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Abstract

Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns
of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed
via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks
composed of 90 regions in younger (mean age ~36:5 years) and older (mean age ~56:3 years) age groups with PET data.
113 younger and 110 older healthy individuals were separately selected for two age groups, from a physical examination
database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral
glucose metabolism correlation matrices of 90 regions and analysed using graph theoretical approaches. Although both
groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were
found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one
along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in
association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left
hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but
more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable
robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related
to normal aging.
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Introduction

Function decline and organs aging is an inevitable physiological

law of life. As one of the most important organs, aging brain tends

to produce some specific alterations in morphological, physiolog-

ical pathology and functional aspects. It is well known that normal

aging is associated with a progressive decline in cognitive

performance, including perception, attention, language and

memory [1,2,3,4]. Meanwhile, normal senescence is also highly

related to some specific encephalopathies, such as Alzheimer’s

disease (AD) [5] and Parkinson’s disease (PD) [6]. Therefore,

aiming to assess the declining cognitive ability and supply a

guiding for age-related encephalopathy in clinical, it is necessary to

deeply understand the age-related changes in healthy brain.

An emerging approach for studying human brain system is

graph theory which is represented by a set of nodes and links. It

has been widely adopted to quantify complex system, e.g., in social

sciences, biology or technology [7,8]. The functional and

structural systems of the human brain reveal age-related topolog-

ical properties of complex networks, such as small-world

characteristics, highly connected hubs, modularity, and network

robustness [7,9,10,8,11]. Small-world properties, characterized by

a high degree of clustering and a short average distance between

any two nodes [12,13], were analysed to reveal age-related

global and local efficiency of information transfer in brain system.

Some recent studies reported that, along with the normal aging,

small-world network showed changed topological efficiency

[10,14,15,16]. For instance, a recent study on functional brain

networks suggested that an older age group showed significantly

reduced cost efficiency in comparison to a younger group [17]. A

similar degeneration process of economical small-world networks

was also found in a previous study about AD [18,19]. Further-

more, changes in modular organization of human brain networks

were proven to be associated with normal aging [9,15].

Simultaneously, highly connected hubs are altered with normal

aging, which has been reported in some previous studies [9,7]. In

addition, previous studies also found that normal aging processes

significantly affect default mode network (DMN) [20,21,22,23],

which is typically deactivated during external stimulation [24,25].

Thus, a gradually forming evaluated system of brain networks with

neural imaging technologies was adopted in assessing the aging

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e88690

http://creativecommons.org/licenses/by/4.0/


brain and provided a guiding for age-related encephalopathy in

clinical [7,8].

However, up to now, few studies have constructed functional

network via positron emission tomography (PET) data. Compared

with other functional signals, PET can offer a more immediate

way to indicate brain activity by offering the index of cerebral

glucose metabolism. In this paper, for evaluating the age-related

brain changes in normal individuals, the large-scale human brain

functional network was constructed by node, defined as regional

average cerebral glucose metabolism from PET data. Four main

reasons indicate that the definition is reasonable and effective for

assessing age-related brain functional changes. Firstly, during the

resting state, the level of cerebral glucose metabolism is considered

as a reliable index of neural activity [48]. Secondly, synapses are

considered as the key sites for transferring information between

neurons, and up to 75% of the glucose consumption in the brain is

used to maintain a baseline synaptic activity [27]. Thirdly, many

studies have reported that the normal aging is accomplished by a

decline of synaptic activity, which impacts the cognitive functions

[28,29]. Lastly, effective connectivity between PET regions has

been found in previous studies [30,31]. Thus, the definition of

PET nodes can provide a complementary and convincible way to

improve the evaluation of brain functional networks.

In the present study, large-scale functional networks (90 regions)

in two age groups (110 older subjects, 113 younger subjects) were

constructed by computing the partial correlation matrices of the

regional mean intensity values from PET data. Afterwards, we

investigated the brain functional topological properties, including

small-world characteristics, hub regions and network robustness,

revealing the brain functional changes associated with normal

aging. Methodological robustness in the construction of PET

network was also assessed.

Materials and Methods

Subjects
Two hundred and twenty-three healthy human subjects were

selected from a physical examination database, and written

informed consents for the future research were obtained from all

subjects. They were separated into two age groups, 110 older

subjects aged 51{65 years (mean age = 56:3 years, 73 male) and

113 younger subjects aged 26{40 years (mean age = 36:5 years,

73 male). Health status of all subjects were evaluated with a

normal physical examination before imaging. Individuals with

significant chronic or acute disease were excluded from subjects.

Other criteria of subjects’ physical condition were as follows:

native Mandarin Chinese speaker, right-handed, same average

education years, no history of neurological disease, no brain

trauma or clinical evidence of cognitive impairment.

PET Data Acquisition
All PET investigations were implemented with Hamamatsu

SHR 22000 whole-body PET scanner system located at the

Medical PET Center of Zhejiang University. The spatial

resolution of the scanner is 3:5mm full width at half maximum

(FWHM) in sagittal or coronal plane and 3:2mm FWHM in axial

plane. There is a 600mm patient aperture and an axial field-of-

view of 225mm in the scanner, which can deal with the whole

head. A 68Ge source for attenuation correction was used in the

emission scan after a 10{min transmission scanning. All subjects

were injected intravenously with 333{444MBq (9{12 mCi)
fluorodeoxyglucose (FDG) before resting in a dark, quiet room

with ears open and eye closed for 50 minutes. Then each subject

was scanned lying quietly at rest with eyes closed for 8 minutes.

Nyquist frequency was acquired, after a ramp filter with the

maximum-likelihood expectation maximization (MLEM) algo-

rithm was used in reconstructions of PET images. Additionally, the

acquisitions were performed with the approval of the Health

Science Research Ethics Committee of Zhejiang University.

PET Data Preprocessing and Regional Parcellation
After using ImageJ (Wayne Rasband, National Institute of

Mental Health, USA) and MRIcro software (http://www.mricro.

com), Analyze Formats were acquired from raw PET data. Then

the preprocessing was performed using matlab 6:5 (MathWorks

Inc., Notich, MA, USA) and Statistical Parametric Mapping

(SPM5, Wellcome Department of Cognitive Neurology, London,

UK) software. Each data was normalized into the Montreal

Neurological Institute (MNI, McGill University, Montreal, Can-

ada) standard template using SPM5. An isotropic Gaussian kernel

with 8mm FWHM was used in spatial smoothing to increase the

signal-to-noise ratio after normalization. Then the proportional

scaling was used for the intensity normalization [32,33,34].

