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Abstract

Gestational exposure to environmental toxins such as nicotine may result in detectable gene expression changes in later life.
To investigate the direct toxic effects of prenatal nicotine exposure on later brain development, we have used
transcriptomic analysis of striatal samples to identify gene expression differences between adolescent Lister Hooded rats
exposed to nicotine in utero and controls. Using an additional group of animals matched for the reduced food intake
experienced in the nicotine group, we were also able to assess the impact of imposed food-restriction on gene expression
profiles. We found little evidence for a role of gestational nicotine exposure on altered gene expression in the striatum of
adolescent offspring at a significance level of p,0.01 and |log2 fold change .0.5|, although we cannot exclude the
possibility of nicotine-induced changes in other brain regions, or at other time points. We did, however, find marked gene
expression differences in response to imposed food-restriction. Food-restriction resulted in significant group differences for
a number of immediate early genes (IEGs) including Fos, Fosb, Fosl2, Arc, Junb, Nr4a1 and Nr4a3. These genes are associated
with stress response pathways and therefore may reflect long-term effects of nutritional deprivation on the development of
the stress system.
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Introduction

Smoking during pregnancy (SDP) is associated with a variety of

neonatal perturbations including low birth weight [1–6] and

sudden infant death syndrome (SIDS) [7], as well as later-

developing behavioural outcomes [4,8–10]. Animal studies have

identified both physical and behavioural abnormalities due to

prenatal nicotine exposure, including delayed development and

maturation [11–13], hyperactivity [14,15], increased markers of

anxiety [16], as well as cognitive performance deficits that reflect

aspects of impulse control and attention regulation in both adult

and adolescent animals [17,18]. The molecular basis of these

associations may involve alterations of the cholinergic system,

where the stimulation of nicotinic acetylcholine receptor (nAChR)

subunits is important in a variety of neuronal processes throughout

development [19]. Changes in gene expression of nAChR subunits

and regulators of acetylcholine neurotransmission have been

observed in animals prenatally exposed to nicotine [20–22]. Links

between nAChR function and the dopamine system are also

highlighted by the observation of an increase in dopamine

receptor D5 (Drd5) mRNA expression in the striatum of adult

rats gestationally exposed to nicotine [18], as well as a reduced

nicotine-induced dopamine release in adolescent rats [23].

Further, the first large-scale gene expression studies using custom,

pathway focused microarrays have revealed a role for cell adhesion

and cell death systems in limbic brain regions of adolescent rats

exposed to nicotine in utero [24,25].

A potential problem with studying the effects of gestational

nicotine on molecular systems is that nicotine administration

additionally affects food intake, weight gain and fluid intake

[13,18,26,27], resulting in a reduced ability to distinguish the

effects of nicotine from those of nutrition or other confounders.

Matching food intake to nicotine-exposed animals via experimen-

tal controls may alleviate these problems. However, both

undernutrition and the likely stress that is introduced by imposed

food-restriction may also affect gene expression profiles via their

effect on hypothalamic-pituitary-adrenal (HPA) axis development

[28]. While gestational food-restriction and nicotine exposure are

associated with some behavioural similarities (i.e. increased

nicotine consumption and omission errors in the 5-choice serial

reaction time task [5-CSRTT]), there exist substantial behavioural

differences between these groups [17]. For example, nicotine
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exposed offspring display hyperactivity, increased number of open

arm entries in the elevated plus maze and increased numbers of

anticipatory responses in the 5-CSRTT. This suggests that while

there may be shared molecular signatures, a significant proportion

is likely to be distinct. Nevertheless, any differences due to

gestational food-restriction remain of considerable interest. It has

been established that growth restriction induced by maternal

undernutrition has long-term effects on mRNA expression in

offspring. For example, sirtuin 1 (Sirt1) is reduced [29] and somatic

cytochrome c (CYCS) [30] is increased in the liver of offspring

gestationally exposed to energy restriction. Further, hypothalamic

regulation of metabolic processes may also be altered, as evidence

suggests increased expression of the leptin receptor and fat mass

and obesity-associated (FTO) gene in gestationally malnourished

offspring hypothalamus [31,32]. The effects of maternal under-

nutrition on gene expression in the striatum, however, have not yet

been studied.

To further our understanding of the long-term effects of

gestational nicotine exposure on brain development, we have

conducted the first genome-scale mRNA expression profiling study

in adolescent rats exposed to nicotine in utero. The analyses have

been performed in the striatum, a brain structure that is sensitive

to nicotine exposure [33] and is implicated in the development of

ADHD [34–38].

