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Abstract

Background: Refluxogenic effects of smoking and alcohol abuse may be related to the risk of esophageal squamous cell
carcinoma (ESCC). The present study attempts to clarify the effects of continuous taurocholic acid (TCA) exposure, which is
neither mutagenic nor genotoxic, on ESCC progression.

Methods: A squamous carcinoma cell line (ESCC-DR) was established from a tumor induced in a rat model of
gastroduodenal reflux. ESCC-DR cells were incubated with 2 mM TCA for $2 months. The effects of continuous TCA
exposure were evaluated in vitro on cell morphology, growth, and invasion and in vivo on xenograft tumor growth in nude
mice. Moreover, the mean level of secreted transforming growth factor (TGF)-b1 and vascular endothelial growth factor
(VEGF) proteins in cell culture supernatants and mRNA synthesis of TGF-b1 and VEGF-A of ESCC cells were measured. The
angiogenic potential was further examined by a migration assay using human umbilical vein endothelial cells (HUVECs).

Results: Continuous TCA exposure induced marked formation of filopodia in vitro. Expression levels of angiogenic factors
were significantly higher in the cells treated with TCA than in control cells. Tumor xenografts derived from cells pre-exposed
to TCA were larger and more vascularized than those derived from control cells. In addition, TCA exposure increased HUVEC
migration.

Conclusion: Continuous TCA exposure enhanced ESCC progression due to reduced cell loss in vivo. Cell loss was inhibited
by TCA-induced vascular endothelial cell migration, which was mediated by TGF-b1 and VEGF-A released from ESCC cells.
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Introduction

Esophageal cancer can arise as esophageal squamous cell

carcinoma (ESCC) or esophageal adenocarcinoma (EAC), which

have distinct etiological and pathological characteristics. Many

patients with esophageal cancer develop ESCC in Asian countries

[1]. It is widely accepted that ESCC is associated with smoking

and alcohol consumption [2,3]. Tobacco and alcohol abuse

decrease lower esophageal motility, delay gastric emptying, and

increase gastric secretion [4–8]. The refluxogenic effects of

smoking and alcohol abuse induce gastroduodenal reflux, which

is associated with the development of ESCC. Gastrectomy is also

associated with the subsequent development of distal esophageal

cancer [9–11], and symptomatic duodenogastric reflux is the most

common post-gastrectomy syndrome [12,13]. Moreover, several

research groups including ours have demonstrated that not only

EAC but also ESCC can develop in animal models of

gastroduodenal reflux with bile acids [14–18].

Bile acids are one of the most toxic factors for mucosal injury in

the carcinogenesis of the upper digestive tract [19,20]. Although

there is a wide variation in the relative individual toxicity of bile

acid fractions, various mechanisms of bile acids effects on cancer

development and progression have been reported. Jürgens et al.

reported that Barrett’s carcinoma cell lines and patients’ meta-

plastic Barrett’s esophagus tissues are resistant to deoxycholic acid

(DCA)-induced apoptosis (despite the induction of DNA damage)

because of the activation of the NF-kB cell survival pathway [19].

Song et al. showed that cyclooxygenase 2(Cox2) is involved in

cancer progression elicited by DCA through Erk and Akt signaling

[21]. A recent study also suggests that chenodeoxycholic acid

(CDCA) stimulates the development of human esophageal cancer

by promoting angiogenesis through the Cox2 pathway [22].
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In the present study, we attempted to clarify the effects of

continuous taurocholic acid (TCA) exposure at a high concentra-

tion (2 mM) on ESCC progression on the basis of the following

findings: (i) most unconjugated bile acids and glycine conjugates

whose pKa values are .4 precipitate in the gastric acidic

environment, whereas taurine conjugates are soluble even at

pH 2 [23,24]; (ii) 23% of patients who underwent a partial

gastrectomy experienced acid (pH ,4) reflux into the distal

esophagus [13]; (iii) Graffner et al. reported that the median total

conjugated bile acid concentration was significantly higher in

patients who underwent gastric resection (3236 mM) than in

patients in the control group (349 mM), and the range of TCA

concentration was 141 mM to .1000 mM [25]. Iftikar et al. also

reported that two patients who underwent partial gastrectomy had

total bile acids concentration of 14655 mM and 18620 mM [26].