Regional parcellation was completed using the anatomically

automatic labeled (AAL) template image previously validated by

Tzourio-Mazoyer et al. [35]. The brain was divided into 90

anatomical regions of interest (45 regions for each hemisphere)

using this parcellation. Then we calculated mean intensity values

of each region which represented the regional cerebral metabolic

rates for glucose.

Partial Correlation Analysis
The functional connection was defined as statistical associations

in the intensity values across subjects. Such a connection concept

has been introduced by the previous studies [36,37]. It is

reasonable to investigate brain functional systems (networks) by

calculating connectivity of the PET regions, since effective

connectivity between PET regions has been found previously

[30,31]. So, the analytical procedure was performed by analysing

the regional relation obtained above. The interregional correlation

matrix Pij (i,j~1,2,:::n, here n~90) of each group (Figure 1) was

acquired by calculating the partial correlation coefficients across

individuals between the mean intensity value of every pair of

regions. The conditional dependences of arbitrary two regions

partialled out the effects of the other 88 regions defined in the AAL

template were represented by the partial correlations between

them.

Construction of Functional Network
According to the prior studies [32,7], functional networks of

both groups could be acquired from their partial correlation

matrices. The partial correlation matrix of each group was

converted into a binarized matrix Bij ½bij � (Figure 2) by setting a

threshold. Element of Bij was 0 if the absolute value of the

correlation between regions i and j was smaller than given

correlation threshold and 1 otherwise. Topological organization of

the human functional networks was represented by the binary

matrices. Then a binary graph theoretical analysis [7,8] was

performed in the following.

Graph Theoretical Analysis
Sparsity selection. To perform a graph theoretical analysis,

the binarized matrix Bij is described as a network (graph) G

defined by n nodes and k edges, where nodes indicate regions and

edges indicate undirected links between regions according to

nonzero elements of Bij . A fixed sparsity S of each network, which

was defined as the total number of edges k in a graph divided by
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the maximum possible number of edges, would be calculated after

its correlation matrix was thresholded into the binarized matrix. It

was stated briefly that same correlation threshold would lead to

different number of edges (k, or S) between the both resulting

graphs because of the difference in the low-level correlations (see

Figure 1). Therefore, alterations in the topological organization

would not be solely reflected by the between-group difference in

network parameters. Hence, a sparsity-specific threshold was set to

ensure that the both undirected graphs had the same number of

edges (k) or wiring cost [17,18]. Because a single and definitive

threshold could not be selected currently, graphs with wide range

of sparisty (10%vSv50%) was generated by repeatedly thresh-

olding each correlation matrix, then properties of them were

estimated at each threshold value. Then small-world parameters

between the two groups were compared as a function of

independent sparsity of the precise selection of threshold. The

range of sparisty (10%vS) also ensured that every nodal pairs in

both graphs had a connecting path (mentioned below) [38]. Then

we estimated network properties including clustering coefficient,

path length, global efficiency, nodal centrality and network

robustness in the following steps.

Clustering coefficient. A cluster of node i is formed by

directly connected nearest neighbours of the node [7]. Clustering

coefficient Ci of a node i quantifies the number of connections

existing in the cluster as a proportion of maximum possible

connections [12]. Cp (Figure 3) of a network is defined as the

average of Ci over all nodes in a network and indicates the extent

of local cliquishness or local efficiency of information transfer

[12,13].

Path length and global efficiency. Path length Lij between

node i and node j is defined as the minimum number of edges

traversed from node i to node j. Lp (Figure 4) is defined as the

average Lij of the all pairs nodes of the network and quantifies the

ability of global efficiency of parallel information transfer [13].

Global efficiency (Eglobal , Figure 5) inversely related to Lp but

numerically easier to indicate the global efficiency of parallel

information transfer was also estimated. Global efficiency (Eglobal )

Figure 1. The correlation matrices of two groups. The graphs show the correlation matrices acquired by calculating partial correlations (left for
the older group and right for the younger group). The color bar in the middle indicates the partial correlation coefficient between regions. The rank
and row successively represent the 90 brain regions (see Table S1).
doi:10.1371/journal.pone.0088690.g001

Figure 2. The binarized matrices (S~16%) of two groups. The graphs show the binarized matrices (left for the older group and right for the
younger group) which are generated by setting threshold to the correlation matrices. The rank and row successively represent the 90 brain regions
(see Table S1). Such a threshold (S~16%) ensures that the networks of both of the groups have the same number of nodes and links, and also show
changed efficiency of information transfer (Cp , Lp , Eglobal ). In this graph, white and black indicate the 1 and 0.
doi:10.1371/journal.pone.0088690.g002
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measure is Eglobal~
1

n(n{1)

X

i=j=[G

1

Lij

, Lij means the path length of

the node i and node j. Of note, the problem about the definition of

Lp caused by nodal pairs without connecting path, can been

eliminated by the range of sparisty (10%vS, mentioned above).

Small-world analysis. In this study, small-world properties

of networks in two groups were examined according to the Cp

and Lp measured in the above steps. A small-world network

should meet the following criteria: l~Lreal
p =Lrand

p &1 and

c~Creal
p =Crand

p w1[12], or s~c=lw1[39,40](see Figure 6), where

the Lrand
p and Crand

p are the mean path length and clustering

coefficient of 1000 suitable random networks with the same

number of nodes, edges, and degree (the degree ki of a node i is

the number of connections to that node) as the real network

[12,41]. Random graphs were generated by the random rewiring

procedure [42,43].

Betweeness centrality. The centrality (Bi) of node i is

defined as the number of the shortest paths between all other node

pairs pass through it [44]. A node with high value Bi is

crucial to efficient communication in the network and is

considered as the hub of the network [7]. Here Bi was calculated

by using the MatlabBGL package (http://www.stanford.edu/

Figure 3. Clustering coefficient (Cp) as a function of sparsity. The graph shows that, at a wide range of sparsity (10%vSv50%), the older
subjects (red line) have larger Cp value than the younger subjects (black line).
doi:10.1371/journal.pone.0088690.g003

Figure 4. Path length (Lp) as a function of sparsity. The graph shows that two groups have same Lp value when sparsity ranges from 33% to
50% and the older group (red line) have larger Lp at 10%vSv33%.
doi:10.1371/journal.pone.0088690.g004
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(bi~Bi=B, see Figure 7) was measured to estimate nodal

characteristics of the networks, where B was the average Bi over

all nodes in the network.