To control for potential confounding effects of differences in

food intake between the nicotine-exposed group and controls, we

included an additional group of animals that were matched for

food-intake with the nicotine-exposed group. Given the current

literature, we hypothesised that the nicotine group would show

dysregulation of genes involved in nAChR receptor signaling and

dopamine function. In addition, we expected any differences

observed due to food-restriction would be distinct from the effects

of nicotine [33] yet may reflect a disturbance in the development

of metabolic or stress related pathways.

Materials and Methods

Animals
The treatment of animals complied with the UK Animals

(Scientific Procedures) Act 1986 and the Code of Practice of the

Institute of Psychiatry. The work was carried out under the Project

License PPL 70/5569 ‘‘Psychopharmacology of nicotine depen-

dence’’ issued by the Home Office of the British Government in

2003 and amended in 2006. Nicotine was administered in the

drinking water of pregnant rats in order to avoid stress of invasive

surgical procedures involving implants. Supplementary water was

made available for drinking to minimise the consequent reductions

in fluid intake. The minimum number of animals consistent with

adequate statistical power was used. Animals were sacrificed by

cervical dislocation.

Both male and female Lister hooded rats (Harlan Olac, Bicester,

UK) were used. They were housed individually (except during

mating) in a temperature (2162uC) and humidity (50610%)

controlled environment on a 12 h light–dark cycle (lights on from

0700 h) and had ad libitum access to drinking fluids (tap water or

nicotine solutions).

Females were divided into three separate groups according to a

randomised block design balanced to their body weight into:

nicotine exposure (Nic, n = 8), control group (Con, n = 8) and a

food-restricted (pair-fed) group (Con-Pf, n = 9) that was matched

for food intake to the Nic animals, was also established. Pair-fed

animals were provided each day with the amount of food eaten by

matched nicotine-exposed animals on the previous day; their

access to water was not restricted.

Nicotine bitartrate (Sigma, USA) was dissolved in the drinking

water at varying concentrations and nicotine-containing water was

adjusted to the pH of drinking water with 0.001 NaOH.

Habituation to increasing concentrations of nicotine solution

(0.02, 0.04, 0.06 mg/ml) as the only source of fluid was introduced

to the Nic exposed group 3-weeks before mating.

Females were controlled according to their oestrous cycle.

Females in pro-oestrus and oestrous were mated during the dark

phase of the day at the beginning of the fourth week of nicotine

exposure. Nicotine solution was not withheld before mating. The

day on which a vaginal plug or spermatozoa in the vaginal smear

were found was defined as gestational day 0.

Pregnant females from nicotine, control and pair-fed groups

were weighed twice weekly. Consumption of nicotine solution was

assessed on a daily basis. Females drinking less than 10 ml of

nicotine solution on any particular day were given access to tap

water for 3 min. Food consumption was evaluated 3 times a week.

All dams were checked twice daily (before 8am and after

4.30pm) starting a few days before delivery. Deliveries completed

by 8am were assigned to postnatal day 1 (PND1). Pups born later

that day were assigned to PND1 on the following morning. Litters

were examined on PND1 for obvious morphological anomalies

(e.g., missing digits, facial malformations, etc.), sexed by relative

ano-genital distance and, in the case of litters with more than 8

offspring, culled randomly to 8 pups with equal numbers of males

and females per litter whenever possible. 8–9 litters were used to

assess birthweight of offspring from each group. The dam was first

removed from the home cage and birthweight measurements were

taken between 9.00am and 4.00pm.

Our previously published work provides additional details

regarding the nicotine administration protocol used in the present

study [17]. Briefly, using this protocol we obtained 81.1623.2 ng/

ml blood nicotine in those dams assessed. There were no

significant effects of nicotine on litter characteristics: number of

animals per litter, the numbers of females and males per litter and

sex ratio (see [17] for details).

Data concerning maternal fluid intake, food consumption and

offspring bodyweight were analysed for between group differences

using 1-way ANOVA. Significant differences between the three

groups were further assessed post-hoc using Tukey’s Honest

Significant Difference test (HSD), implemented in R2.10.1.

Sample Preparation
Experimentally naı̈ve male offspring, littermates of animals used

in the previously published behavioural study [17] from the three

gestational conditions were used for microarray analysis: a)

prenatal nicotine exposed (Nic, n = 8), b) controls (Con, n = 10)

and c) pair-fed (Con-Pf, n = 10) resulting in a total of n = 28.

Results presented here (e.g. in Table 1) are for this subset of the

larger number of offspring generated for the previously published

behavioural study; the data in Table 1 are therefore derived from,

but not the same as, those in [17].

