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Abstract

Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain’s white matter is organized as a rich
club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both
functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with
functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club
regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the
developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust
structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and
inferior temporal cortex. We also show that these regions were highly integrated across the brain’s major networks.
Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of
segregation between systems. While no significant differences between adults and children were found structurally, adults
showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of
connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both
a structural and functional rich club in adult and child populations with some functional changes over development. It also
offers a potential target in examining atypical network organization in common developmental brain disorders, such as
ADHD and Autism.
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Introduction

Human brain function is the result of a highly organized

network of connections linking distinct areas across the brain.

Recent work in neuroimaging has reflected a shift towards

examining the brain in terms of its large-scale system dynamics

[1,2]. This shift could prove to be pivotal for clarifying the

mechanisms that lead to both healthy and disordered brain

function [3]. At the same time, identifying typical changes in the

topology of brain networks across age will be crucial for generating

an understanding of how complex human brain function arises.

One such topology hypothesized to exist in the brain is the so-

called ‘‘rich club’’ organization, whereby the most highly

connected nodes show a strong tendency to connect with other

highly connected nodes. In recent years, rich club organization has

been studied as an important indicator of certain functional

features within many real-world networks. For instance, the

protein-protein interaction network of the yeast Saccharomyces

Cerevisiae [4] is absent a rich club, allowing for maximal functional

specialization or biological segregation. On the other hand, rich

club organization is a common feature of power grids and

transportation systems [4], which likely allows for maximal

integration and resilience to local disruptions.

Using Diffusion Tensor Imaging (DTI) and white matter

tractography, van den Heuvel and Sporns [5] and van den

Heuvel et al. [6] found a rich club of cortical brain regions in a

cohort of healthy adults, consisting of medial parietal, medial

frontal, and insular regions. The present study therefore asked:

Does functional connectivity, as opposed to structural connectivity,

show similar organizing principles?

Resting-state functional connectivity MRI (rs-fcMRI) examines

the functional relatedness of brain regions based on correlated,

spontaneous fluctuations of the blood oxygen level dependent

(BOLD) signal while subjects are at rest [7,8]. This method has

been used extensively in the past to identify distinct functional

systems such as the default mode network, the fronto-parietal/

executive-control network, and the cingulo-opercular/salience

network [9–11]. The integrity of these systems relate to subject

performance across various cognitive systems [12] and has shown

robust patterns of pathology within neuropsychiatric populations

[13–15].
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Importantly, although there appears to be a positive relationship

between the strength of functional versus structural connectivity

[16,17], it remains unclear as to what extent the core topological

properties exist across these two unique forms of connectivity and

whether their developmental trajectories are unique or conver-

gent. Developmental studies have found alterations in structural

and functional connectivity as a function of age. Hagmann et al.

[18] reported that local clustering of white-matter pathways

decreased as a function of age and that structural modules became

increasingly linked by long-distance pathways. However, the rank-

order of node-centric measures (i.e. centrality) were largely stable.

In a similar vein, Hwang et al [19] showed that the organization of

functional hubs remains largely intact across development from

childhood and into adulthood, although ‘‘spoke’’ connections –

links from highly connected nodes to less connected nodes –

appear to strengthen with age. These studies suggest that while

overall hub organization may be relatively stable, age-related

remodeling of brain networks does occur.

In this report, we aimed to directly compare the whole-brain

topology of structural and functional connectivity and assess their

developmental trajectories. We used both high-angular resolution

diffusion weighted imaging (DWI) and rs-fcMRI (see overview in

Figure 1) to explore the structural and functional rich club

organization in the brain in the same individuals. We then

attempted to assess whether age-dependent structural or functional

remodeling of rich club connections was observable by comparing

a group of adults with a group of children. Given past work

highlighting age-related strengthening of structural and functional

connectivity, we hypothesized the rich club organization would be

increased in adults relative to children.

Materials and Methods

Participants
A group of 14 healthy adults (aged 24–35, 4 male, 10 female)

and 15 healthy children (aged 7–11, 8 male, 7 female) were

included in this study. Experiments were approved by the

Institutional Review Board at Oregon Health and Science

University and conducted in accordance with the guidelines of

the OHSU Research Integrity Office. For the adults participating

in this study, written informed consent was obtained from each

subject. For the children, written informed consent was obtained

from the guardian of each subject, and assent from the child

subject.

MRI Acquisition and Processing
Imaging was performed during a single session for each

participant on a 3T Siemens Tim Trio scanner with a 12-channel

head coil. Data acquisition included a T1-weighted image for

anatomical reference, a functional MRI scan, a T2-weighted

image, and a high-angular resolution diffusion weighted image

(HARDI). All participants completed all scans, except one child

who did not undergo T2-weighted or diffusion-weighted scanning.

An overview of the entire acquisition and processing pipeline is

provided in Figure 1.

T1-weighed structural MRI and region selection. First, a

whole-brain, high-resolution T1-weighted magnetization-prepared

gradient-echo image (MP-RAGE) was acquired with the following

parameters: repetition time (TR) = 2,300 ms, inversion time

(TI) = 900 ms, echo time (TE) = 3.58 ms, flip angle (FA) = 10u, 1
mm3 voxels, 160 slices, FOV=2406256 mm). Tissue segmenta-

tion into white and gray matter was performed on the T1 image

using Freesurfer software (http://surfer.nmr.mgh.harvard.edu).