The influence of tumor angiogenesis on cancer progression has

been debated over the last decades. In the clinical setting, high

rates of transforming growth factor (TGF)-b1, vascular endothelial

growth factor (VEGF), and Cox2 expression have been found to

be associated with poor prognosis in patients with esophageal

cancer [27–30]. To explore the role of angiogenesis on cancer

progression induced by continuous TCA exposure, we analyzed

protein and mRNA expression levels of angiogenic factors. We

demonstrate that continuous TCA exposure promotes ESCC

progression through reduced cell loss induced by TGF-b1 and

VEGF-mediated neovascularisation.

Materials and Methods

Cell Culture and TCA Treatment
We used ESCC-DR cells that were established from a tumor

induced in a rat model of gastroduodenal reflux [17]. The cells

were grown and maintained in Dulbecco’s modified Eagle’s

medium (DMEM; Nacalai Tesque, Kyoto, Japan) supplemented

with 1% antibiotic–antimycotic solution (Gibco, NY, USA) and

10% fetal bovine serum (FBS; PAA Laboratories, Pasching,

Austria) in a humidified incubator containing 5% CO2 at 37uC
[20]. The cells were incubated in the growth medium containing

2 mM taurocholic acid sodium salt hydrate (TCA, SIGMA, St.

Louis, USA) for $2 months before analysis. These cells were

termed ‘‘tca.’’ ESCC-DR cells cultured in the growth medium

without TCA over the same period were used as a control in this

study.

Flow Cytometry for Cell Cycle Analysis
The cells seeded in 75-cm2 flasks were exposed to 2 mM TCA

or 300 mM deoxycholic acid (DCA, Sigma) for 24 h. They were

harvested, washed with PBS, and fixed with 70% ethanol at room

temperature for 30 min. The fixed cells were centrifuged and

washed with PBS thrice. They were then resuspended in 0.5 mL of

PBS containing 2 mg/mL RNase A (Sigma) at 37uC for 30 min

and stained with 50 mg/mL propidium iodide (Nacalai Tesque) at

4uC for 1 h. The cellular DNA content was measured using

FACSCalibur (Becton Dickinson, NJ, USA).

Cell Growth Assay
An MTT assay was used to evaluate cell growth. The control

and tca cells were seeded in 12-well plates (16104 cells/well). After

3, 24, 48, 72, or 96 h of incubation, medium containing 0.25 mg/

mL MTT was added to the calls (DOJINDO, Kumamoto, Japan).

Formazan crystals were dissolved in DMSO, and absorbance was

measured at 570 nm using an Infinite M200 microplate reader

(TECAN, Männedorf, Switzerland).

Preparation of Cell Lysate and Western Blotting
The following primary antibodies were used to perform western

blotting: Akt (pan) mouse mAb (cat. #2920, Cell Signlaing, MA,

USA), Phospho-Akt (Ser473)(D9E)XP rabbit mAb (cat. #4060,

Cell Signaling), p44/42 MAP Kinase (L34F12) mouse mAb (cat.

#4696, Cell Signaling), Phospho-p44/42 MAPK (Erk1/2)

(Thr202/Tyr204) (D13.14.4E) XP Rabbit mAb (cat. #4370, Cell

Signaling), Anti-Rat Cox2 Rabbit IgG Affinity Purify (cat. 18955,

IBL, Gunma, Japan), and b-actin (C4) mouse mAb (cat. sc-47778,

Santa Cruz, CA, USA). Goat peroxidase-conjugated anti-rabbit

IgG (cat. ab6721, Abcam, Cambridge, UK) and goat peroxidase-

conjugated anti-mouse IgG (cat. AP124P, Millipore, MA, USA)

were used as secondary antibodies.

The cells were washed with PBS and lysed in lysis buffer

[50 mM Tris–HCl, pH 7.4; 150 mM NaCl; 0.5 mM ethylenedi-

aminetetraacetic acid (EDTA); 1% Nonidet P-40] containing a

mixture of protease inhibitors (1 mM phenylmethylsulfonyl

fluoride, 1 mg/mL leupeptin, 1 mg/mL pepstatin A, and

0.09 U/mL aprotinin) and 1% phosphate inhibitor cocktail II

(Sigma). After incubation at 4uC for 30 min and mixing with a

vortex mixer, the cell lysates were centrifuged at 12,0006g at 4uC
for 10 min. The supernatants were collected, and the protein

content was quantified using the BCA protein assay reagent

(Thermo Fisher Scientific, Waltham, MA, USA).