Network robustness. In this step, a simple analysis about

network robustness was performed. Network robustness associated

with the stability of a complex network refers to the degree of

tolerance against random failures and targeted attacks [7]. In the

current studies, robustness (tolerance) of the networks was

investigated through removing nodes in the networks [45,46,40].

Firstly, to test the the nodal failure tolerance, one node was

removed from the networks and changes in the size of the largest

connected component were measured. Then other nodes were

removed sequentially at random (Figure 8). To address the attack

tolerance, the above processes were repeated but we removed the

nodes of high bi value in the targeted position (20 nodes of high bi

value were removed from NO:21 to NO:40 in abscissa axis,

showed in Figure 8). To investigate the comparison of the network

robustness between two groups, the procedures were repeated

Figure 5. Global efficiency (Eglobal) as a function of sparsity. Eglobal is numerically easier to indicate the global efficiency than Lp (see Material
and Methods). As the sparsity thresholds increase from 10% to 33%, Eglobal of both groups increase, and younger subjects (black line) have larger
Eglobal values. At high sparsity threshold (33%vSv50%), two groups show equal Eglobal values.
doi:10.1371/journal.pone.0088690.g005

Figure 6. Small-world parameters of networks. The graphs show the changes in d (red line), c (green line) and l (blue line) in the networks of
older (left panel) and younger (right panel) groups as a function of sparisty thresholds. At a wide range of sparsity, both networks have dw1, that
implies prominent small-world properties (see Materials and Methods). Note that, as the values of sparsity thresholds increase, the d and c values
decrease rapidly, but the l values decrease rapidly when sparsity range from 10% to 30% then change slightly.
doi:10.1371/journal.pone.0088690.g006
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1000 times for the networks of both groups. Then we calculated

the mean relative of largest component (Figure 8). Additionally, in

order to investigate statistical differences, the 95 percentile points

of each distribution were used as the critical values for a two-tailed

test of the null hypothesis with a probability of type I error of 0:05,

with every number of the removed nodes under two attacks.

Statistical Analysis
Correlation differences in statistical analysis. It is

necessary to validate the significance difference of these correla-

tions in two groups with statistical analysis of correlations between

4005 pairs of regions. The Z values approximately normally

distributed were generated from correlation coefficients, after

Fishers r-to-z transform. Then the transformed z values were

compared by A{Z statistic to determine the significance of the

between-group differences in correlations [47]. A false discovery

rate (FDR) procedure [48] was performed to adjust to the the

multiple comparisons at a q value of 0:05.

Statistical differences in topological parameters. A

nonparametric permutation test method was applied to determine

Figure 7. Betweenness centrality (bi) of two groups. The below graph shows the comparison (red bar for younger group and blue bar for older
group) of normalized betweenness (bi) in each node (region) between two groups. The upper graph shows the regional changes (Dbi ,
Dbi~biolder{biyounger) in normalized betweenness (bi) between two groups. The regions labeled in the upper graph indicate significant changes in bi

between two groups (see Table 4). Note that these results were obtained from the brain networks with a sparsity of 16%. Regions in networks of two
groups showing high bi value (biw2:0) have been listed in the Table 2 and Table 3.
doi:10.1371/journal.pone.0088690.g007

Figure 8. Topological robustness in networks of two groups. The graphs show the relative size of the largest connected component as a
function of the fraction of removed nodes by random failures or targeted attacks. As the response to random failures (left panel), the brain network in
the older group (red line) is approximately as robust as that in the younger group (black line). Right graph shows that the older network displays
remarkably reduced stability against targeted attack compared with the younger. Additionally, the statistical significant differences (pv0:05) of two
groups was found with the ranges of 23vNO:nodev35 and 40vNO:nodev45 in the right graph.
doi:10.1371/journal.pone.0088690.g008
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statistical significance of the between-group differences. First of all,

Cp, Lp, Egobal and bi of the two-groups networks with a given

sparsity were separately computed. Secondly, to test the null

hypothesis that the group differences might occur by chance, we

then randomly reallocated each individual set of regional cerebral

glucose metabolism to one or the other of the two groups. Thirdly,

after recomputing the correlation matrix and obtaining binarized

matrix, we recalculated the network parameters for each

randomized group, using the same method. Lastly, this random-

ization procedure was repeated 1000 times and the 95 percentile

points of each distribution were used as the critical values for a

one-tailed test of the null hypothesis with a probability of type I

error of 0:05. Then the procedure was repeated at every sparsity

threshold value of the networks.

Methodological Robustness Analysis
It is necessary to test the methodological robustness in the

construction of networks, because the PET networks are barely

constructed by calculating the partial correlation matrices. In this

study, the methodological robustness was estimated by reducing

sample size in each group. Firstly, 5 individuals were separately

removed from the both groups at random, to test methodological

robustness against the reductions of samples size in both groups. It

is noted that quantities (5 nodes) of the removal individuals are

limited by the size of the whole sample. After the above step was

repeated 50 times, the mean smaller-sample networks (105 in older

group and 108 in younger group) were obtained. As a comparison

to the former networks, the small-world parameters (l,c and d, see

Figure 9 A and B), global efficiency (Figure 9 D) and local

efficiency (Figure 9 C) in smaller-sample networks were calculated

via the above methods. Furthermore, in order to determine

statistical significance of the neo-networks differences, the

nonparametric permutation test method was applied on Cp and

Egobal . Methodological robustness was analysed by comparing the

small-world properties between networks with different samples.

Results

Correlations of Regions in Two Groups
As is shown in Figure 1, the interregional correlation matrices

represent complex correlation patterns of both age groups.

Statistical analysis further demonstrates significant between-group

correlation differences (pv0:05, FDR-corrected) in various pairs

of regions (Table 1). For instance, older subjects are found to show

increased positive correlations in various pairs of cortical regions

involved in the frontal, precentral and postcentral. In addition,

decreased positive correlations in older group are observed in pairs

of regions including hippocampus, amygdala. We also note several

changed negative correlations in the older group. All pairs of

regions with significant between-group changed correlation

coefficients are listed in Table 1.

