpl5

mutant ES cells.

Discussion

DBA is a heterogeneous disorder that can manifest prenatally

with congenital anomalies and hydrops fetalis, or postnatally with

a failure of definitive erythropoiesis. In the present study, we

developed a disease model using mouse embryonic stem cells. This

model has the potential to elucidate the specific mechanisms

underlying divergent DBA phenotypes, which can manifest at any

point during development. Both primitive (yolk sac) and definitive

erythroid colonies can be easily and efficiently generated and

studied in parallel from the same differentiation culture. In

addition, this ES differentiation system can be used to ascertain the

response to potential experimental therapies (drugs or gene

therapy) aimed at modifying the disease phenotype at specific

stages of development. Robust gene knockdown with RNA

interference can be achieved in ES cells, as demonstrated by this

work. ES cells with gene trap mutations in other ribosomal

proteins are readily available and can be used to further analyze

correlations between genotype and phenotype. This report is the

first to use such technology in DBA.

We chose to study mouse ES cells with gene trap mutations in

Rpl5 as well as Rps19, the most common gene mutated in DBA. By

demonstrating protein haploinsufficiency, ribosome assembly

defects and definitive erythroid differentiation defects, we have

shown that our gene trap mutant mouse embryonic stem cell

Figure 7. Proposed model suggesting a secondary role for p53 in augmenting erythroid colony formation in mouse ES cell models
of Diamond Blackfan anemia. Wild type mouse embryonic stem (ES) cells can be differentiated into primitive erythroid colonies (A). In the normal
setting, colony formation can be further increased by p53 knockdown. (B) Rps19 mutant ES cells exhibit defective primitive erythroid colony
formation through an unknown p53-independent mechanism. However colony formation can be augmented by p53 knockdown through a separate
p53 dependent pathway. (C) The Rpl5 mutant ES cells show an early cell cycle defect at the ES cell stage that is p53-independent. These cells also
exhibit a similar defect in primitive erythroid colony formation through a p53- independent mechanism. p53 knockdown in these cells increases
colony formation to a greater degree than the Rps19 mutant cells, for unknown reasons.
doi:10.1371/journal.pone.0089098.g007
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models faithfully recapitulate the major features of DBA. In our

cellular model of DBA, both the Rps19 and Rpl5 mutants exhibit a

severe defect in primitive erythropoiesis, which is in accord with

others’ findings in zebrafish and induced pluripotent stem cells

[34–36]. We have expanded this finding to directly compare and

contrast primitive and definitive erythropoiesis in quantifiable

assays, which is a limitation in many other disease models. In the

Rps19 mutant ES cells, the defect in primitive erythropoiesis

actually appeared more severe than in definitive erythropoiesis,

suggesting the possibility of early embryonic loss in DBA.

Many ribosomal haploinsufficient animal models have demon-

strated that p53 knockdown can ameliorate their respective

erythroid and/or morphological phenotypes [37–40]. A lingering

question raised by these models is the specific role of p53 in the

ribosomal protein haploinsufficient cell. In our model, p53

inhibition increased EB formation and primitive erythropoiesis

in both the wild type and mutant ES cells, indicating that the role

of p53 in growth and differentiation is largely nonspecific. This

may reflect a general growth advantage seen in cells after p53

knockdown [41]. Possibly, this parallels the pro-survival effects of

glucocorticoid steroids, which are used clinically to stimulate

erythropoiesis in DBA patients [42,43]. Glucocorticoids and other

steroid hormones are well known stimulators of erythropoiesis in

stress conditions, and pharmacologic doses of glucocorticoids can

induce long-term proliferation of normal erythroblasts from a

number of different species. We propose that the intrinsic

differentiation defects caused by ribosomal protein haploinsuffi-

ciency are p53 independent, as there does not seem to be a direct

correlation between basal p53 protein levels and the increase in

colony formation after p53 knockdown. However, secondary

pathways appear to augment erythropoiesis in both normal and

haploinsufficient states in response to p53 knockdown, which can

compensate for the intrinsic defect in haploinsufficient cells (see

model Figure 7). For unknown reasons, this p53-dependent

augmentation is greater in the setting of ribosomal protein

haploinsufficiency. The mechanism underlying this finding

requires further study.

Based on cell cycle analyses, we found that Rpl5 mutant ES cells

exhibited a delay in the G2/M cell cycle transition that was

independent of p53 activation. Previous work by other investiga-

tors demonstrated a G0/G1 arrest in Rps19 mutant hematopoietic

progenitors [16,44]. Studies in Rps19 mutant fibroblasts showed a

similar arrest, whereas Rps24 mutants exhibited altered S phase

and decreased G2/M changes [45]. A recent report also describes

that disruption of both the 40S and 60S subunits leads to both a

G1 and a G2/M arrest [46]. It is unclear why different ribosomal

protein defects lead to different cell cycle abnormalities. Embry-

onic stem cells (both murine and human) have a capacity for

unlimited proliferation while retaining totipotency, and are

believed to exhibit a short G1 phase and a high proportion of

cells in S phase [47]. Consequently, the specific G2/M defect seen

in our Rpl5 mutant is particularly striking, and we are actively

engaged in determining the underlying mechanisms. Preliminary

experiments using microarrays and qRT-PCR (data not shown)

have uncovered significant differences in expression of certain cell

cycle genes in the Rpl5 ES cells when compared with parental

controls.

