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Abstract

The frequent emergence of new influenza viruses in the human population underlines the urgent need for antiviral
therapeutics in addition to the preventative vaccination against the seasonal flu. To circumvent the development of
resistance, recent antiviral approaches target cellular proteins needed by the virus for efficient replication. We investigated
the contribution of the small GTPase Rac1 to the replication of influenza viruses. Inhibition of Rac1 by NSC23766 resulted in
impaired replication of a wide variety of influenza viruses, including a human virus strain of the pandemic from 2009 as well
as highly pathogenic avian virus strains. Furthermore, we identified a crucial role of Rac1 for the activity of the viral
polymerase complex. The antiviral potential of NSC23766 was confirmed in mouse experiments, identifying Rac1 as a new
cellular target for therapeutic treatment of influenza virus infections.
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Introduction

Influenza viruses (IVs) are family members of Orthomyxoviridae

and are grouped into three different subtypes (A, B and C). Among

those, subtype A viruses are the major cause of seasonal outbreaks,

affecting the elderly and immune compromised persons but also

bear the potential to cause pandemics. The emergence of the

pandemic swine-origin IV in 2009, the recent human infections

with avian H7N9 viruses, and the ongoing human infections with

highly pathogenic avian H5N1 viruses highlight the permanent

threat elicited by these pathogens.

Although vaccination is an efficient prevention of IV infection,

this approach may fail in case of wrong predictions for the annual

vaccines or in a pandemic situation when availability of the

vaccine is insufficient. Accordingly, other antiviral strategies to

control infections are required. Currently, the commonly available

drugs target either the viral ion channel M2 (amantadine,

rimantadine) or the viral neuraminidase (NA; oseltamivir,

zanamivir). Unfortunately, usage of these drugs results in the

frequent development of resistant virus variants. Therefore,

clinical use of M2 ion channel blockers is no longer recommended

[1]. In recent years, novel antiviral approaches have been directed

against cellular factors, which are essential for viral replication

[2,3]. Such alternative strategies seem to offer a higher barrier for

the development of drug resistance.

Rac1 belongs to the family of Rho GTPases that regulate a wide

variety of cellular processes, such as cytoskeleton organization,

gene expression, cell cycle progression, and cell motility [4]. To

maintain their regulatory functions, these molecules cycle between

a GTP-bound (active) state and a GDP-bound (inactive) state. The

turnover from active to inactive state is catalyzed by its intrinsic

GTPase activity. The cycle is tightly regulated by two classes of

proteins: activating guanine nucleotide exchange factors (GEFs),

which catalyze the exchange of GDP to GTP, and GTPase-

activating proteins (GAPs), which stimulate the hydrolysis of the

bound GTP leading to inactivation of Rac1.

The key role of Rac1-dependent signaling in important cellular

functions led to the hypothesis that it might be essential for the

replication of different viruses as well. Indeed, a growing number

of reports describe a significant impact of Rac1 on the life cycle of

diverse viruses. Among those, virus-supportive as well as virus-

suppressive functions have been identified. Rac1 activity is needed

for the internalization of human immunodeficiency virus, vaccinia

virus, and African swine fever virus [5–7]. Furthermore, vesicular

trafficking of entering viral particles is influenced by Rac1 during

infections with adenovirus, african swine fever virus, and Ebola

virus [8–10]. In case of dengue viruses, Rac1 activity seems to

impair the entry process and is downregulated during the early

stages of the infection [11]. However, the same report suggests a

virus-supportive role of the GTPase during assembly and budding

of dengue viruses.
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In case of IV infections, we have shown that Rac1 is activated

upon infection [12]. The over-expression of a dominant negative

mutant form of Rac1 led to reduced interferon-b production,

which is the main response of the innate immune system to IV

infections. Consequently, an antiviral effect of Rac1 activity was

proposed. However, besides this antiviral property of Rac1, we

could not rule out a virus-supportive function during ongoing IV

replication. Furthermore, it became apparent that several enzymes

fulfill virus-supportive roles as well as antiviral functions within the

IV life-cycle [13]. In the meantime, new tools to investigate the

role of Rac1 had become available. Gao et al. identified the small

chemical compound NSC23766 as a Rac1-inhibiting drug and

showed that it interferes with a binding-groove of Rac1, a domain

that is involved in the determination of Rac1’s specificity to certain

GEFs [14,15]. NSC23766 specifically inhibits Rac1 activity

without effecting the closely related Rho-GTPases Cdc42 and

RhoA. It blocks the interaction of Rac1 with its GEFs Tiam1 and

Trio, without targeting the activation by other GEFs, such as Vav,

Lbc or intersectin [15]. This high specificity for Rac1 and a small

subset of GEFs suggests that NSC23766 is an ideal candidate to

target specific Rac1-mediated signaling processes. While a recent

study tested the effect of NSC23766 treatment on IV entry and

ruled out an involvement of Rac1 in endocytosis of these viruses

[16], we aimed to investigate the impact of NSC23766 treatment

on IV replication.