PAGE was performed according to the manufacturer’s instruc-

tions (NuPAGE kit; Invitrogen, CA, USA). Protein samples were

solubilized in NuPAGE LDS sample buffer and incubated at 70uC
for 10 min after addition of 2% b-mercaptoethanol. Proteins were

separated on a 4%–12% SDS-PAGE gradient gel (NuPAGE Bis-

Tris Gel) and electrotransferred onto nitrocellulose membranes

(Invitrogen). The nitrocellulose membranes were blocked with 4%

nonfat dried milk in TBS-T buffer (10 mM Tris–HCl, pH 7.4;

150 mM NaCl; 0.1% Tween-20) and incubated with a primary

antibody at 4uC overnight. After incubation with a horseradish

peroxidase (HRP)-conjugated secondary antibody at room tem-

perature for 1 h, protein bands were visualized with an HRP

substrate (Millipore) and scanned on a luminescent imaging

analyzer LAS-4000plus (Fuji Film, Tokyo, Japan).

Quantitative Reverse Transcription-polymerase Chain
Reaction (qRT-PCR)

Total RNA was isolated using the RNeasy kit (QIAGEN,

Hilden, Germany); cDNA was synthesized from 2 mg of each total

RNA sample. The cDNA samples were subjected to qRT-PCR

(LightCycler 480, Roche, Basel, Switzerland) using the primers

given below and SYBR Premix Ex Taq II (Takara Bio, Otsu,

Japan). All PCR primers were purchased from Takara Bio. Their

sequences were as follows: 59-CATTGCTGTCCCGTGCAGA-39

and 59-AGGTAACGCCAGGAATTGTTGCTA-39 for TGF-b1;

59-GCACGTTGGCTCACTTCCAG-39 and 59-

TGGTCGGAACCAGAATCTTTATCTC-39 for VEGF-A;

59-GGCACAGTCAAGGCTGAGAATG-39 and 59-

ATGGTGGTGAAGACGCCAGTA-39 for glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). PCR was performed using

the following conditions: initial denaturation at 95uC for 30 s, then

40 cycles of 95uC for 5 s, and annealing and elongation at 60uC
for 20 s. mRNA expression levels were normalized to the mRNA

levels of the internal standard gene, GAPDH.

Enzyme-linked Immunosorbent Assay (ELISA)
The control and tca cells were seeded in 12-well plates (16104

cells/well). After 24 h, the cell culture medium was collected and

centrifuged for 5 min at 14,0006g (4uC) to remove the detached
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cells. The total TGF-b1 and VEGF levels in the supernatant were

measured using ELISA kits (R&D Systems, Minneapolis, USA)

according to the manufacturer’s instructions.

Cell Migration Assay of Vein Endothelial Cells
Human umbilical vein endothelial cells (HUVEC-2) were

purchased from BD Biosciences (California, USA) and grown in

a basal medium (Medium 200; Gibco) containing supplements and

serum (Low Serum Growth Supplement; Gibco). Migration assays

were performed using the BD BioCoat Angiogenesis System for

endothelial cell migration (354143, BD Biosciences). The control

and tca cells were seeded in 12-well plates (16104 cells/well). After

24 h, cell culture medium was collected and centrifuged for 5 min

at 14,0006g (4uC). The supernatant was added to the lower

chamber of transwell plates under each well. HBSS (Sigma) was

added to one of the lower chambers as a negative control (without

supernatant of culture medium). HUVECs starved of serum for

5 h were harvested using trypsin–EDTA and resuspended in the

basal medium. The suspensions were added to each top chamber

at a density of 56105 cells/mL. Both chambers were incubated for

22 h at 37uC to induce migration through the fibronectin-coated

membranes. The top chambers were then transferred to wells

containing Calcein AM (BD Biosciences) in HBSS. These samples

were incubated for 1.5 h at 37uC. The level of fluorescence was

measured using a plate reader (Infinite M200; TECAN) at 494/

517 nm. Data were calculated as relative ratios in comparison to

an HBSS negative control. Immunofluorescence images were

visualized using an Olympus BX-61 fluorescent microscope

(Olympus, Tokyo, Japan), and images were captured with a

CoolSNAP-HQ camera (NIPPON ROPER, Tokyo, Japan).