Rats were killed at post-natal day (PND) 35 to 42 by

decapitation and brains were immediately dissected. Equal

numbers of animals from each group were extracted on the same

day. The striatum was removed, snap frozen on dry ice and stored

at 280uC until RNA extraction. RNA was extracted using Qiagen

AllPrep RNA/DNA minikits (Qiagen, UK) and treated with an

RNase-free DNase1 to eliminate genomic DNA contamination.

Purity and quality of total RNA samples was assessed using the

NanoDrop Spectrophotometer and Agilent RNA 6000 pico kit

(Agilent, UK), according to the manufacturer’s instructions (see

File S1).

Early Environmental Effects on Gene Expression
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Microarray Processing
cDNA conversion and microarray hybridisation was performed

using standard protocols provided by the manufacturers (File S1).

To avoid possible batch effects, samples were spread across

hybridisation date, fluidics machine and fluidics module in a

balanced manner (details available from corresponding author).

Microarrays used in the current study were the Affymetrix rat

GeneChip 1.0st array. 2 Con samples were removed after array

scanning due to clear data quality issues. An outlying sample (from

Nic group) was additionally removed after data processing.

Statistical analysis of microarray data
The Robust Multichip Algorithm (RMA) [39] as implemented

in the affy package from Bioconductor was used to quantile

normalise the expression data and normalised expression summa-

ries were used for all downstream analyses conducted in the

statistical software package R version 2.10.1. 25 arrays were

included for downstream analysis (Nic = 7, Con = 10, Con-Pf = 8).

Using the genefilter package in the Bioconductor suite, all probe-sets

with intensity less than the median for the 25 arrays were removed

from the data to ensure that non-expressed genes were not being

analysed. This filtering procedure left 14,073 probe-sets for further

analysis. Quality control metrics were employed to assess

microarray data quality (Methods S1 in File S1 and Figure S1

in File S1).

The 25 arrays displayed similar expression profiles, with

Pearson Product moment correlations between each array ranging

from 0.97 to 0.99. The Shapiro-Wilk test of normality on the data

rejected the normal distribution for 25% of probes at the p,0.05

level. Given that the majority of probe-sets were normally

distributed, we continued downstream analysis without transform-

ing the data further, consistent with approaches used by other

groups [40].

Pair-wise mean differences in gene expression between groups

were analysed using the Student’s t-test. Following recommenda-

tions from the MicroArray Quality Control (MAQC) project [41]

we used a combination of fold change and p-value thresholds to

define significant differential expression, defined as a |log2 fold-

change of $0.5| in combination with a p-value of p,0.01.

Quantitative reverse transcription PCR (qRT-PCR) analysis
of differentially expressed genes

Ten genes (Fos, Fosl2, Dusp1, Arc, Junb, Egr2, Nr4a3, Nr4a1,

Slc25a5 and Npas4) were chosen for validation using qRT-PCR.

These genes were chosen as they represented genes that were

sensitive to imposed food-restriction i.e. they were up-regulated in

the Con-Pf group when compared to both Con and Nic groups.

Assays were performed with inventoried TaqMan assays (Applied

Biosystems, UK) using standard protocols on the same total RNA

samples as the microarray experiment (File S1).

Comparisons between groups were performed using a one-

tailed Student’s t-test on normalised data, using the comparative

Ct method. One of the assays (Npas4) was removed from the

analysis due to low quality data.

Ingenuity Pathways Analysis (IPA)
IPA was used to identify functional networks and significantly

associated biological pathways amongst the significantly differen-

tially expressed genes (IngenuityH Systems, www.ingenuity.com)

(see File S1 for details). We considered pathways significant at

p,0.05.

Gene Set Enrichment Analysis (GSEA)
To investigate the specific role of food-restriction induced stress

response genes in the striatum, and to complement the findings

from IPA, we employed GSEA [42]. We used the desktop

application of this software for our analysis [43], which is available

from the Broad Institute (http://www.broadinstitute.org/gsea/).

From the molecular signatures database (MSigDb) (http://www.

broadinstitute.org/gsea/msigdb/genesets.jsp) we downloaded the

‘RESPONSE_TO_STRESS’ gene-set, which contains genes

annotated by the GO term GO:0006950 and pertains to: ‘‘a

change in state or activity of a cell or an organism (in terms of

movement, secretion, enzyme production, gene expression, etc.) as

a result of a stimulus indicating the organism is under stress. The

stress is usually, but not necessarily, exogenous (e.g. temperature,

humidity, ionizing radiation)’’.