Overall, our data is generally consistent with a recent

publication from Teng et al. on depletion of RPL5/RPL11 in

human lung fibroblasts [48]. In agreement with their findings, we

did not observe induction of p53 in our Rpl5 mutant ES cells. We

also observed a significant delay in the progression through the cell

cycle, with consequent impaired growth rate. However, we found

an increased proportion of ES cells delayed at the G2/M phase,

whereas Teng et al. did not in their fibroblasts. This may be due to

intrinsic differences in the cell cycle between undifferentiated

totipotent ES cells and differentiated lung fibroblasts. It will be

important to determine if diminished translational capacity and

suppressed cyclin production account for the cell cycle abnormal-

ity in our Rpl5 mutant ES cells, as Teng et al. demonstrated in

RPL5-depleted lung fibroblasts.

In this work, we have demonstrated that the Rps19 and Rpl5

mutant gene trap mouse embryonic stem cell models are useful

tools to study the ontogeny of erythropoiesis and the pathophys-

iology of DBA. These two mutant ES cells exhibited similar

defective EB formation and patterns of primitive and definitive

erythropoiesis. Despite having similar differentiation defects, only

Rps19 mutant ES cells were found to have increased basal levels of

p53. Knockdown of p53 provided a nonspecific growth and

differentiation advantage to both normal and mutant ES cells.

Furthermore, the Rpl5 mutant ES cells exhibited a p53-indepen-

dent G2/M cell cycle defect. We conclude that the growth and

differentiation defects seen in ribosomal protein haploinsufficient

ES cells may not be due to p53 stabilization via inhibition of

MDM2.

Supporting Information

Figure S1 Rpl5 mutant ES cells corrected by stable
transfection with cDNA-containing vector. FuGeneH was

used to transfect the Rpl5 mutant line with a vector containing

Rpl5 cDNA and a puromycin resistance gene (Origene).

Transfected cells were grown in puromycin; resistant clones were

selected and expanded. Total RNA was isolated, cDNA was

synthesized, and qRT-PCR was performed for Rpl5 expression,

with b-actin and Gapdh used as reference genes to normalize the

data. A clone was selected which showed increased levels of Rpl5

mRNA.

(TIF)

Figure S2 Primitive erythroid colonies show expression
of mouse embryonic hemoglobin (Hbb-bH1). After isola-

tion of total RNA from primitive (A, upper panel) and definitive

(A, lower panel) erythroid colonies, qRT-PCR was performed to

assess the expression levels of Hbb-bH1. Results were normalized

with Gapdh and b-actin. The ratio of mouse embryonic

hemoglobin (Hbb-bH1) to the major adult mouse hemoglobin

(Hbb-b1) is shown (B). Primitive erythroid colonies showed high

expression of embryonic hemoglobin, while the definitive

erythroid colonies showed no expression. Scale bar represents

100mm.

(TIF)

Figure S3 Rps19 and Rpl5 mutant ES cells form less
definitive erythroid colonies in vitro. Day 7 embryoid

bodies were made into a single cell suspension, and 16105 cells

were plated in methylcellulose media containing FBS, L-

glutamine, monothioglycerol, BIT9500 (StemCell Technologies),

Stem cell factor, IL-3, IL-6, 3 U/ml Epo and IMDM. Definitive

erythroid colonies (BFU-E and CFU-E) were scored on day 7 in a

blinded fashion. Fewer erythroid colonies were produced in the

Rps19 (A) and Rpl5 (B) mutants, compared to the parent (three

independent pooled experiments plated in triplicate).

(TIF)

Figure S4 p53 quantification. (A) Western blot on EB cells

demonstrated an increase in p53 in the Rps19 mutant but no

increase in the Rpl5 mutant EB cells. (B&C) p53 knockdown of

Rps19 and Rpl5 mutants using RNA interference. Pooled siRNA

targeting p53 was used to transiently transfect mutant ES cells.
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Total RNA was isolated, cDNA was synthesized and qRT-PCR

was performed with either b-actin or Gapdh to normalize p53

expression. Over 90% knockdown of p53 was achieved in all

experiments in the Rps19 (B) and Rpl5 (C) mutant ES cells.

(TIF)

Figure S5 Rpl5 and Rps19 mutant ES cells exhibit
growth defects. Cells were seeded in 6 well plates in ES

maintenance media at a concentration of 56103 per well. Live cell

counts were performed daily for 5 days using Trypan blue. Both

mutants exhibited poor expansion in culture from days 3–5 (three

independent pooled experiments in triplicate for each cell type).

(TIF)

Methods S1. (DOCX)
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