Electron Microscopy
The morphology of control and tca cells was analyzed using

electron microscopy. The cells were fixed in glutaraldehyde and

embedded in epoxy resin. Thin sections were double-stained with

lead citrate and uranyl acetate and examined under a JEOL JEM-

1200EX transmission electron microscope (Japan Electron Optics

Laboratory, Tokyo, Japan).

Invasion Assay of Cancer Cells
This assay was performed using BD BioCoat Matrigel invasion

chambers with 8-mm pore inserts (354165, BD Biosciences). The

cells suspended in serum-free DMEM were seeded in the top

chambers of the transwell plate at a density of 56104 cells/mL,

whereas DMEM containing 5% FBS was added to the lower

chambers as a chemoattractant. Both chambers were incubated

for 48 h at 37uC to induce invasion through the Matrigel-coated

membranes. The upper chambers were then transferred to wells

containing Calcein AM (BD Biosciences) in HBSS (Gibco), as

described above, and incubated for 1 h at 37uC; the signals were

quantified on a fluorescence plate reader (Infinite M200; TECAN)

at 485/530 nm. The invasiveness of tca cells was calculated as a

fluorescence intensity ratio relative to that of control cells.

Xenograft Tumor Growth Assay
All procedures were in compliance with the Ethical Guidelines

for Animal Experimentation and Care and Use of Laboratory

Animals at Shiga University of Medical Science, Japan. The

protocol was approved by the Committee on the Ethics of

Research Center for Animal Life Science at Shiga University of

Medical Science (Permit number: 2011-12-2). All efforts were

made to minimize animal suffering and reduce the number of

animals used. Five-week-old athymic BALB/cA nu/nu nude mice

(CLEA Japan, Tokyo, Japan) were subcutaneously inoculated with

16106 tca or control cells. Tumor length and width were

measured every 4 days, and tumor volume (TV) was estimated

using the following formula: TV (mm3) = (width26length)/2. The

animals were sacrificed with an overdose of isoflurane 4 weeks

after the inoculation. Resected tumors that developed on the back

of the mice were fixed with 10% formalin (in PBS) for 4 h and

embedded in paraffin. Serial 3-mm sections were used for

histological evaluation by hematoxylin–eosin (HE) staining,

CD31 and Ki-67 immunohistochemical stainings, and apoptosis

detection.

Evaluation of Tumor Necrosis in Tumor Xenografts
The necrotic proportion of each tumor xenografts was assessed

using HE staining. The area of tumor necrosis was measured using

a Leica LMD6000 system (Leica, Wetzlar, Germany).

Apoptosis Detection
Apoptotic cells were detected using an in situ apoptosis detection

kit (Takara Bio). The staining procedures were performed

according to the manufacturer’s instructions. After deparaffiniza-

tion, the tissue was briefly digested with proteinase K (20 mg/mL

in PBS) for 15 min at room temperature and washed with PBS.

The slides were then incubated in 3% hydrogen peroxide for

5 min, followed by another wash with PBS. The slides were

incubated with TdT enzyme and substrate at 37uC for 90 min,

washed and then incubated with an HRP-conjugated anti-FITC

antibody 30 min. Finally, they were washed, stained with

diaminobenzene (Nichirei, Tokyo, Japan), and counterstained

with hematoxylin.

Immunohistochemical Detection of CD31 and Ki-67
Immunohistochemical staining was performed using an anti-

CD31 rabbit polyclonal antibody (cat. #ab28364; Abcam) and an

anti-Ki-67 rabbit monoclonal antibody (cat. # ab16667; Abcam).

The staining was performed using a modified streptavidin–

peroxidase conjugate method based on the poly-HRP anti-

mouse/rabbit IgG detection system [Polymer Detection System,

Histofine MAX-PO (MULTI); Nichirei, Tokyo, Japan].

Quantification of Blood Vessel Density in Tumor
Xenografts

The number of blood vessels positive for CD31 was manually

counted in the entire tumor area, which was determined using the

Leica LMD6000 system in the available sections.

Calculation of Ki-67 and Apoptosis Indices
The percentages of Ki-67-positive and apoptotic tumor cells

(separately) were determined in 5 randomly selected visual fields

(magnification6400).