For genome-wide gene lists from both Nic vs. Con-Pf and the

Con vs. Con-Pf comparisons, we calculated a score that accounted

for the strength of both p-value and fold-change (-log10(p-value) x

Table 1. Nicotine administration and food-restriction have effects on pregnancy and birth characteristics.

Measure Timing F P-value Con Nic Con-Pf

Dams

Mean body weight Week before pregnancy 12.38 2.50E-04 252.266.2 213.966.5* 223.464.1*

(g) Pregnancy 13.30 1.63E-04 289.166.7 247.866.8* 260.363.5*

Mean food consumption Week before pregnancy 13.06 1.83E-04 15.660.4 13.360.4* 13.760.0*

(g/day) Pregnancy 10.23 7.24E-04 21.460.4 17.860.9* 19.360.0*

Mean food consumption Week before pregnancy 0.05 0.95 61.961.3 62.361.5 61.761.2

(g/Kg bodyweight/day) Pregnancy 0.82 0.46 74.361.4 71.762.3 74.261.1

Mean soln consumption Week before pregnancy 19.14 1.53E-05 24.961.2 14.560.7*# 18.961.4*

(ml) Pregnancy 33.40 2.16E-07 45.062.7 21.861.7*# 38.061.6

Mean soln consumption Week before pregnancy 10.97 4.97E-04 98.563.6 68.263.4*# 84.565.7

(ml/Kg bodyweight/day) Pregnancy 33.56 2.07E-07 155.166.7 88.166.2*# 146.065.8

Offspring

Bodyweight (g) PND1 5.8 9.08E-03 5.360.1 4.760.1* 5.160.1

*p,0.05 compared to Con, #p,0.05 compared to Con-Pf.
doi:10.1371/journal.pone.0088896.t001
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log2(fold-change)). This enabled us to rank the gene lists, whereby

we used the GSEA pre-ranked function in the GSEA suite to test

for enrichment; using this score we considered the gene-set

significant at a p,0.05. Genes that contribute to the enrichment

score are defined as those that appear in the ranked list before the

maximum enrichment score is reached and therefore describe

contributing genes that do not meet the significance thresholds

imposed at the single gene level.

Global DNA methylation analysis by the Luminometric
Methylation Assay (LUMA)

Global DNA methylation was quantified using LUMA as

previously described [44] (see File S1). Differences in global

methylation status were assessed using pair-wise Wilcoxon rank

sum tests between groups.

Assessment of methylation patterns at CpG sites within
Fos and Fosb

Changes in gene expression as a result of external stimulation

may involve multiple DNA or histone modifications that

contribute to an active (or repressive) chromatin state. One such

modification is DNA methylation, which is considered a marker of

repressed genes.

Promoter CpG sites within Fos and Fosb were analysed using a

bisulphite-based method on the Sequenom mass-array system (see

Methods S1 in File S1 and Table S1 in File S1). A Student’s t-test

at each site for each group-pair was used to assess significant

difference between groups.

Results

Gestational nicotine treatment and food-restriction affect
body weight and solution consumption in dams

Table 1 displays bodyweight, food consumption and solution

consumption of dams used in the present study (i.e. a subset of

dams described in [17]). As previously described in the behav-

ioural study [17] both the Nic and Con-Pf groups differ

significantly for a number of variables compared to controls.

Lower dam body weight in both the Nic and Con-Pf groups

compared with controls is likely due to a combination of reduced

solution and food intake (Table 1). The significantly lower birth

weights observed for the Nic group compared with Con

(Con = 5.360.1 g, Nic = Con = 4.760.1 g, p,0.05) in the off-

spring described in the present study (i.e. experimentally naı̈ve

littermates of a subset of dams described in [17]) suggest a specific

effect of nicotine on this variable as there was no difference

between Con-Pf and Con groups (Con = 5.360.1 g, Con-

Pf = 5.360.1 g, p = NS).

Microarray analysis reveals limited effects of gestational
nicotine treatment but significant effects of gestational
food-restriction on striatal mRNA expression profiles

Three group comparisons were performed; Nic versus Con,

Con versus Con-Pf and Nic versus Con-Pf (Figure 1). We found

little evidence for gene expression differences between the Nic

group and the Con group, with just a single gene, LRRGT00176

reaching significance (log2(fold change) = 20.5, p-value

= 2.20610203, Table 2). In contrast, we found significant

differential expression (p,0.01 and |Fold change $0.5|) in both

comparisons involving the Con-Pf group (Figure 1). 26 genes were

differentially expressed in the Con versus Con-Pf comparison and

12 were differentially expressed in the Nic versus Con-Pf

comparison (Table 2) using the designated criteria. These data

suggest that imposed food-restriction during gestation is capable of

affecting the expression of genes much later in life. To assess

whether these changes were true positives, we assessed the

significance of these genes using the false discovery rate (FDR)

q-value (implemented using the r q-value package [45]) as a method

for correcting for the number of tests performed (correcting for the

original 14,073 probesets analysed) (Table 2). The result of this

correction showed low confidence in the finding of differential

LRRGT00176 expression due to gestational nicotine (FDR

q = 0.24). However we could be confident that genes called as

differentially expressed due to food-restriction using our original

criteria were true positives, with multiple genes reaching

significance at an FDR q,0.05 (Table 2).