Materials and Methods

Cells, Viruses and Infection Conditions
All experiments were performed in human lung epithelial cells

(A549) grown in DMEM supplemented with 10% FBS. MDCKII

cells were cultivated in MEM supplemented with 10% FBS and

were used for propagation of the different influenza virus strains

and for standard plaque assays. The infection procedure was

performed as described previously [17]. The human recombinant

influenza A virus strain A/Puerto-Rico/8/34 (H1N1) was

generated using the pHW2000-based reverse genetic system (a

kind gift from Dr. Robert G. Webster, Memphis, TN, USA) [18].

The swine-origin A/Hamburg/04/2009 (H1N1v) was obtained

from Brunhilde Schweiger, German National Reference Centre

for Influenza, Berlin. The highly pathogenic avian influenza A

virus strain A/FPV/Bratislava/79 (H7N7) was taken from the

virus strain collection of the Institute of Virology, Giessen,

Germany. The A/Thailand/1(KAN-1)/2004 (H5N1) was isolated

at the Siriraj Hospital, Mahidol University, Bangkok, Thailand

and the human influenza B virus strain B/Maryland/59 was

obtained from Thorsten Wolff, Robert-Koch-Institute, Berlin,

Germany. Viral titers of cell culture supernatants and mouse lung

lysates were determined by standard plaque assays. All experi-

ments with the highly pathogenic avian influenza strains A/FPV/

Bratislava/79 and A/Thailand/1(KAN-1)/2004 were conducted

under BSL-3 conditions.

Chemical Inhibitors
Rac1 inhibitor NSC23766 (N6-[2-[[4-(diethylamino)-1-methyl-

butyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinedia-

mine trihydrochloride) (Tocris) was dissolved in H2O at a stock

concentration of 50 mM. Unless otherwise indicated, it was used

at a final concentration of 100 mM in cell culture experiments.

The M2 ion channel blocker amantadine (Sigma) was dissolved

in H2O at a concentration of 2.5 mM and diluted to a

concentration of 5 mM in cell culture medium. To inhibit protein

translation, cycloheximide (Sigma) was used at a final concentra-

tion of 10 mg/ml. Staurosporine (Sigma) served as a positive

control for induction of apoptosis (1 mM).

Preparation of Nuclear Extracts, Western Blot Analysis,
and Antibodies

To differentiate between cytosolic and nuclear localization of

proteins, nuclear extracts were prepared. Therefore, 66106 A549

cells were treated as indicated, washed with PBS, and collected in

1 ml PBS. After centrifugation (5 min at 650 g and 4uC), cells

were resuspended in 1 ml Roeder A buffer (10 mM HEPES

pH 7.9, 1.5 mM MgCl2, 10 mM KCl supplemented with 0.5 mM

DTT, 1 mM sodium vanadate, 5 mM benzamidine, 0.2 mM

pefablock, 5 mg/ml leupeptin, and 5 mg/ml aprotinin) and

incubated on ice for ten minutes. After addition of Igepal CA-

630 (Sigma) to a final concentration of 0.6%, cells were mixed for

30 s and incubated for another ten minutes on ice. Nuclei were

pelleted by centrifugation (10 min at 2650 g and 4uC) and the

supernatant (cytosolic fraction) was transferred to another tube.

The pellet was washed with 1 ml Roeder A buffer and

subsequently resuspended in 250 ml Roeder C buffer (25% (v/v)

glycerol, 0.3 M NaCl, 1.5 mM MgCl2, 20 mM HEPES pH 7.9

supplemented with 0.5 mM DTT, 1 mM sodium vanadate, 5 mM

benzamidine, 0.2 mM pefablock, 5 mg/ml leupeptin, and 5 mg/ml

aprotinin). After incubation at 4uC over-night in an overhead

shaker, the nuclear fraction was clarified by centrifugation (30 min

at 21000 g and 4uC). Protein concentrations of cytosolic and

nuclear fractions were determined using Bio-Rad Protein Assay

(Bio-Rad). Subsequently the samples were treated as other protein

lysates for Western blot analysis.

To analyze the expression of specific proteins, cell lysates were

prepared as described previously [17] and total protein concen-

trations were determined with the BCA Protein Assay Kit (Pierce).

After SDS-gel-electrophoresis and Western blotting, protein bands

were visualized with an enhanced chemiluminescence reaction

and imaged by a CCD camera-based system (Stella, raytest).

To evaluate the onset of apoptosis, PARP and its cleaved form

were detected by an anti-PARP mouse mAb (BD). The viral non-

structural protein 1 (NS1) was analyzed by an anti-NS1 mouse

mAb (clone NS1-23-1; IMV Münster, Germany). The viral matrix

protein 1 (M1) was detected by anti-M1 mouse mAb (Serotec).