Statistical Analysis
Each experiment was performed in triplicate. All data were

calculated as mean 6 SD. All calculations were performed in

Microsoft Excel. Comparison between the groups was performed

using Student’s t-test. The differences were considered statistically

significant at P,0.05.

Results

Effects of TCA Treatment on Cell Growth in vitro
Cell cycle. We examined the effects of TCA treatment on cell

cycle using FACS analysis (Fig. 1A). 24-h incubation with 300 mM

Continuous TCA Exposure Promotes ESCC Progression
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DCA induced a G1 arrest and a small amount of apoptosis in

control cells. In contrast, 24 h of incubation with 2 mM TCA

enhanced the entry into the S-phase in both the control and tca

cells. There was no significant difference between the control and

tca cells cultured without bile acids (Table 1).

Cell growth. Cell growth rate was assessed using the MTT

assay (Fig. 1A). Tca cells treated with 2 mM TCA showed

increased growth rate compared with control cells without TCA

[MTT absorbance values after 72 h: tca, 2.9260.06 (mean 6 SD);

control, 2.1060.05; P = 0.0001]. These results showed that TCA

exposure increased cell growth by accelerating the entry into the S

phase.

Signaling pathway. The expression of total Akt, Phospho-

Akt, total Erk, Phospho-Erk, and Cox2 are shown in Figure 1B.

According to cell growth results, Akt phosphorylation was

transiently induced by TCA in the control and tca cells. Erk

phosphorylation was induced by TCA in control cells. In tca cells,

TCA did not induce Erk phosphorylation, but the baseline

phosphorylation was higher than that of control cells. Both Akt

and Erk were activated by TCA in control cells, but Cox2

expression was not induced. Although TCA could not significantly

enhance Cox2 expression, the expression level of Cox2 in tca cells

was higher than that in control cells.

Effects of TCA Treatment on Angiogenic Factors in vitro
TGF-b1 and VEGF-A gene expression. TGF-b1 and

VEGF-A mRNA levels were quantified using qRT-PCR. TGF-

b1 mRNA expression in tca cells was 2.9260.53-fold higher than

that in control cells (P = 0.0266; Fig. 2A). VEGF-A mRNA

expression in tca cells was 2.9660.31-fold higher than that in

control cells (P = 0.0044; Fig. 2B).

TGF-b1 and VEGF protein levels. To quantify the expres-

sion of known angiogenic factors (TGF-b1 and VEGF) produced

by the control and tca cells, cell culture media from both cell types

were analyzed by ELISA. The mean level of secreted TGF-b1 was

significantly higher in tca cells than in control cells (tca:

173.8613.0 pg/mL; control: 59.964.5 pg/mL; P = 0.0012;

Fig. 2C). Similarly, the mean level of secreted VEGF protein

was significantly higher in the supernatant of tca cells than in

control cells (tca: 1742.6614.1 pg/mL; control: 953.2623.8 pg/

mL; P = 0.0001; Fig. 2D).

HUVEC migration assay. Then, we examined HUVEC

migration using supernatants collected from the control and tca

cells. Fluorescence microscopy demonstrated that HUVECs

migrated through fibronectin-coated membranes toward the

negative control solution (HBSS; Fig. 3A) or supernatants of the

control (Fig. 3B) or tca cells (Fig. 3C). The rate of migration in tca

cells was 1.62-fold higher than that in control cells (tca:

1.9160.20-fold, control: 1.1860.22-fold, P = 0.0348; Fig. 3D).

Effects of TCA Treatment on Cell Invasion in vitro
Cell morphology. There were no remarkable morphological

changes for approximately 1 month after the administration of

TCA. One month after TCA exposure, thick cell projections

(podia) were observed in tca cells (Fig. 4A), with the number of

Figure 1. Effects of TCA exposure on ESCC-DR cell growth and signaling. Cell growth rates were evaluated using the MTT assay (A) Values
represent the mean 6 S.D. of three independent experiments. TCA exposure promoted the growth of ESCC-DR cells compared with the control
treatment (**P,0.01). (B) Nos.1 and 2 are control cells and Nos.3 and 4 are tca cells. Nos.1 and 3 were treated without TCA. Nos.2 and 4 were treated
with 2 mM TCA for 48 h. Ten micrograms of the whole cell lysate were subjected to western blotting with antibodies against total Akt, pAkt, total
Erk1/2, pErk1/2, Cox 2, and b-actin. b-actin was used as an internal control. Molecular weights of Akt, Erk1/2, Cox2, and b-actin are indicated in the
figures.
doi:10.1371/journal.pone.0088831.g001

Table 1. Effects of TCA treatment on cell cycle using FACS
analysis.