12 genes were found to be significantly differentially expressed

in both the Nic vs. Con-Pf comparison and the Con vs. Con-Pf

comparison, suggesting that imposed food-restriction had a

dominant effect on striatal gene expression. These genes were

predominantly immediate early genes (IEGs) and included; Fos,

Fosl2, Junb, Arc, Egr1, Nr4a1 and Nr4a3. To confirm the effects of

gestational food-restriction on striatal gene expression we used

qRT-PCR to assess differential expression of 9 food-restriction-

sensitive genes as a validation set. Significant differential expres-

sion in the expected direction was confirmed for all but Junb using

qRT-PCR (90%, Table 3 and Figure 2).

Prenatal food-restriction affects genes involved in stress
response pathways

We aimed to characterise the functional relationship between

genes that were regulated by prenatal food-restriction. To this end,

we tested the 12 genes that were differentially expressed in both

the Nic vs. Con-Pf and Con vs. Con-Pf comparisons for pathway

enrichment using Ingenuity pathways analysis (IPA). 7 genes in the

set formed an interconnected network (score = 19, Table 4,

Figure 3). Further, functional enrichment analysis revealed that

this gene list was enriched for genes involved in the stress response

with ‘‘Corticotrophin releasing hormone signalling’’ (ratio = 2/

136, p = 1.98610-03, Figure 3) and ‘‘Glucocorticoid receptor

signalling’’ (ratio = 2/280, p = 8.64610-03) featuring in the top 5

most enriched pathways (Table 5). These enrichment analyses

show that while only a few genes are regulated by food-restriction,

they appear to be functionally cohesive and related to develop-

ment of the stress system.

Additional evidence for the role of prenatal food-restriction on

stress pathways was sought using an independent analysis method.

Genome-wide gene lists generated from the Con vs. Con-Pf and

Nic vs. Con-Pf comparisons were analysed using Gene Set

Enrichment Analysis (GSEA). This method does not rely on

user-defined differential expression cut-offs but rather provides a

measure of pathway enrichment at the top (or bottom) of a ranked

gene list. To specifically test the hypothesis that genes involved in

stress responsiveness are affected by gestational food-restriction we

used GSEA to assess enrichment for genes in the ‘RESPONSE

TO STRESS’ gene ontology (GO) category. We found significant

enrichment for this pathway in the Con vs. Con-Pf comparison

ranked gene list (p = 0.04, Figure 4) and a trend for significance in

the Nic vs. Con-Pf comparison (p = 0.07). The genes that

contributed to the enrichment signal in both lists are given in

Table 6. As GSEA analysis does not rely on an arbitrary cut-off to

be applied to the data it provides additional insight into the

potential role of genes that do not reach statistical significance but

are, nevertheless, present towards the top of the gene list. Using

these analyses we identified further genes that are regulated by

food-restriction that were of potential interest. Like the immediate

early genes, a subset of these genes is involved in the cellular

Early Environmental Effects on Gene Expression
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response to environmental stress. For example we observed up-

regulation of Hspb1, Gadd45A/G and Ddit3 which are regulated by

heat shock, DNA damage and endoplasmic reticulum (ER) stress,

respectively [46-48]. Further, the anti-proliferation factor Btg2 is

also up-regulated. Interestingly, this gene lies within a quantitative

trait locus (QTL) for fear conditioning traits [49], suggesting a link

to anxiety-like behaviours. Collectively, these data suggest that

gestational food-restriction results in long term up-regulation of

multiple stimulation-responsive genes whose role is to induce an

appropriate cellular response to a variety of environmental

stressors.