Expression of the viral polymerase-complex protein basic 1 (PB1)

was monitored by an anti-PB1 (vK-20) goat pAb (Santa Cruz).

Knockdown efficiency of Rac1 and Tiam1 was shown by specific

antibodies for each protein (anti-Rac1 mouse mAb, Upstate; anti-

Tiam1 rabbit pAb, abcam). As markers for cytosolic and nuclear

fractions anti-a-Tubulin mouse mAb (Sigma) and anti-Drosha

rabbit mAb (Cell Signaling) were used, respectively. To control

equal protein loading, an anti-ERK2 (C-14) rabbit pAb (Santa

Cruz) was used.

Transient Transfections, Plasmids, siRNAs, and Reporter
Gene Assays

Transfection of plasmid DNA as well as siRNA was performed

with Lipofectamine2000 (Invitrogen) according to the manufac-

turer’s protocol. For knockdown of Rac1 and Tiam1, predesigned

siRNAs (Qiagen) against Rac1 (Hs_Rac1_6) or Tiam1

(Hs_Tiam1_3), respectively, were used (30 pmol per 12-well).

For negative control, non-silencing AllStars Negative Control

siRNA (Qiagen) was employed.

To stimulate the interferon response 0.5 mg total RNA isolated

from A549 cells infected with A/FPV/Bratislava/79 (moi = 5) for

six hours were used for transfection. RNA of mock-infected A549

cells was transfected as control.
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To assay general protein expression, 0.5 mg of a reporter gene

plasmid encoding the firefly luciferase under control of a CMV

promoter was transfected per 24-well. For analysis of viral

polymerase activity, a mini-genome system was used [19]. The

PolI-driven reporter plasmid pHW72-luc, encoding the antisense-

luciferase gene flanked by the viral RNA promoters, and a mixture

of expression plasmids for the proteins of the viral polymerase

complex (PB1, PB2, PA) and NP of influenza virus A/Puerto-

Rico/8/34 (H1N1) based on the pHW2000 vector were trans-

fected (0.3 mg of each plasmid per 24-well). Six hours after

transfection cells were supplemented with fresh medium with or

without Rac1 inhibitor NSC23766. After 24 h of incubation,

luciferase activity was quantified in a luminometer according to

standard procedures [20]. Measured relative light units were

normalized to protein concentrations determined with the Bio-

Rad Protein Assay (Bio-Rad).

Analysis of Cellular Metabolic Activity, Cytostasis, and
Apoptosis

The metabolic activity of inhibitor-treated A549 cells was

analyzed by MTT assay as described previously [21]. Cytostatic

effects of NSC23766 were analyzed using cell proliferation reagent

WST-1 (Roche) according to manufacturer’s protocol. The

amount of apoptotic cells was determined by flow cytometric

analysis of propidium iodide-stained cells according to a protocol

by Riccardi and Nicoletti [22].

Ethics Statement
All animal studies were performed in accordance with the

German regulations of the Society for Laboratory Animal Science

(GVSOLAS) and the European Health Law of the Federation of

Laboratory Animal Science Associations (FELASA). The protocol

was approved by the Landesamt für Natur, Umwelt und

Verbraucherschutz Nordrhein-Westfalen (LANUV-NRW), Ger-

many (permit Az 8.87-50.10.36.09.007 and Az. 84-

02.04.2013.A232).

Mouse Experiments
In mouse experiments female and male BALB/c mice (10-17

weeks) were used. All data that are presented in the results section

were obtained in two independent experiments with groups of 3-4

animals. For intranasal infection, BALB/c mice were anesthetized

by intraperitoneal injection of ketamine (Ceva) and xylazin (Ceva).

Indicated amounts of virus were diluted in 50 ml PBS and 25 ml

were applied in each nostril.

Infected mice were treated twice per day for 20 min in an

inhalation chamber. During each run, approximately 3 ml of an

aqueous solution of NSC23766 (0.1 or 1 mg/ml) or water were

nebulized. With this experimental setup, an estimated amount of

0.3 to 1% of the solution is delivered to the lung [23], leading to a

maximum dosage of 3 mg/kg body weight/day.

To determine the virus load in the lung, mice were sacrificed by

cervical dislocation following anesthesia with isoflurane (AbbVie)

three days post-infection (p.i.) and lungs were homogenized at

equal ratios (w/v) in PBS using a FastPrep-24 homogenizer (MP

Biomedicals) with Lysing Matrix D (MP Biomedicals). The

samples were centrifuged at 10000 g for ten minutes, and the

supernatants were taken for plaque assay.

To draw a Kaplan-Meier survival curve body weight and water

uptake were monitored once per day for a total period of 16 days

post inoculation. In addition, the general state of health was

observed twice per day. At the end of an experiment or when mice

lost 25% of their initial body weight they were humanely

euthanized by cervical dislocation after anesthesia with isoflurane.