Control Sub G1 G1/G0 S G2/M

Without bile
acids

0.2060.25 48.6460.42 40.4760.08 10.8960.43

TCA 2 mM 0.1560.05 39.7960.16* 48.8660.37* 11.3560.52

DCA 300 mM 2.0860.22* 74.5860.62* 18.1660.52* 7.2660.28*

tca Sub G1 G1/G0 S G2/M

Without bile
acids

0.1460.06 48.3560.59 38.9860.59 12.6860.15

TCA 2 mM 0.0960.06 42.7560.31* 45.3960.16* 11.8760.34

*p,0.01.
Cells were cultured in the medium without bile acids until cell density had
become near 40% of confluence. Then cells were treated with or without bile
acids for 24-h. The cellular DNA content was evaluated by flow cytometry.
Statistical analysis was performed using Student’s t-test to compare the cell
number between with and without bile acids in each cell cycle.
doi:10.1371/journal.pone.0088831.t001
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podia increasing with time. We used electron microscopy to study

the fine structure of each cell projection. Many short and thin

projections without thick actin bundles were seen in control cells.

On the other hand, thick bundles of actin filaments were observed

in tca cell projections (Fig. 4B). The projections filled with thick

actin filaments were morphological similar to filopodia.

Cell invasion. Invasion assays were performed in Matrigel-

coated Transwell chambers. The number of invading cells was

measured after 48 h. Fluorescence microscopy images showed that

the control and tca cells (Fig. 4C) had passed the Matrigel-coated

membranes to reach the 5% FBS/DMEM solution. The rate of

invasion for tca cells was 4.3460.21-fold higher than that for

control cells (P = 0.0005; Fig. 4D).

Effects of TCA Pretreatment on in vivo Tumor Growth
Xenograft tumor growth. To evaluate the effects of TCA

exposure on cancer progression in vivo, both control and tca cells

were subcutaneously injected into nude mice. TCA exposure

before the injection induced an appreciable increase in tumor

volume on day 28 after cell injection compared with control cells

(tca: 504.4676.0 mm3; control: 161.3633.9 mm3; P = 0.0033;

Fig. 5A, B). No metastases to distant organs were noted.

Proportion of tumor necrosis. The proportion of tumor

necrosis was compared between tca and control cells (Fig. 5C).

The mean proportion of necrosis was significantly lower in tumors

from tca cells than in those from control cells (tca: 2.461.1%;

control: 9.863.3%; P = 0.0496; Fig. 5D).

Indices of Ki-67-positive cells and apoptosis in tumor

xenografts. We calculated Ki-67-positive and apoptotic cell

indices in tumor xenografts. There was no significant difference in

the Ki-67 index (tca: 27.160.16%; control: 25.460.88%;

P = 0.075; Fig. 5E) or in the apoptotic index (tca: 1.4760.13%;

control: 1.6560.25%; P = 0.52; Fig. 5F) between tca and control

cells.

Vascular density in the tumor xenografts. To determine

why the proportion of necrosis was significantly lower in the

tumors derived from tca cells, we examined the influence of tumor

angiogenesis on cancer progression. The density of CD31-positive

vasculature was higher in tumors from tca cells compared with

those from control cells (tca: 102.366.2/mm2; control: 67.960.8/

mm2; P = 0.0018; Fig. 5G, H). This result indicates that TCA

exposure promotes tumor angiogenesis.