Global DNA methylation status and methylation at
specific promoters does not explain food-restriction-
induced gene expression changes

Given our observations of the up-regulation of stress-response

genes due to food-restriction, we hypothesised that early stress

leads to epigenetic reprogramming that primes neuronal cells for

stressful encounters later in life. To assess the contribution of DNA

methylation status on food-restriction-induced gene expression

changes we assayed both global DNA methylation changes and

locus-specific methylation patterns at Fos and Fosb genes. We

found no evidence for differences in global methylation status

between any of the groups analysed (Nic vs. Con-Pf, W = 45,

p = 0.70; Con vs. Con-Pf, W = 54, p = 0.50; Nic vs. Con-Pf

W = 48, p = 0.28). Further, the majority of CpG sites assessed in

the promoter regions of Fos and Fosb in this study displayed low

methylation levels and very little variation in methylation status

across samples (Figure S2 in File S1; average variance

Fos = 9.661024, Fosb = 1.861023). We found no evidence for

DNA methylation differences between any of the groups for either

of the genes tested.

Discussion and Conclusions

Prenatal nicotine exposure has limited effects on mRNA
expression in the striatum of adolescent rats

We did not find any striking effects of prenatal nicotine

exposure on gene expression profiles in the striatum of adolescent

rats. However, six previous studies have reported mRNA

expression differences due to prenatal exposure to nicotine across

various brain regions [18,20,24,25,50]. We do not replicate the

majority of these previously observed nicotine-induced changes

(for a summary of previous observations see Table S2 in File S1).

The lack of replication does not appear to be due to the thresholds

that we used to call genes as differentially expressed as we observe

just 12 previously reported genes to be differentially expressed

when we apply a more relaxed threshold to the data (p,0.05, no

Figure 1. Volcano plots representing group comparisons for all genes included in the analysis. x-axes represent log2 fold-changes and y-
axes represent the –log10(p-values) associated with the t-statistic. Vertical dotted lines are positioned at a log2 fold-change of 0.5 or 20.5 and
horizontal dotted lines are positioned at the equivalent of p = 0.01. In red are those genes that are differentially expressed at p,0.01 and log2 fold-
change.0.5 or ,20.5. A) Nic vs. Con B) Nic vs. Con-Pf and C) Con vs. Con-Pf.
doi:10.1371/journal.pone.0088896.g001
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fold change threshold, Table S2 in File S1). This overlap is no

greater than we would expect by chance (Nic vs. Con, empirical

p = 0.52; Nic vs. Con-Pf, empirical p = 0.69, see Methods S1 in

File S1 for statistical analysis). Alternative explanations for the lack

of replication are differences in study design and the choice of

brain tissue analysed. We can reasonably expect that the effects of

prenatal nicotine exposure will vary depending on brain region

assayed, as well as developmental time-point. As such it is perhaps

not surprising that we fail, in the adolescent striatum, to replicate

findings from previous studies. Finally, we cannot exclude

potential false negative results in our data that would reflect

subtle effects of gestational nicotine on gene expression. However

we would require larger sample sizes to robustly identify

differentially expressed genes below the significance thresholds

that were used in this study.

Maternal food-restriction has significant effects on mRNA
expression in adolescence

In contrast to the effects of prenatal nicotine exposure, we

identified striatal gene expression changes following restricted food

access to pregnant dams. While it is known that mRNA expression

of a selection of genes in both the liver and tissues of the HPA axis

is affected by maternal undernutrition [29–32], we have provided

the first evidence that the striatum is also affected. The set of genes

identified contains multiple families of immediate early genes (Fos,

Fosl2, Junb, Arc, Dusp1, Dusp14, Egr2, Nr4a1 and Nr4a3), which are

known to be regulated by multiple external stimuli [51–54]. These

genes are enriched for two stress-related pathways – ‘‘Corticotro-

phin releasing hormone signalling’’ and ‘‘Glucorticoid receptor

signalling’’ suggestive of food-restriction-induced developmental

regulation of the organismal stress system. IEG expression is

predominantly activity regulated and levels of Fos mRNA are often

used as a marker of neuronal activity. As activity-induced

transcription factors, IEGs have wide and varied effects on gene

regulation that have been associated with multiple brain processes.

Arc is an important regulator of hippocampal function, where

knock-down results in impairment of the maintenance phase of

long-term potentiation and hampered long term spatial memory

[55]. Fos has also been described to have a role in learning and

memory, with increased Fos expression in the medial prefrontal

cortex being linked to aversive learning [56]. Furthermore,

administration of amphetamine-based psychostimulants, including

cocaine, causes coincident up-regulation of IEG expression and
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Table 3. qRT-PCR results for differentially expressed genes in
microarray analysis.