Quantitative Real-Time PCR
Total RNA of cells was isolated with the RNeasy mini kit

(Qiagen) according to the manufacturer’s protocol. Reverse

transcription of mRNA was done as described before [17]. The

cDNA was used for qRT-PCR with Brilliant QPCR SYBR Green

(Stratagene) according to manufacturer’s manual. After 40

amplification cycles, relative RNA amounts were calculated by

using the 22DDCT method [24]. Primers: GAPDH_fwd 59-GCA

AAT TTC CAT GGC ACC GT-39, GAPDH_rev 59-GCC CCA CTT

GAT TTT GGA GG-39, NS_fwd 59-GAG GAC TTG AAT GGA ATG

ATA ACA-39, NS_rev 59-GTC TCA ATT CTT CAA TCA ATC AAC

CAT C-39, PB1_fwd 59-CAT ACA GAA GAC CAG TCG GGA T-39,

PB1_rev 59-GTC TGA GCT CTT CAA TGG TGG A-39, MxA_fwd

59-GTT TCC GAA GTG GAC ATC GCA-39, MxA_rev 59-GAA GGG

CAA CTC CTG ACA GT-39

Results

NSC23766 Inhibits Replication of Influenza A and B
Viruses

Initially we elucidated whether the specific inhibitor NSC23766,

which prevents the interaction of Rac1 with its GEFs Tiam1 and

Trio, exerts an antiviral effect against IV infection in cultured cells.

A549 cells were infected with the recombinant human model IV

A/Puerto-Rico/8/34 and treated with different concentrations of

NSC23766 30 min p.i. for 24 h. Determination of progeny virus

titers revealed a dose-dependent antiviral activity of the compound

(Fig. 1A). The highest reduction of virus titers of about 90% was

achieved at a concentration of 100 mM, while higher concentra-

tions could not further enhance this antiviral effect. From a dose-

response curve (Fig. 1B), an EC50 value of approximately 22 mM

was calculated. NSC23766 did not only inhibit replication of A/

Puerto-Rico/8/34, but also exhibited antiviral activity against

several other IV subtypes (Fig. 1C). Determination of progeny

virus titers of the swine-origin pandemic virus A/Hamburg/04/

2009, the highly pathogenic avian isolate A/FPV/Bratislava/79,

the human isolate of the avian A/Thailand/1(KAN-1)/2004, and

B/Maryland/59 revealed a significant reduction upon NSC23766

treatment in the first (10 h) and following replication cycles (24 h,

32 h). These data indicate a broad antiviral activity of NSC23766

towards different IV strains, and a fundamental and highly

conserved role of Rac1 during viral reproduction.

NSC23766 Treatment Does Not Show Harmful Effects on
Cell Health

Since the use of drugs targeting cellular factors may raise

concerns about side effects on the host cell, we analyzed whether

antiviral-acting concentrations of NSC23766 show harmful effects

on cell health (Fig. 2). To investigate the impact of NSC23766

treatment on the metabolism of A549 cells, MTT assays were

performed after 10, 24 and 32 h inhibitor treatment (Fig. 2A). The

onset of apoptosis was evaluated after 24 h by detection of PARP

cleavage in Western blot analysis (Fig. 2B) or measurement of

DNA degradation via propidium iodide staining (Fig. 2C).

Concentrations of up to 100 mM showed no severe effect on the

metabolic activity (Fig. 2A) or apoptosis (Fig. 2B–C), while higher

concentrations of 150 mM or 200 mM resulted in slightly reduced

metabolic activity and enhanced apoptosis.

Since it is well known that Rac1 is involved in cell cycle

progression, we tested also the cytostatic effect of NSC23766 on

A549 cells at different concentrations (Fig. 2D). While concentra-
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tions of 150 and 200 mM led to a reduced cell proliferation, the

concentration of 100 mM showed only a marginal cytostatic effect.

There was no difference observable in cell proliferation of A549

cells treated with 50 mM NSC23766 and untreated cells.

In conclusion it can be stated that there are no adverse side-

effects of NSC23766 on A549 cells at a concentration of 100 mM,

which was used in further experiments.

Rac1 Activity Is Required for Efficient IV Replication
As stated above, NSC23766 exerts inhibitory effects on Rac1 by

preventing its interaction with the GEFs Tiam1 and Trio. To

verify the role of Rac1 during IV replication, siRNAs against Rac1

or Tiam1 were used (Fig. 3). The knockdown of Rac1 was most

efficient 72 h after transfection (,80%), while efficient downreg-

ulation of Tiam1 was already achieved 48 h post transfection

(,86%). Silencing the expression of Rac1 led to significantly

reduced replication of A/Puerto-Rico/8/34 24 h p.i. (Fig. 3A).

Likewise, knockdown of the upstream factor Tiam1 led to reduced

viral titers (Fig. 3B). Taken together, these data confirm a

supportive role of Rac1 for IV replication and underline the

specificity of the antiviral activity of NSC23766.