Small-world Topology Functional Networks
It has been demonstrated in the previous studies [32,49,41] that

functional network of humans has small-world characteristics. In a

small-world network, the nodes of the network have larger local

interconnectivity than a random network, but the shortest path

length between any pair of nodes is approximately equivalent to a

comparable random network [12]. The small-world attributes of

the functional networks in two age groups were also examined in

the current study. As expected, both functional networks

demonstrate small-world characteristics (Figure 6, left for older

group and right for younger group, dw1 red line) over a wide

range of sparsity (10%vSv50%). Compared with the matched

random networks, they have larger local cliquishness (cw1, green

line) but an almost identical path length (l&1, blue line). Using

computational modeling simulation approaches, Sporns et al. [50]

Figure 9. Small-world properties in smaller-sample networks. A and B, The graphs show the small-world parameters (d, c and l) of smaller-
sample networks in older (A) and younger (B) groups. At a wide range of sparsity, both networks have dw1, that implies prominent small-world
properties (see Materials and Methods). C, This graph shows that older subjects (red line) have larger Cp values than the younger subjects (black line).
In the original networks, similar result of Cp was also shown in Figure 3. D, This graph shows the global efficiency (Eglobal ) as a function of sparsity. As
the sparsity thresholds increase from 5% to 30%, Eglobal of both groups increase and younger subjects (black line) have larger Eglobal values.
doi:10.1371/journal.pone.0088690.g009
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propose the emergence of small-world topology when networks

are evolved for high complexity of dynamic behavior defined

as an optimal balance between global integration and local

specialization. Therefore, our findings additionally support

hypothesis that human brain has evolved into a complex but

efficient neural architecture to maximize the power of information

processing [41,51].

Different Small-world Parameters between Two Age
Groups

As shown in Figure 3, clustering coefficient (Cp) in networks of

older group (red line in Figure 3) are larger than those of younger

group (black line in Figure 3) over a wide range of sparsity

(10%vSv50%). Global efficiency (Figure 5) in networks of

younger group (red line in Figure 5) are larger than those of older

group (black line in Figure 5), when sparsity ranged from 10% to

33%. Both groups show different small-world parameters, reduced

global efficiency (Eglobal , Figure 4 and Figure 5) and increased

Table 1. Comparisons of correlation between two groups.

Regions Correlation, r, (Z)

Young Old

Increased positive correlation in older group

Left orbitofrontal cortex (middle) Left supplementary motor area 20.15(20.15) 0.66(0.79)

Left orbitofrontal cortex (superior) Right inferior parietal lobule 20.08(20.08) 0.72(0.91)

Left orbitofrontal cortex (middle) Right orbitofrontal cortex (inferior) 0.03(0.03) 0.57(0.65)

Left orbitofrontal cortex (middle) Left orbitofrontal cortex (superior) 0.04(0.04) 0.56(0.63)

Left orbitofrontal cortex (middle) Left olfactory 0.03(0.03) 0.57(0.65)

Left precental gyrus Left supplementary motor area 0.02(0.02) 0.62(0.73)

Right precental gyrus Right supplementary motor area 0.13(0.13) 0.65(0.78)

Left inferior frontal gyrus (opercular) Right supplementary motor area 0.01(0.01) 0.53(0.59)

Right orbitofrontal cortex (middle) Left superior frontal gyrus (medial) 0.12(0.12) 0.64(0.76)

Left olfactory Left superior frontal gyrus (medial) 0.04(0.04) 0.60(0.69)

Left inferior frontal gyrus (triangular) Right inferior parietal lobule 0.09(0.09) 0.64(0.76)

left postcentral gyrus Left supramarginal gyrus 0.10(0.10) 0.61(0.71)

Decreased positive correlation in older group

Left hippocampus Left amygdala 0.72(0.91) 20.13(20.13)

Left superior frontal gyrus (dorsal) Left middle frontal gyrus 0.62(0.73) 20.23(20.23)

Right rolandic operculum Right precuneus 0.58(0.66) 0.06(0.06)

Increased negative correlation in older group

Right orbitofrontal cortex (inferior) Left supplementary motor area 0.01(0.01) 20.65(20.78)

Right inferior frontal gyrus (triangular) Left superior frontal gyrus (medial) 0.11(0.11) 20.64(20.76)

Left orbitofrontal cortex (middle) Left posterior cingulate gyrus 20.03(20.03) 20.62(20.73)

Left orbitofrontal cortex (middle) Right inferior parietal lobule 20.14(20.14) 20.66(20.79)

Left orbitofrontal cortex (middle) Left middle occipital gyrus 20.01(20.01) 20.53(20.59)

Left orbitofrontal cortex (middle) Right putamen 20.04(20.04) 20.57(20.65)

Right middle occipital gyrus Right precuneus 20.08(20.08) 20.59(20.68)

Left thalamus Right orbitofrontal cortex (middle) 20.08(20.08) 20.61(20.71)

Left thalamus Left olfactory 20.03(20.03) 20.60(20.69)

Left thalamus Right calcarine cortex 20.01(20.01) 20.58(20.66)

Right paracentral lobule Right superior temporal gyrus 0.01(0.01) 20.56(20.63)

Right hippocampus Left temporal pole (superior) 0.04(0.04) 20.61(20.71)

Left caudate Right middle temporal gyrus 0.03(0.03) 20.56(20.63)

Right precuneus Right Temporal pole (middle) 0.01(0.01) 20.56(20.63)

Decreased negative correlation in older group

Left rolandic operculum Right calcarine cortex 20.55(20.62) 20.01(20.01)

Left rolandic operculum Right precuneus 20.61(20.71) 20.09(20.09)

Left paracentral lobule Left heschl gyrus 20.54(20.60) 0.01(0.01)

This table lists pairs of regions with significant changed coefficients (change is larger than 0:5) between two groups. Coefficients in bold represent significant
interregional association within group. The comparison of coefficients between two groups are also shown in Figure 1. To determine the significance of between-group
differences in correlation, a Z statistic was used in this study (see Materials and Methods). All Z value are significant (pv0:05, FDR-corrected).
doi:10.1371/journal.pone.0088690.t001
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local cliquishness (Figure 3) in older group. Additional statistical

analysis also reveals significant differences (pv0:05) in the Cp

values at 10%vSv50%, Lp values at 11%vSv25% and Eglobal

at 11%vSv25%. These results imply that older subjects are

probably related to the loss of small-world characteristics in the

large-scale functional brain systems. In addition, approximate

results were obtained in previous studies about normal aging and

even AD [32,16,18,19].