Con vs Con-Pf Nic vs con-Pf

T p.value t p.value

Fosl2 24.46 1.91E-04 3.17 3.10E-03

Fos 26.10 5.13E-06 4.42 3.42E-04

Nr4a1 22.96 4.28E-03 3.66 1.11E-03

Nr4a3 24.46 1.91E-04 3.17 3.10E-03

Slc25a5 21.72 0.05 1.98 0.04

Arc 23.78 8.54E-04 3.72 1.11E-03

Junb 21.78 0.05 1.59 0.07

Dusp1 23.71 8.40E-04 3.17 2.94E-03

Egr2 22.39 0.01 1.76 0.05

doi:10.1371/journal.pone.0088896.t003
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synaptic dopamine release [57–62], suggesting an impact of IEG

expression on the reward circuitry in the brain. This is of

particular interest as these drugs primarily influence neurobehav-

ioural features such as attention, impulsivity and hyperactivity

[63]. Given the time from exposure to gene expression measure-

ment and the rapidity of the culling procedure (neck dislocation,

2–3 seconds per animal), we interpret the observed gene

expression differences to be due to baseline changes in IEG

expression. Nevertheless, we cannot completely exclude the

possibility of theoretical pair-feeding-induced increased sensitivity

to stress and animals’ reactivity to culling. Little is known about

the roles of IEGs at baseline, and indeed whether baseline

differences in gene expression have an effect on stimulation-

induced expression. Adaptation of gene expression to repeated

immobilisation stress is observed for Fos mRNA in mice, with

reduced induction being observed in multiple brain regions upon

activation by acute stress [64]. This suggests that Fos regulation

may be reprogrammed in response to repeated encounters with

stressful conditions. Further, It should also be noted that

evolutionary adaptations to stressful conditions between yeast

species involve baseline differences in the expression of stress-

response genes [65]. These adaptive expression profiles may

contribute to the differences observed in stimulus-induced

expression of such genes [65]. In such a model, stress during

early development would prime cells for later stressful encounters

through baseline up-regulation of stress-response genes such as Fos.

Further work is required to describe the effects of gestational food-

restriction on IEG-dependent changes in learning, memory,

reward and stress responses.

To confirm up-regulation of stress-response genes we performed

Gene Set Enrichment Analysis (GSEA). We reasoned that the

gene ontology (GO) biological function category ‘‘RESPONSE

Figure 3. Ingenuity Pathways Analysis of genes identified as differentially expressed in the Nic vs. Con-Pf and the Con vs. Con-Pf
comparisons. On the left is the top network identified consisting of 7/12 genes in our list, and on the right is the top associated canonical pathway.
Highlighted red are the genes in our list that were over-expressed due to food-restriction.
doi:10.1371/journal.pone.0088896.g003

Figure 2. qRT-PCR validation of 9 food-restriction-sensitive genes. The y-axis represents the log2(fold changes) observed in both
comparisons involving the food restricted group. Differences in gene expression using qRT-PCR were consistent with microarray data. The dashed
line represents the fold change cut-off (log2(fold change) .0.5) used in the microarray analysis.
doi:10.1371/journal.pone.0088896.g002
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TO STRESS’’ would be enriched in ranked gene lists from the

Con vs. Con-Pf and the Nic vs. Con-Pf comparisons. This was the

case for the Con vs. Con-Pf comparison. As this analysis was not

restricted to arbitrary differential expression cut-offs, it allowed us

to delve further into the data to identify additional potentially

important genes that did not meet our threshold requirements.

Interestingly, we observed a number of additional genes that

appeared near the top of the ranked list and are involved in the

cellular response to stress. These genes include Hspb1, Gadd45A/G

and Ddit3 that are responsive to heat shock, DNA damage/growth

arrest and endoplasmic reticulum (ER) stress [46–48]. The reason

for their persistent up-regulation is not entirely clear. However, we

speculate that it may be similar to the increased baseline

expression of IEGs – early developmental induction of the stress

response through food-restriction induces reprogramming and an

altered baseline level of mRNA expression. Food-restriction-

induced early induction of stress response genes is likely to have

consequences on normal brain development. For example, over-

expression of Gadd45a in the developing mouse cortex is associated

with decreased neurite complexity, soma hypertrophy and

increases in cell death [66]. Chronic up-regulation during

adolescence may have further detrimental consequences related

to neuronal function and cell death. Ddit3 is responsive to ER

stress, whereby exacerbation of ER stress using 1-Methyl-4-

phenylpyridinium ion (MPP+) increases its expression level [67]

and may contribute to Parkinson’s disease. Again, we do not know

how baseline up-regulation of Ddit3 affects the adolescent brain,

although we speculate that defective ER stress signalling pathways

will affect neuron integrity. Interestingly, changes in genes

involved in the cellular response to stress may also have an effect

on the organismal response to stress. This is evident from a recent

study describing the role of mutations in C. elegans DNA repair and

apoptotic pathway genes conferring resistance to environmental

stressors such as heat shock and osmotic stress [68]. Early

developmental alterations in similar pathways may display similar

effects. Future work should aim to further understand whether

food-restriction during gestation is capable of altering both cellular

and organismal responses to stress stimuli.