Inhibition of Rac1 Signaling Leads to Reduced Viral
Protein Synthesis

To further examine the Rac1-mediated virus-supportive func-

tion during IV replication, we focused on the expression of viral

proteins within the first replication cycle in the presence of

NSC23766. Expression of the viral proteins PB1, M1, and NS1

was reduced upon NSC23766 treatment (Fig. 4, lanes 7 and 9) in

comparison to untreated control cells (Fig. 4, lanes 6 and 8) 6 and

8 h after infection. However, to rule out a general blockage of

cellular transcription or translation by NSC23766, expression of a

reporter gene (luciferase) driven by a constitutive active promoter

(CMV) was monitored upon NSC23766 treatment (Fig. 4B). In

comparison to untreated samples, NSC23766 treatment for 24 h

showed no reduction of luciferase activity, while treatment with

cycloheximide, a general translation blocker, resulted in signifi-

cantly lower expression of the reporter gene. Thus, it can be

Figure 1. IV replication is impaired upon Rac1 inhibition by treatment with NSC23766. (A) A549 cells were infected with A/Puerto-Rico/8/
34 rec. (moi = 0.01) for 30 min and subsequently treated with the indicated amounts of NSC23766 for 24 h. (B) Dose-response data depicted in A
were used to determine the EC50 curve with GraphPad Prism 5 Software. (C) A549 cells were infected with A/Puerto-Rico/8/34 rec. (moi = 0.01), A/
Hamburg/04/2009 (moi = 0.1), A/FPV/Bratislava/79, A/Thailand/1(KAN-1)/2004 (moi = 0.001), or B/Maryland/59 (moi = 0.1) and subsequently incubated
with NSC23766 (100 mM) for 10, 24, or 32 h. (A, C) Progeny virus yields were determined by plaque assays. Data represent means 6 SD of at least
three independent experiments with two biological samples. Statistical significance was evaluated by Student’s t-test (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0088520.g001

Figure 2. NSC23766 does not cause cytotoxic side-effects on A549 cells. A549 cells were treated with the indicated concentrations of
NSC23766 or staurosporine (1 mM), which served as a positive control. After 10, 24, or 32 h incubation, metabolic activity was measured via MTT assay
(A). The onset of apoptosis was analyzed after 24 h incubation either by the detection of PARP cleavage in Western blot analysis (B) or by propidium
iodide staining (C). Cell proliferation was determined after indicated incubation times by usage of the cell proliferation reagent WST-1 detecting the
absorbance at 450 nm (D). Data represent means 6 SD of three independent experiments including four (A) or two (C) biological samples or means
6 SD of three biological samples of one representative out of three conducted experiments (D).
doi:10.1371/journal.pone.0088520.g002
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Figure 3. The siRNA mediated knockdown of Rac1 or Tiam1 leads to impaired viral replication. A549 cells were transfected with non-
silencing control siRNA or siRNA against Rac1 (A) or Tiam1 (B) for 72 or 48 h, respectively. Thereafter, cells were infected with A/Puerto-Rico/8/34 rec.
(moi = 0.01) for 24 h. Progeny virus yields were determined by plaque assays. Data represent means 6 SD of three independent experiments
including two biological samples. Statistical significance was evaluated by Student’s t-test (* p,0.05; ** p,0.01). Efficient knockdown of Rac1 or
Tiam1 was determined in Western blot analysis using specific antibodies against Rac1 or Tiam1, respectively. Detection of ERK2 served as a loading
control.
doi:10.1371/journal.pone.0088520.g003

Figure 4. Inhibition of Rac1 by NSC23766 leads to reduced synthesis of viral proteins. (A) A549 cells, infected with A/Puerto-Rico/8/34 rec.
(moi = 5), were treated with NSC23766 (100 mM) 30 min p.i.. Cell lysates were prepared at the indicated times and subjected to Western blot analysis.
The viral protein synthesis was monitored by PB1, M1, and NS1 detection and visualization of ERK2 served as a loading control. (B) A549 cells were
transfected with a constitutively active CMV promoter luciferase plasmid for six hours. Subsequently, NSC23766 was added at a concentration of
100 mM. Untreated cells served as a negative control, while cycloheximide treatment (10 mg/ml) was used as a positive control. After 24 h incubation,
cells were subjected to luciferase assay. Data represent means 6 SD of three independent experiments including three biological samples. Statistical
significance was evaluated with Student’s t-test (*** p,0.001).
doi:10.1371/journal.pone.0088520.g004
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concluded that the inhibitor specifically reduces synthesis of IV

proteins.

NSC23766 Inhibits Viral Polymerase Activity
After demonstrating the reducing effect of NSC23766 on viral

protein synthesis, we investigated if inhibitor treatment affects viral

mRNA expression. Thus, the expression levels of ns and pb1

mRNA in the presence and absence of the inhibitor were

determined by qRT-PCR (Fig. 5A, left panel). Indeed, mRNA

expression of the investigated genes was impaired upon

NSC23766 treatment. Based on these results, we concluded that

the reduced amount of viral mRNA expression leads to the

observed lowering of viral proteins.