Hub Regions
The functional networks were constructed at a sparsity

threshold of 16% to investigate the nodal characteristics of each

region in two age groups. After normalized betweenness centrality

(bi) of each region (Figure 7) in both networks was measured (see

Materials and Methods), hubs were defined as the regions with

high betweenness centrality (biw2, meanzsd ). In the older

group, 12 regions (Table 2) are identified as the hubs because of

large values in bi. In another group, 10 regions are identified as the

hubs (Table 3). Our finding of some hub regions (including

supplementary motor area, left hippocampus,) is consistent with a

previous brain functional network study age-related changes [9].

Changed Regional Nodal Characteristics between Two
Groups

The regions (Figure 7) with between-group changes in

betweenness centrality are examined in this study. Compared

with the younger subjects, the older show increased betweenness

centrality (Dbiw2) in 3 regions (ORBmid.L, ORBmid.R, INS.R,

listed in Table 4) and decreased betweenness centrality in 4 regions

(SFGmed.R, HIP.L, AMYG.R, HES.L, listed in Table 4).

Additional statistical analysis reveals significant differences

(pv0:05) in betweenness centrality of these regions. The changed

nodal characteristics (Dbi) of each region are also showed in

Figure 7 (upper panel). Together, our findings suggest that the

roles of regions in managing information are profoundly affected

by age [9].

Reduced Network Robustness in Older Subjects
Figure 8 shows the network robustness of two age groups under

the targeted attack and random failures. Both groups reveal similar

network robustness to the random failures (Figure 8). When the

nodes were randomly removed, the sizes of the largest connected

component in both groups reduced steadily and approximately

(Figure 8, left). Although network robustness of both groups

reduced sharply due to the removing of 20 central nodes from

NO:21 to NO:40, the younger network displayed remarkably

stability against targeted attack compared with the older (Figure 8,

right). In addition, the statistical significant differences (pv0:05) of

two groups are only found in the targeted-attack procedure. The

specific ranges are 23vNO:nodev35 and 40vNO:nodev45.

Small-world Parameters in Smaller-sample Networks
Figure 9 shows the methodological robustness, in response to

the decrease of samples size in both age groups. In the smaller-

sample networks, small-world characteristics are also revealed

according to dw1 (red lines) shown in Figure 9 A and B.

Simultaneously, larger local efficiency (Figure 9 C) and lower

global efficiency (Figure 9 D) in older group are found in smaller-

sample networks. Additional statistical analysis reveals significant

differences (pv0:05) in the Cp values at all range

(10%vSv50%), and Eglobal values at 11%vSv23%. These

findings of two groups are compatible with the former results in

the original networks.

Discussion

The current study, for the first time, demonstrates age-related

changes in the topological organization of large-scale functional

brain networks by utilizing PET data. Our main results are as

follows: (1) that the observed data demonstrate age-related

alterations in functional correlations among selective subsets of

regions, (2) that the global topological organization of functional

networks in older subjects are disrupted as indicated by altered

small-world parameters, (3) that the regional nodal characteristic

(centrality) is changed in older subjects, (4) that the functional

network of older group shows reduced network robustness in

response to the targeted attack, (5) that the methods to construct

the functional PET networks demonstrate reasonable robustness.

Table 2. Regions showing high betweenness (biw2) in the network of older group.

Regions Abbreviations Class bi Degree, ki

Left orbitofrontal cortex (middle) ORBmid.L paralimbic 3.84 41

Right orbitofrontal cortex (middle) ORBmid.R paralimbic 4.27 37

Left inferior frontal gyrus (triangular) IFGtriang.L association 3.48 29

Right inferior frontal gyrus (triangular) IFGtriang.R association 2.11 24

Left supplementary motor area SMA.L association 2.23 30

Left superior frontal gyrus (medial) SFGmed.L association 2.00 23

Right insula INS.R association 2.39 24

Right calcarine cortex CAL.R primary 2.07 27

Right inferior parietal lobule IPL.R association 2.46 28

Right precuneus PCUN.R association 2.53 33

Right putamen PUT.R subcortical 2.13 29

Left thalamus THA.L subcortical 2.61 28

This table lists the hub regions (biw2) in the network of older group. Regions in bold show increased normalized betweenness (bi ) in older group compared with
younger group (see Table 4). ki denotes the the degree of region i. Note that these results were acquired from the brain networks with a sparsity of 16%.
doi:10.1371/journal.pone.0088690.t002
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Small-world Characteristics and Age-related Changes
Our findings of high global and local efficiency in functional

brain networks with both age groups are consistent with some

previous studies [32,7,17,52,53]. Especially, another PET study

[32], which compared the properties of whole-brain functional

networks of normal, mild cognitive impairment (MCI) and AD

individuals by using FDG-PET data, has reported that brain

functional PET networks of all show small-world property.

Experimental studies [54] and computational modeling simula-

tions approaches [50] have also proposed the emergence of small-

world topology when networks evolved for high complexity of

dynamic behavior defined as an optimal balance between global

integration and local specialization [55]. Thus, Our findings

provide additional support for the hypothesis that the human brain

has evolved to maximize the cost efficiency of parallel information

processing [50,51].

We also find age-related changes of global and local efficiency

(Figure 3, Figure 4 and Figure 5) in the functional networks. The

network may develop into a more local and less distributed

organization, in the normal processes of brain senescence. This

phenomenon suggests a degeneration process with normal aging,

which has been reported in some previous studies [7,41]. It has

been proposed that in comparison to small-world networks, the

lattice-like networks have a slow signal propagation speed and

synchronizability [55]. Many psychiatric and neurological disor-

ders described as dysconnectivity syndromes are associated with

the regular topological organization that disturbs the optimal

balance of a small-world network [56]. Previous studies have

proposed the regular topological organization of brain networks in

patients with diseases such as AD or schizophrenia [52,18]. These

convergent evidences from methodologically disparate studies

suggest that both AD and schizophrenia are related to abnormal

topological organization of structural and functional brain

networks [7]. Therefore, our finding about the degeneration

process shows that normal aging has high risk for dysconnectivity

syndromes.