Recent epigenetic studies have provided a framework through

which the environment can shape gene expression patterns in later

life and alter offspring behaviour [69–71]. For example, maternal

protein restriction is associated with a reduction in DNA

methylation at the promoter of the Cyclin-dependent kinase

inhibitor 1C (Cdkn1c) promoter [72] which results in an increase in

mRNA levels. This suggests that early protein deprivation is

associated with epigenetic reprogramming of a certain set of genes

whose dysregulation may be responsible for alterations in

behaviour. We hypothesised that food-restriction-induced up-

regulation of IEG expression may be due to early acquired

epigenetic marks that persist into adolescence and explain the

observed differences in mRNA regulation. However, we failed to

find any global DNA methylation effects or changes in patterns of

DNA methylation across two regions within Fos or Fosb. Our

results on global DNA methylation are consistent with studies in

humans [73] and suggest that specific regulatory regions govern

the observed gene expression patterns. Given the very low and

invariant methylation levels at Fos and Fosb promoters it is was

unlikely that they would harbor critical sites of regulation.

Nevertheless, these data do not rule out the potential of DNA

methylation or alternative epigenetic marks to set up an early

program of gene expression that persists into adolescence.

Limitations
The unexpected limitation of the current study was a potential

interaction between prenatal undernutrition and different stress

levels induced by either nicotine exposure or enforced food

availability. Our intention was to control for reduced food intake

Table 5. The top 5 canonical pathways identified for genes
differentially expressed due to food-restriction.

Canonical pathway p-value Ratio

Corticotrophin Releasing Hormone Signalling 1.98E-03 2/136 (0.015)

NRF2-mediated Oxidative Stress Response 3.91E-03 2/183 (0.011)

RAR Activation 3.91E-03 2/181 (0.011)

ERK/MAPK Signalling 4.33E-03 2/192 (0.01)

Glucocorticoid Receptor Signalling 8.64E-03 2/280 (0.007)

doi:10.1371/journal.pone.0088896.t005

Figure 4. Gene set enrichment analysis (GSEA) of the GO
pathway ‘‘RESPONSE_TO_STRESS’’ in the Con vs. Con-Pf
comparison. The input gene list was all genes in the microarray
analysis ranked by –log10(p-value)6log2(fold change). The enrichment
score profile displays an enrichment of pathway hits at the top of the
list, suggesting multiple top-ranked genes involved in the ‘‘Response to
stress’’ pathway.
doi:10.1371/journal.pone.0088896.g004

Table 4. IPA identified a functional network of genes that included 7 genes differentially expressed due to food-restriction.

Network functions Molecules in network Score

Cell Cycle, Gene Expression, Cellular
Development

26s Proteasome, Akt, ATP9A, C8ORF4, Creb, CREB-NFkB, CyclinA, DUSP1, DUSP14, EGR2, ERK1/2, FOS, FSH,
GK7P, hCG, IG9, Insulin, Jnk, JUNB, LDL, Lh, LOC81691, Mapk, Mek, NFkB (complex), NGF, NR4A1, NR4A3,
OVGP1, PDGF BB, PDLIM3, Pka,Pkc(s), TP53I11, ZFP386

19

In bold are the genes that were represented from our list of differentially expressed genes.
doi:10.1371/journal.pone.0088896.t004

Early Environmental Effects on Gene Expression

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e88896



experienced in the Nic group by using a pair-feeding protocol.

However, as gene expression changes in Con-Pf group were seen

over and above any small nicotine-induced differences it may

suggest either ameliorating effects of nicotine or existence of

additional factors, e.g., higher stress, in pair-fed animals. Thus, we

were able to control for undernutrition (using Con-Pf) as well as

the stress induced by pair-feeding (using Con), but not for a

potential stress x undernutrition interaction. Unfortunately, there

is no obvious way to do this in one experiment. Nevertheless,

under our study conditions, there were no strong effects of

gestational nicotine exposure on striatal gene expression.

Conclusion
Our work has highlighted a role for maternal food-restriction on

the long-term regulation of immediate early genes and stress-

response genes in the striatum of adolescent rats. Future studies

should therefore focus on establishing the link between food-

restriction, stress, IEG expression and phenotypic outcome.
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