Nevertheless, newly synthesized viral proteins are imported into

the nucleus to form additional polymerase complexes and further

enhance viral gene expression. Consequently, it might also be the

case that the reduced mRNA levels are the result of impaired viral

protein synthesis. To rule out this possibility, we blocked de novo

protein synthesis in virus-infected cells by adding cycloheximide

and analyzed the expression of viral mRNA (Fig. 5A, right panel).

In this experimental setup, only viral polymerase complexes that

entered the cells with incoming virus particles are available, hence

the detected amounts of viral mRNAs are completely independent

of viral protein synthesis. The mRNA levels of the ns and the pb1

segments were still reduced significantly and thus the observed

differences in expression of ns and pb1 mRNA are independent of

newly synthesized viral proteins.

To test a direct impact of NSC23766 on viral polymerase

activity, we performed a mini-genome assay, using a luciferase

reporter gene construct under the control of viral RNA promoters

Figure 5. NSC23766 treatment results in reduced viral mRNA levels caused by impaired activity of the viral polymerase complex. (A)
A549 cells were infected with A/Puerto-Rico/8/34 rec. (moi = 5) and subsequently treated with NSC23766 (100 mM) 30 min post-infection. Six hours
p.i., the RNA was isolated for qRT-PCR and the fold increase of ns and pb1 mRNA compared to uninfected cells was determined using the
housekeeping gene gapdh as the internal standard. Treatment of cells with cycloheximide (10 mg/ml, right panel) was performed to inhibit de novo
protein synthesis. (B) Viral polymerase activity was assayed in a mini-genome system using a luciferase reporter gene driven by the viral RNA
promoter. A549 cells were transfected with plasmids encoding PB1, PB2, PA, and NP in addition to the luciferase reporter plasmid. Six hours post-
transfection, NSC23766 was added at a final concentration of 100 mM and cells were incubated for a further 24 h. Luciferase activity was assayed in
cell lysates. Data represent means 6 SD of three independent experiments including three biological samples. Statistical significance was evaluated
with Student’s t-test (* p,0.05; ** p,0.01). (C) A549 cells were infected with A/Puerto Rico/8/34 rec. (moi = 0.01) for 30 min and were subsequently
treated with NSC23766 (100 mM). After eight hours of infection nuclear extracts were prepared and subjected to Western blot analysis. The amounts
of Rac1 and the viral proteins PB1, M1, and NS1 were analyzed in cytosolic and nuclear fractions. Detection of the cytosolic protein a-Tubulin and the
nuclear localized protein Drosha served as control for efficient fractionation.
doi:10.1371/journal.pone.0088520.g005
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[19]. The luciferase reporter plasmid was co-transfected with

expression plasmids for the viral polymerase proteins (PB1, PB2,

PA) and nucleoprotein (NP) 6 h prior to treatment with

NSC23766. After 24 h incubation, inhibitor-treated cells showed

a significantly reduced amount of luciferase activity compared to

untreated control cells (Fig. 5B), indicating a lower viral

polymerase activity. Taken together, Rac1 inhibition by

NSC23766 leads to reduced transcription of viral genes, which is

most likely the reason for the observed drop in viral protein

expression and viral replication.

To directly influence the viral polymerase complex, Rac1

should be localized in the nucleus, the site of IV replication. To

test if IV infection leads to increased levels of Rac1 in the nucleus

and if NSC23766 might inhibit this relocalization nuclear extracts

of infected A549 cells were analyzed (Fig. 5C). While Rac1 was

detectable in the cytosolic as well as in the nuclear fraction, no

significant changes were observable after infection or treatment

with NSC23766. Nonetheless, the general presence of Rac1 in the

nucleus underlines the possibility of an interaction with the viral

polymerase complex in this cellular compartment. But neither a

recruitment of Rac1 to the nucleus upon IV infection nor an

inhibition of this relocalization by NSC23766 could be confirmed.

Furthermore, we examined the localization of the viral proteins

PB1, M1, and NS1 in presence and absence of NSC23766

(Fig. 5C, lanes 3–4 and 7–8). All analyzed proteins could be

detected in both fractions and their expression was reduced after

treatment with NSC23766, confirming the results already

presented (Fig. 4A). Since the extent of the reduction in expression

of viral proteins was similar in both fractions, a specific

downregulation of viral protein synthesis in the nucleus can be

ruled out. This supports the conclusion that the antiviral effect of

NSC23766 is independent of the nuclear import of newly

synthesized viral proteins.

Inhibition of Viral Replication by NSC23766 Shows a High
Barrier for the Development of Drug Resistance

One of the most important problems with currently available

drugs against IV is the frequent development of resistant virus

variants against compounds directly targeting viral proteins.