In particular, the above results in functional brain networks are

conformed to a previous study about structural brain networks

[16], which the middle group (mean age ~51 years) shows higher

values in the global efficiency and lower values difference in the

local efficiency compared with the old group (mean age ~68
years). These evidences may suggest that age-related alterations in

cortical functional networks can be related to structural deficits.

Honey et al:[57] have found that the spontaneous neuronal

Table 3. Regions showing high betweenness (biw2) in the network of younger group.

Regions Abbreviations Class bi Degree, ki

Left inferior frontal gyrus (triangular) IFGtriang.L association 3.14 22

Left supplementary motor area SMA.L association 2.28 18

Right superior frontal gyrus (medial) SFGmed.R association 4.38 27

Right posterior cingulate gyrus PCG.R paralimbic 2.02 12

Left hippocampus HIP.L paralimbic 3.67 24

Right amygdala AMYG.R paralimbic 2.54 22

Left calcarine cortex CAL.L subcortical 2.42 29

Left heschl gyrus HES.L association 3.33 32

Right heschl gyrus HES.R association 2.03 23

Right inferior temporal gyrus ITG.R association 2.58 26

This table lists the hub regions (biw2) in the network of younger group. Regions in bold show decreased normalized betweenness (bi ) in older group compared with
younger group (see Table 4). ki denotes the degree of the region i. Note that these results were acquired from the brain networks with a sparsity of 16%.
doi:10.1371/journal.pone.0088690.t003

Table 4. Regions showing significant changes in normalized betweenness (bi) between two groups.

Regions Abbreviations Normalized betweenness, bi Dbi

Old group Young group

Increased bi in old group

Left orbitofrontal cortex (middle) ORBmid.L 3.84 0.47 +3.37

Right orbitofrontal cortex (middle) ORBmid.R 4.27 0.20 +4.07

Right insula INS.R 2.39 0.33 +2.06

Decreased bi in old group

Right superior frontal gyrus (medial) SFGmed.R 0.55 4.38 23.83

Left hippocampus HIP.L 0.99 3.67 22.68

Right amygdala AMYG.R 0.39 2.54 22.15

Left heschl gyrus HES.L 0.72 3.33 22.61

This table shows regions with changes in normalized betweenness (bi) between two groups. Normalized betweenness (bi ) in bold indicate the betweenness centrality
of the hub regions which are also showed in Table 2 and Table 3.
doi:10.1371/journal.pone.0088690.t004
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dynamics can be structured at multiple temporal scales, proposing

a tight association between functional and structural networks.

Thus, it could be speculated that the age-related alterations in

functional networks shown here are likely to be caused by

structural impairments.

Betweenness Centrality and Age-related Alterations
In a complex system, node betweenness represents an crucial

metric which can be used to determine the relative importance of a

node with a network and identify the pivotal nodes in the network

[58]. As indicated above (see Results), 12 and 10 global hub

regions (see Table 2, Table 3 and Figure 7) are identified in the

older and younger respectively. These hub regions are mainly

considered as recently evolved association and primitive limbic

regions. It has been proven in the previous study that association

regions contribute to the integrity of multiple functional systems,

such as memory and attention systems, and are mainly involved in

intelligent processing and maintenance of the senior spiritual

activity [59]. Meanwhile, limbic regions which are highly

interconnected with the prefrontal regions and subcortical regions,

are closely related to emotion and a conscious state of mind [59].

Previous studies have reported that identified global hubs were

mainly prefrontal and parietal regions, supplying a potential

explanation for their well-documented activation by many

cognitive functions [7]. In this study, the frontal and parietal

regions are also considered as hub regions, especially in older

group (see Table 2 and Table 3). Furthermore, although the

identified global hubs vary among two age groups, most of these

regions are found to show high node betweenness in the functional

and structural human brain networks [40,60,61,54,62]. In

addition, it is noted that the substantial discrepancies of identified

global hubs between this study and the previous studies can be

caused by the different neuroimaging modalities, subjects charac-

teristics and computational methods.

Age-related alterations of hub regions (e.g., SFG and HIP) are

also found in this study (see Table 2 and Figure 7). The most of

these identified hub regions are association cortices regions (6=7
out of 10=12) in both age groups. This result is consistent with a

previous study that association cortices regions tend to be hubs of

the brain functional network regardless of age [17]. From younger

group to older group, association cortices show significant changed

node betweenness (see Table 2, Table 3 and Table 4). These

results support the view that age-related changes are characteristic

of association cortex as opposed to primary cortex [63]. We find

significant changes in node betweenness with decreasing and

increasing in normal aging. This result is also similar to the finding

by a previous study which indicated both negative and positive age

effects on the regional efficiency in cortical regions [61]. Our finding

is also consistent with a previous study that the ageing is associated

with significantly reduced nodal efficiency in the frontal neocortex

[17]. Above results suggest that frontal which manage movement

(see Table 2 and Table 3) plays important roles in contacting

information of both groups, but the importance of hippocampus

closely related to mental activity is reduced in the older group,

indicating the relative degradation of the aged mental activities. The

similar findings have been reported in previous studies [63,64,65].

Overall, our finding demonstrates age-related changes in the nodal

ability to manage information flow of PET networks.

In addition, PET investigations have revealed that the

precuneus/posterior cingulate cortex and the medial prefrontal

cortex, previously shown to be part of the DMN, display an

elevated level of metabolic activity [66]. This result is consistent

with our study that some elevated regions in DMN are the hubs

(e.g. PCG.R, PCUN.R) which show nodal ability to manage the

whole-brain PET network. Furthermore, a former study [20] has

reported that magnitude of DMN co-activation in some regions

(e.g. HIP.L and SFGmed.R) decreases with normal aging. In this

study, these regions also show decreased centrality in older group.

Hence, our whole-brain PET networks reveal similar regional

characteristics to the previous DMN studies.