Discussion

We successfully demonstrated that continuous TCA exposure

induces ESCC tumor progression. This phenomenon cannot be

explained exclusively by the influence of TCA on DNA damage or

carcinogenesis-related pathways because TCA exhibits neither

mutagenicity nor genotoxicity [31,32]. Continuous TCA exposure

Figure 2. Quantification of TGF-b1 and VEGF-A mRNA and protein levels. (A, B) Control cells were cultured in the medium without TCA and
tca cells were cultured in the medium with 2 mM TCA. Total RNA was extracted from these cells and expression levels of TGF-b1 and VEGF-A mRNA
were evaluated by qRT-PCR. (C, D). Culture supernatants were collected from control cells incubated in the medium without TCA and tca cells
incubated in the medium with 2 mM TCA for 24 h. (A) TGF-b1 mRNA levels in tca and control cells (*P,0.05). (B) VEGF-A mRNA levels in tca and
control cells (**P,0.01). (C) Comparison of the mean level of secreted TGF-b1 in the media from tca vs. control cultures (**P,0.01). (D) Comparison of
the mean level of secreted VEGF protein for tca vs. control cells (**P,0.01).
doi:10.1371/journal.pone.0088831.g002

Continuous TCA Exposure Promotes ESCC Progression

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88831



affects cancer progression directly and indirectly. According to the

present data, TCA directly enhances invasiveness of ESCC-DR

cells in vitro, which is associated with TGF-b1 release from cancer

cells; TCA also indirectly accelerates tumor growth (by reducing

cell loss) in vivo through the promotion of angiogenesis mediated by

the migration of vascular endothelial cells.

Bile acids exert cytotoxic effects by solubilizing polar lipids such

as phospholipids and cholesterol, leading to disintegration of the

Figure 3. HUVEC migration using ESCC-DR culture supernatants. Culture supernatants were collected from control cells incubated in the
medium without TCA and tca cells incubated in the medium with 2 mM TCA for 24 h. (A–C) Fluorescence microscopy was used to detect calcein-
labeled HUVEC cells migrating through fibronectin-coated membranes toward a negative control solution (HBSS) (A), control cell culture supernatant
(B) and tca cell culture supernatant (C). (640) (D) Comparison of HUVEC migration between culture supernatant of tca vs. control cells (*P,0.05). The
fluorescence intensities of control and tca supernatants were normalized to that of the negative control.
doi:10.1371/journal.pone.0088831.g003

Figure 4. Effects of TCA exposure on ESCC-DR cell morphology and invasion. (A) Podia formation (white arrow) in tca cells
(magnification6400). (B) Thick bundles of actin filaments (black arrows) associated with podia formation (magnification61740, 64860 and 618400).
(C) Fluorescence microscopy demonstrated the invasion of control and tca cells through Matrigel-coated membranes toward DMEM containing 5%
FBS. (D) The rate of invasion was four-fold higher in tca cells compared with control cells (**P,0.01).
doi:10.1371/journal.pone.0088831.g004

Continuous TCA Exposure Promotes ESCC Progression
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plasma membrane and death of intestinal epithelial cells [33–36].

During preliminary experiments, we incubated ESCC-DR cells

with a 2 mM solution of cholic acid (CA), DCA, TCA, glycocholic

acid (GCA), taurodeoxycholic acid (TDCA), or glucodeoxycholic

acid (GDCA). In most cases, this treatment resulted in a level of

cell death that precluded maintenance of viable subcultures. Long-

Figure 5. Effects of TCA exposure on tumor xenografts. (A) Tumor xenografts derived from tca and control cells after 28 days. (B) Growth
curves of tumor xenografts from tca and control cells. TCA pretreatment significantly enhanced in vivo growth at day 28 after tumor cell injection
(*P,0.05, **P,0.01). (C) Necrosis (marked with black rim) in tumor xenografts from tca and control cells (magnification640). (D) Necrosis was
significantly reduced in tca cells compared with control cells (*P,0.05). (E, F) There was no significant difference in the mean Ki-67 index (E:
P = 0.0746) or mean apoptosis index (F: P = 0.5151) between tca and control cells. (G) Immunohistochemical detection of CD31-positive vascular
endothelial cells (magnification6200). (H) Vascular density was significantly higher in tca cells than in control cells (**P,0.01).
doi:10.1371/journal.pone.0088831.g005
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term culture was possible only with TCA or GCA (data not

shown). Finally, we selected TCA for this study because of its

solubility in the stomach, i.e., TCA has pKa of 1.9 and GCA has

pKa of 3.8 [37].