Therefore, we wanted to determine the potential of NSC23766

to generate resistant virus variants. A well established multi-

passaging experiment under the constant evolutionary pressure of

the drug was performed (Fig. 6), using the M2 ion channel blocker

amantadine as positive control. After ten passages, no reduction of

the antiviral effect of NSC23766 was observed, while amantadine

led to rapid emergence of resistant virus variants and started to

lose its antiviral effect after only two passages.

The Interferon b Response is not Directly Inhibited by
NSC23766

So far, our results indicated a high antiviral activity of

NSC23766 in IV-infected cells. This seemed to be contradictory

to our former study, which identified Rac1 as positive regulator of

interferon b expression after IV infections [12]. Thus, we

investigated the effect of NSC23766 treatment on IV-induced

interferon response. After infection of A549 cells and subsequent

treatment with NSC23766, the changes in mRNA levels of mxa, a

strictly interferon b regulated gene, were analyzed by qRT-PCR

(Fig. 7A). The infection resulted in an 8-fold increase of mxa

expression compared to mock-infected cells. The enhanced mxa

expression was slightly reduced when Rac1 was inhibited by

NSC23766 (6-fold increase compared to mock infected control).

Since the NSC23766-mediated reduction in mxa expression might

have been a secondary effect of the impaired viral replication we

used viral RNA as a virus-derived non dynamic interferon stimulus

in an additional experimental setting (Fig. 7B). A549 cells were

transfected with RNA isolated from infected (viral RNA) or

uninfected (cellular RNA) cells, in presence or absence of

NSC23766. After six hours of incubation, mxa mRNA levels were

analyzed by qRT-PCR. The transfection of viral RNA resulted in

a more than 300-fold increase of mxa expression compared to

cellular RNA-transfected control cells. The same induction of the

interferon response was achieved when NSC23766 was added to

the transfection medium. In summary, it can be concluded that the

expression of interferon b is not directly affected by NSC23766-

mediated Rac1 inhibition.

NSC23766 Efficiently Impairs IV Replication in Mice
Finally, we wanted to know if NSC23766 shows antiviral

activity in the mouse model. We infected BALB/c mice with

200 PFU of A/Puerto-Rico/8/34 rec. and treated them twice per

day for 20 min with a nebulized NSC23766 solution (0.1 or 1 mg/

ml) or water as solvent control. Three days p.i. the mice were

sacrificed and the viral loads in the lungs were analyzed (Fig. 8A).

In comparison to untreated mice, the replication of IV in

NSC23766-treated mice was reduced. While the treatment with

0.1 mg/ml resulted in a moderate drop of viral titers (29%), the

concentration of 1 mg/ml was sufficient to significantly reduce

viral lung loads by 61%.

These promising results led us to the question if treatment with

NSC23766 can diminish disease progression and prolong the

survival of infected mice. Therefore, BALB/c mice were treated

twice per day with NSC23766 (1 mg/ml) or water as solvent

control for eight consecutive days beginning immediately after

infection with A/Puerto-Rico/8/34 rec. (100 PFU). The body

weight was documented for 16 days as an objective readout for

disease progression (Fig. 8B). Both treatment groups lost body

weight, which was slightly attenuated in the inhibitor-treated

group from day four after infection. The difference in mean body

weight loss became significant at day eight p.i. when it reached

3.5%. While all eight solvent-treated mice had to be euthanatized

at day eight post infection, four out of eight inhibitor-treated mice

survived the infection and recovered completely (Fig. 8B). These

data were used to draw a Kaplan-Meier survival curve, to illustrate

Figure 6. Inhibition of IV replication by NSC23766 exhibits a
high barrier against the emergence of resistant virus variants.
A549 cells were infected with A/FPV/Bratislava/79 (moi = 0.001) in the
presence of either NSC23766 (100 mM) or amantadine (5 mM) for 24 h.
Two biological samples for each treatment group were titrated,
combined, and used for the next round of infection with equal
amounts of virus per well. Virus titers are shown as percentage of the
untreated control.
doi:10.1371/journal.pone.0088520.g006
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the prolonged survival of NSC23766-treated mice (Fig. 8C).

Taken together, the attenuation of viral replication and the

prolonged survival by NSC23766 treatment in mice underline the

critical role of Rac1 in vivo.

Discussion

Infections with IV are still a serious threat for mankind and the

constant emergence of new virus strains are a challenging task for

global healthcare. In addition, the frequent development of

resistance against currently available drugs underlines the urgent

need for new antiviral strategies. Here we report the antiviral

potential of the specific Rac1 inhibitor NSC23766 against a wide

variety of IVs in cell culture and in the mouse model.

Furthermore, we present first evidence for an involvement of

Rac1-dependent signaling in viral polymerase activity.

We had shown before that Rac1 is involved in the onset of the

type-I interferon response upon IV infections and that expression

of dominant-negative mutants results in increased virus titers [12].