Topological Vulnerability in Functional Networks in Older
Group

It has been demonstrated that small-world brain networks with

embedded hubs exhibit surprising resilience to random failures and

targeted attacks [40,46]. Assuming that dynamic behavior of a

network is strongly related to its fundamental configuration, it seems

reasonable to suppose that the changes in network parameters

reflect the disruptions in the general performance of the network

such as stability and robustness. This hypothesis is supported by our

results that the networks in older group are significantly vulnerable

to targeted attacks on its pivotal nodes (hub regions) compared with

younger group. The reduced topological stability is associated with

senescent functional organization in older group such as small-

world architecture, and nodal centrality shown previously. More-

over, former studies have reported the vulnerable topological

organization of brain structural cortical networks in patients with

AD [19]. Thus, this evidence from our study suggests that normal

senescence has risk for AD.

Methodology
In this study, we constructed large-scale human brain functional

networks via PET data. It is reasonable to conclude that cerebral

glucose metabolism from PET data represent the regional

functional activity [26,27]. Effective connectivity between PET

regions has also been revealed in previous studies about

investigating brain functional systems [30,31].

According to results about methodological robustness, the

similar small-world parameters (see Figure 9) are obtained in

responses to the decrease of the sample size. Small-world

properties in both groups (Figure 9 A and B), reduced global

efficiency (Figure 9 D) and increased local efficiency (Figure 9 D)

in older group are also found. Thus, it is reasonable to consider

that this method demonstrates sufficiently reliable. While this

study was a cross-sectional study, a longitudinal analysis would also

be useful to investigate the changes of functional brain networks

with normal aging. In future studies of functional brain network

development, younger individuals are expected to be involved in

farther experiments.

Conclusion

As mentioned above, by using PET data with graph theory

analysis, this study demonstrates age-related changes in the

topological organization of large-scale functional brain networks

constructed via a robust method. These results indicate that

normal senescence has a notable effect on the topological

organization of functional brain networks. Our findings are also

compatible with previous studies about the small-world properties,

hub regions and network robustness of brain functional and

structural networks, thus enhancing our understanding of the

underlying physiology of normal aging in human brain.

Supporting Information

Table S1 90 regions of interest included in AAL-atlas.

(PDF)

A Novel Functional Brain Network

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e88690



Author Contributions

Conceived and designed the experiments: ZHH HFL WHH. Performed

the experiments: ZLL LNK. Analyzed the data: ZHH ZLL. Contributed

reagents/materials/analysis tools: ZHH HFL ZLL. Wrote the paper: ZLL

ZHH.

References

1. Chiappe P, Siegel LS, Hasher L (2000) Working memory, inhibitory control,

and reading disability. Memory & Cognition 28: 8–17.

2. Madden DJ, Turkington TG, Provenzale JM, Denny LL, Hawk TC, et al.

(1999) Adult age differences in the functional neuroanatomy of verbal

recognition memory. Human brain mapping 7: 115–135.

3. Mattay VS, Fera F, Tessitore A, Hariri A, Das S, et al. (2002) Neurophysio-

logical correlates of age-related changes in human motor function. Neurology
58: 630–635.

4. Aine C, Sanfratello L, Adair J, Knoefel J, Caprihan A, et al. (2011) Development

and decline of memory functions in normal, pathological and healthy successful
aging. Brain topography 24: 323–339.

5. McKhann G, Drachman D, Folstein M, Katzman R, Price D, et al. (1984)

Clinical diagnosis of alzheimer’s disease report of the nincdsadrda work group*
under the auspices of department of health and human services task force on

alzheimer’s disease. Neurology 34: 939–939.

6. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis

of idiopathic parkinson’s disease: a clinico-pathological study of 100 cases.

Journal of Neurology, Neurosurgery & Psychiatry 55: 181–184.

7. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nature Reviews Neuroscience 10:
186–198.

8. Bassett DS, Bullmore ET (2009) Human brain networks in health and disease.

Current opinion in neurology 22: 340.

9. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in

modular organization of human brain functional networks. Neuroimage 44: 715.

10. Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanatsouli K, et al.
(2009) The influence of ageing on complex brain networks: a graph theoretical

analysis. Human brain mapping 30: 200–208.

11. Sun J, Tong S, Yang GY (2012) Reorganization of brain networks in aging and
age-related diseases. Aging and Disease 3: 181.

12. Watts D, Strogatz S (1998) The small world problem. Collective Dynamics of
Small-World Networks 393: 440–442.

13. Latora V, Marchiori M (2001) Efficient behavior of small-world networks.

Physical Review Letters 87: 198701.

14. Supekar K, Musen M, Menon V (2009) Development of large-scale functional

brain networks in children. PLoS biology 7: e1000157.

15. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, et al. (2009)
Functional brain networks develop from a local to distributed organization.

PLoS computational biology 5: e1000381.

16. Wu K, Taki Y, Sato K, Kinomura S, Goto R, et al. (2012) Agerelated changes in

topological organization of structural brain networks in healthy individuals.

Human brain mapping 33: 552–568.

17. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional

networks. PLoS computational biology 3: e17.

18. Stam C, Jones B, Nolte G, Breakspear M, Scheltens P (2007) Smallworld
networks and functional connectivity in alzheimer’s disease. Cerebral Cortex 17:

92–99.

19. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological

patterns of large-scale cortical networks in alzheimer’s disease. The Journal of

neuroscience 28: 4756–4766.

20. Koch W, Teipel S, Mueller S, Buerger K, Bokde AL, et al. (2010) Effects of

aging on default mode network activity in resting state fmri: does the method of
analysis matter? Neuroimage 51: 280–287.

21. Damoiseaux J, Beckmann C, Arigita ES, Barkhof F, Scheltens P, et al. (2008)

Reduced resting-state brain activity in the default network in normal aging.
Cerebral Cortex 18: 1856–1864.

22. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, et al. (2008) The

maturing architecture of the brain’s default network. Proceedings of the National
Academy of Sciences 105: 4028–4032.

23. Bluhm RL, Osuch EA, Lanius RA, Boksman K, Neufeld RW, et al. (2008)
Default mode network connectivity: effects of age, sex, and analytic approach.

Neuroreport 19: 887–891.

24. Binder JR, Frost JA, Hammeke TA, Bellgowan P, Rao SM, et al. (1999)
Conceptual processing during the conscious resting state: a functional mri study.

Journal of Cognitive Neuroscience 11: 80–93.