Some authors have reported various effects of bile acids not only

on cell death but also on cell proliferation. Nishioka et al. reported

that CDCA stimulates proliferation of ESCC cells (TE2R, TE3,

TE13, and TE15) through a mechanism involving regulation of

the G1 phase [38]. In contrast, Zhang et al. showed that 3-day

exposure to CA, DCA, TCA, TDCA, taurochenodeoxycholic

acid, GDCA, or glycochenodeoxycholic acid (50–500 mM) inhibits

growth and induces apoptosis in ESCC cells (Eca109) [39]. These

findings suggest that the effects of bile acids on cell growth vary

depending on the type of bile acid as well as the cell line under

study. In the present work, FACS analysis showed that treatment

with 300 mM DCA for only 24 h induced a G1 arrest and a small

amount of apoptosis in control cells. In contrast, brief treatment

with 2 mM TCA enhanced S-phase entry in both the control and

tca cells and did not induce G1 arrest or apoptosis.

We attempted to clarify the mechanism underlying cancer

progression induced by continuous TCA exposure and examined

the expression of NF-kB, Akt, Erk, and Cox2 in tca and control

cells. We could not detect the expression of NF-kB p65 subunit in

the ESCC-DR cells (data not shown). Phosphorylation of Akt and

Erk were transiently induced by TCA in the control and tca cells.

In tca cells, TCA did not enhance the phosphorylation of Erk but

the baseline phosphorylation level was higher than that in control

cells. In addition, the expression levels of Cox2 in tca cells were

higher than those in control cells. These findings suggest that Erk

and Cox2 may be involved in cancer progression elicited by TCA.

The in vitro and in vivo effects of TCA on cell proliferation were

different in our experiments. There was no significant difference in

the Ki-67 index of tumor xenografts between the TCA pre-

treatment and control groups. These findings confirm the notion

that reduction in cell loss rather than enhancement in cell

proliferation is the rate-limiting factor for tumor growth in vivo

[40]. Folkman et al. have shown that the growth of solid tumors

takes place in 2 stages, the avascular and the vascular stage [41]. In

the avascular stage, a tumor remains dormant because of

considerable cell loss, whereas in the vascular stage, tumor growth

is accelerated by angiogenesis, which allows survival of tumor cells

[41]. Experiments on Barrett’s carcinoma cell line suggest that

DCA stimulates VEGF expression [42]. Our results also showed

that long-term continuous TCA exposure promotes cancer

angiogenesis by inducing TGF-b1 and VEGF expression.

VEGF-A and TGF-b1 expression were maintained in tca cells

cultured in medium without TCA (data not shown). These

proangiogenic factors allow tumors to ward off necrosis and thus

survive during hypoxic conditions.

Cancer cell migration is mediated by the formation of cellular

protrusions containing actin-rich organelles [43]. The most

extensively characterized protrusive structures are the lamellipo-

dia, consisting of a dense meshwork of branched or cross-linked

actin filaments [44,45]. Continuous lamellipodia protrusion and

ruffling are frequently accompanied by the formation of parallel

actin filaments bundles most frequently termed filopodia [46].

Filopodia are involved in adhesion, migration, invasion, survival,

and proliferation of cells [47]. In the present study, the cellular

projections that appeared in tca cells and contained thick bundles

of actin filaments were morphologically similar to filopodia.

Moreover, our in vitro experiments indicated that the protein and

mRNA levels of TGF-b1 released from the ESCC cells were

significantly higher in tca cells, and TCA pretreatment induced a

4-fold increase in invasion rate. It has been reported that TGF-b1

stimulates the invasion of lung cancer cells, which is accompanied

by marked changes in cell morphology, such as the appearance of

numerous long filopodia filled with actin filaments [48,49]. Thus,

this enhanced invasiveness is probably due to the TCA-mediated

formation of filopodia induced by TGF-b1 released from ESCC

cells. However, we could not detect any metastases to the other

organ in this system using nude mice. Further studies are required

to investigate the effects of TCA exposure on cancer cell invasion

in vivo.

In summary, our results suggest that continuous TCA exposure

stimulates ESCC tumor progression. This phenomenon is mainly

due to a reduction in cell losses, resulting from enhanced vascular

development caused by TCA-induced production and release of

TGF-b1 and VEGF-A by ESCC cells. In order to develop new

strategies for the prevention and treatment of esophageal cancer, it

needs to be further investigated whether the exposure to other bile

acids has similar effects.
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