At first glance this might appear to be in contrast to the reduced

viral titers after treatment with NSC23766 (Fig. 1) or transfection

of Rac1 and Tiam1 siRNA (Fig. 3). This discrepancy might be

explained by spatio-temporal patterns of the cellular factors or

mechanistic differences in the mode of inhibition.

There is accumulating evidence that one enzyme is often able to

fulfill antiviral as well as virus-supportive functions during viral

replication in a time- and probably location-dependent manner

[13]. Such a phenomenon was also observed in the case of JNK

inhibition, when expression of dominant-negative mutants led to

increased virus titers while chemical inhibition resulted in reduced

viral replication [25,26]. Thus, different branches of the signaling

pathway might be inhibited separately by diverse methods [26]. In

the present case, the high specificity of NSC23766, which targets

only the Rac1 activation by Tiam1 and Trio, might explain the

discrepancy in the effect on viral replication in comparison to the

general block of Rac1 by dominant-negative mutants. Thus the

different modes of action of both applied inhibitory procedures are

most likely the reason for the different outcomes. While

NSC23766 interferes with a specific subset of activating factors,

namely Tiam1 and Trio, the dominant negative mutant competes

with the endogenous Rac1 for various cellular interaction partners.

In consequence, different effects on Rac1-mediated signaling are

not surprising.

Rac1 signaling was shown to be involved in the entry process of

a number of enveloped viruses including human immunodeficien-

cy virus, vaccinia virus, and African swine fever virus [5-7].

Surprisingly, a recent publication showed that endocytosis of IV

does not depend on Rac1 signaling [16]. Thus, we were prompted

to search for the mechanism of the observed antiviral activity of

NSC23766 post entry. We could show that upon Rac1 inhibition

by NSC23766, viral polymerase activity is reduced (Fig. 5B),

which seems to result in lowered viral mRNA levels (Fig. 5A) and

subsequently impaired synthesis of viral proteins (Fig. 4A).

The transcription and replication of the IV genome takes place

in the nucleus, suggesting that Rac1 might be needed at the same

place to support viral propagation. Although Rac1 is mainly

located in the cytoplasm, a growing number of recent publications

suggest additional localization and functions in the nucleus. Rac1

contains a functional nuclear localization signal [27] and can enter

the nucleus in its activated form by interaction with the nuclear

import receptor karyopherin a2 [28]. Furthermore, Rac1 is

necessary for the nuclear import of transcription factors of the

STAT family, where it is suggested to function as a nuclear

transport chaperone [29]. Here we could detect Rac1 in the

nucleus of A549 cells (Fig. 5C). Due to these results an direct

interaction with the viral polymerase complex during replication

seems to be possible. However, we did not observe significant

changes in Rac1 localization after IV infection or NSC23766

treatment. In consequence, effects on Rac1 localization can be

ruled out as the mechanism for NSC23766-mediated inhibition of

IV replication. Furthermore, the viral proteins were reduced to the

same extent in the cytosol and the nucleus (Fig. 5C), excluding

Rac1 as nuclear import factor for newly synthesized IV proteins.

We have shown that NSC23766 efficiently impairs replication

of a wide variety of different influenza viruses in cell culture

(Fig. 1C) and that treatment with the effective dose does not lead

to unspecific cell cytotoxicity (Fig. 2). Together with the significant

reduction of viral propagation in mice (Fig. 8A) and the prolonged

survival rate of infected mice (Fig. 8C), inhibition of Rac1 by

NSC23766 treatment seems to be a promising target for anti-IV

intervention. Further development and modification of Rac1

Figure 7. NSC23766 treatment does not directly affect expression of the interferon b regulated gene mxa. (A) A549 cells were infected
with A/Puerto-Rico/8/34 rec. (moi = 5) and subsequently treated with NSC23766 (100 mM) 30 min after infection. (B) Alternatively, the cells were
transfected with cellular or viral RNA (0.5 mg/12-well) in presence or absence of NSC23766 (100 mM). (A–B) After six hours of incubation, total RNA was
isolated for qRT-PCR and the fold increase of mxa mRNA was determined using the housekeeping gene gapdh as the internal standard. Data
represent means 6 SD of three independent experiments including three biological samples.
doi:10.1371/journal.pone.0088520.g007
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Figure 8. NSC23766 has an antiviral potential in mice. BALB/c mice were infected with A/Puerto-Rico/8/34 rec. (200 PFU (A) or 100 PFU (B)).
Immediately after infection, treatment with nebulized NSC23766 was started (twice per day for 20 min with indicated concentrations). (A) Viral load in
the lungs was determined at day three p.i. (control n = 8, 0.1 mg/ml and 1 mg/ml n = 7). (B–C) Infected mice were treated with NSC23766 (1 mg/ml)
until day seven p.i and disease progression was monitored over a period of 16 days (n = 8). Mice were humanly sacrificed when they lost 25% of their
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inhibitors might offer even more potent drugs for anti-influenza

therapy by targeting Rac1 [30].
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