25. Shulman GL, Corbetta M, Buckner RL, Raichle ME, Fiez JA, et al. (1997)
Top-down modulation of early sensory cortex. Cerebral Cortex 7: 193–206.

26. Petit-Taboue M, Landeau B, Desson J, Desgranges B, Baron J (1998) Effects of
healthy aging on the regional cerebral metabolic rate of glucose assessed with

statistical parametric mapping. Neuroimage 7: 176–184.

27. Phelps M, Huang S, Hoffman E, Selin C, Sokoloff L, et al. (1979) Tomographic
measurement of local cerebral glucose metabolic rate in humans with (f-18)

2-fluoro-2-deoxy-d-glucose: validation of method. Annals of neurology 6: 371–
388.

28. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, et al. (2007) Where

the brain grows old: Decline in anterior cingulate and medial prefrontal function
with normal aging. Neuroimage 35: 1231–1237.

29. Van Veen V, Krug MK, Schooler JW, Carter CS (2009) Neural activity predicts

attitude change in cognitive dissonance. Nature neuroscience 12: 1469–1474.

30. Horwitz B, Tagamets M, McIntosh AR (1999) Neural modeling, functional

brain imaging, and cognition. Trends in Cognitive Sciences 3: 91–98.

31. Ferrarelli F, Haraldsson HM, Barnhart TE, Roberts AD, Oakes TR, et al.
(2004) [A,sup.17,/sup. f]-fluoromethane pet/tms study of effective

connectivity. Brain research bulletin 64: 103–113.

32. Seo EH, Lee DY, Lee JM, Park JS, Sohn BK, et al. (2013) Whole-brain

functional networks in cognitively normal, mild cognitive impairment, and

alzheimers disease. PloS one 8: e53922.

33. Gavrilescu M, Shaw ME, Stuart GW, Eckersley P, Svalbe ID, et al. (2002)
Simulation of the effects of global normalization procedures in functional mri.

Neuroimage 17: 532–542.

34. Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, et al. (2010) Differential

effects of global and cerebellar normalization on detection and differentiation of

dementia in fdg-pet studies. Neuroimage 49: 1490–1495.

35. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al.

(2002) Automated anatomical labeling of activations in spm using a macroscopic
anatomical parcellation of the mni mri single-subject brain. Neuroimage 15:

273–289.

36. Worsley K, Chen J, Lerch J, Evans A (2005) Comparing functional connectivity

via thresholding correlations and singular value decomposition. Philosophical
Transactions of the Royal Society B: Biological Sciences 360: 913–920.

37. Lerch J, Worsley K, Shaw W, Greenstein D, Lenroot R, et al. (2006) Mapping
anatomical correlations across cerebral cortex (macacc) using cortical thickness

from mri. Neuroimage 31: 993–1003.

38. Liu Y, Liang M, Zhou Y, He Y, Hao Y, et al. (2008) Disrupted smallworld

networks in schizophrenia. Brain 131: 945–961.

39. Humphries M, Gurney K, Prescott T (2006) The brainstem reticular formation

is a small-world, not scale-free, network. Proceedings of the Royal Society B:
Biological Sciences 273: 503–511.

40. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient,

low-frequency, small-world human brain functional network with highly

connected association cortical hubs. The Journal of Neuroscience 26: 63–72.

41. Sporns O, Chialvo D, Kaiser M, Hilgetag C, et al. (2004) Organization,

development and function of complex brain networks. Trends in cognitive
sciences 8: 418–425.

42. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein
networks. Science Signalling 296: 910.

43. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: simple building blocks of complex networks. Science Signalling 298: 824.

44. Freeman L (1977) A set of measures of centrality based on betweenness.

Sociometry : 35–41.

45. Albert R, Jeong H, Barabási A (2000) Error and attack tolerance of complex

networks. Nature 406: 378–382.

46. Kaiser M, Hilgetag C (2004) Edge vulnerability in neural and metabolic

networks. Biological cybernetics 90: 311–317.

47. Cohen J, Cohen P (1975) Applied multiple regression/correlation analysis for

the behavioral sciences. Lawrence Erlbaum.

48. Genovese C, Lazar N, Nichols T (2002) Thresholding of statistical maps in

functional neuroimaging using the false discovery rate. Neuroimage 15: 870–
878.

49. Bassett D, Bullmore E (2006) Small-world brain networks. The neuroscientist 12:
512–523.

50. Sporns O, Tononi G, Edelman G (2000) Theoretical neuroanatomy: relating
anatomical and functional connectivity in graphs and cortical connection

matrices. Cerebral Cortex 10: 127–141.

51. Kaiser M, Hilgetag C (2006) Nonoptimal component placement, but short

processing paths, due to long-distance projections in neural systems. PloS
Computational Biology 2: e95.

52. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, et al.
(2008) Hierarchical organization of human cortical networks in health and

schizophrenia. The Journal of Neuroscience 28: 9239–9248.

53. Wang L, Zhu C, He Y, Zang Y, Cao Q, et al. (2009) Altered small-world brain

functional networks in children with attentiondeficit/hyperactivity disorder.
Human brain mapping 30: 638–649.

54. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular
architecture of human brain structural networks by using cortical thickness from

mri. Cerebral cortex 18: 2374–2381.

55. Strogatz SH (2001) Exploring complex networks. Nature 410: 268–276.

56. Catani M, Ffytche DH (2005) The rises and falls of disconnection syndromes.

Brain 128: 2224–2239.

57. Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of

cerebral cortex shapes functional connectivity on multiple time scales.

Proceedings of the National Academy of Sciences 104: 10240–10245.

58. Wang XF, Chen G (2003) Complex networks: small-world, scale-free and
beyond. Circuits and Systems Magazine, IEEE 3: 6–20.

A Novel Functional Brain Network

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e88690



59. Mesulam MM (1998) From sensation to cognition. Brain 121: 1013–1052.

60. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, et al. (2009) Impaired small-
world efficiency in structural cortical networks in multiple sclerosis associated

with white matter lesion load. Brain 132: 3366–3379.

61. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, et al. (2009) Ageand
gender-related differences in the cortical anatomical network. The Journal of

Neuroscience 29: 15684–15693.
62. Iturria-Medina Y, Sotero RC, Canales-Rodrı́guez EJ, Alemán-Gómez Y, Melie-
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