Figure 1. Overview of processing pipeline for each subject. Region Selection: T1-weighted image segmentation and parcellation resulted in a
white matter mask for further diffusion data processing, as well as 219 cortical regions of interest (ROIs) covering the whole brain (the same ROIs were
used for functional and structural analyses). Structural Connections: High-angular diffusion weighted MRI was acquired, and deterministic fiber
tractography was performed throughout the white matter mask using a qball scheme. For each unique pair of ROIs, a connection weight was
computed as the number of fibers with ends terminating upon them (see Materials and Methods). This resulted in a weighted network of structural
connectivity across the whole brain. Functional Connections: Resting-state BOLD data (rs-fcMRI) was acquired, and timecourses were generated by
averaging signal intensity across all voxels within a given region. Cross-correlations between regions were then used to generate the functional
connectivity network.
doi:10.1371/journal.pone.0088297.g001
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Total brain volumes were quantified separately for children and

adults and showed no significant group differences (1136+/
2119 cm‘3 and 1215+/2144 cm‘3, respectively (p..1)). Free-

surfer was also used to parcellate the cortical gray matter into 68

regional labels in native space. In a second step, Connectome Mapper

(http://www.connectomics.org/connectomemapper/) was used to

further subdivide these regions into 219 cortical ROIs of roughly

equivalent size and covering the entire brain (Figure 1; Table S1).

Whereas previous studies on rich club phenomena used parcella-

tions at either a very coarse resolution (82 regions) or a very dense

resolution (1170 regions), here we examined rich club organization

in a medium-density resolution of 219 cortical parcels. We

considered this a useful strategy for validating past results, as prior

work has demonstrated that network-based analyses of brain

connectivity can vary substantially depending upon factors such as

region selection and network size [20,21]. In addition, these

structurally based region sets have been used for functional

connectivity analyses by other groups as well [18,22]. Importantly,

regions of interest were applied to both structural and functional

data in each participant after surface registration, which is

required for proper tractography and for assuring comparability

of structural and functional data types. We note that while we

chose this anatomically-based parcellation in part to maintain

consistency with the initial reports of rich-clubness in structural

brain networks [5,6], other factors were considered as well. For

example, biases can occur with tractography if region sizes are

largely discrepant [1], and thus using parcellations based on

functional networks (e.g. [10,11] has its own limitations.

Nonetheless, future work should consider functionally based

parcellation sets as well.

Diffusion-weighted imaging. A HARDI scan was per-

formed using an EPI sequence consisting of 72 gradient directions

with b-value = 3,000 mm/s2 along with 10 unweighted B0 images.

Acquisition parameters for the scan included the following:

TR=7100 ms, TE= 112 ms, 2.5 mm3 voxels, 48 slices,

FOV=2306230 mm. Diffusion data processing was carried out

by Connectome Mapper, and consists of four stages: coregistration of

the T1-weighted image and B0 images, diffusion data reconstruc-

tion, tractography, and identification of connections. We note that

retrospective motion correction or motion censoring was not

performed on DWI data due to lack of a currently established

methodology, although future work should identify potential post-

processing methods to attempt to correct for motion or

alternatively to match samples based on motion parameters. In

contrast, the rs-fcMRI data was scrubbed for excessive motion (see

further below).

Coregistration of T1-weighted and B0 images. To

facilitate accurate registration of the T1-weighted anatomical

image onto the B0 image of the diffusion-weighted data, a T2-

weighted image was acquired (TR=3200 ms, TE= 497 ms;

1 mm3 voxels, 160 slices, FOV=2566256 mm) as an intermedi-

ary. The following registrations were then carried out using FSL’s

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) linear (flirt) and nonlinear

(fnirt) registration tools. We performed a rigid-body transforma-

tion of the T1-weighted image onto the T2-weighted image, and

then nonlinear registration of the T2-weighted image onto the B0

image, which allowed us to account for image distortion common

in diffusion-weighted data, such as susceptibility artifact and eddy-

current distortions. Every scan was then manually inspected to

ensure high-quality accuracy for each step in the registration

procedure.

Diffusion reconstruction. Diffusion data processing and

tractography were carried out using the Diffusion Toolkit and

TrackVis software (http://trackvis.org/blog/tag/diffusion-

toolkit/) and consisted of the following steps. First, diffusion

images were resampled into 2 mm3 voxel size and reconstructed

using a Q-BALL scheme [23] into an orientation distribution

function (ODF) at each voxel. The ODF was defined on a

tessellated sphere of 181 vertices, and represents the estimated

diffusion intensity in each direction. At each voxel, we defined up

to 3 directions of maximum diffusion as defined by the local

maxima of the ODF. This step is analogous to computing the

principal eigenvector when using DTI.

Tractography. At each voxel of white matter, we initiated 32

evenly-spaced fibers for every direction of maximum diffusion.

Each fiber was propagated in opposite directions, and upon

reaching a new voxel, continued in the direction of whichever

maximal diffusion direction was closest to its current direction.

The growth process of a fiber was stopped whenever this resulted

in a change of direction sharper than 60u, or when its ends left the

white matter mask. Additionally, fibers shorter than 20 mm in

length were considered potentially spurious and were removed.

This resulted in a large sample of reconstructed white-matter fibers

across the whole brain. We chose this approach for its

straightforwardness in determining connected vs. unconnected

nodes (as opposed to probabilistic methods, where post-hoc

thresholding must be used. Note: this distinction is necessary for

analysis of rich club organization), and to remain consistent with

methods outlined in previous work examining structural rich clubs.

Structural connectivity. Structural connections between

cortical ROIs were identified by combining the results of the

tractography with the cortical parcellation. For example, two

ROIs i and j were said to be structurally connected if there existed

a fiber with endpoints in i and in j. Only fibers in which both ends

terminated in a cortical area were included for analysis. This

included 50–60% all reconstructed fibers for each subject.

Connections were weighted by the total number of fibers between

two ROIs, resulting in a 2196219 connection matrix of all possible

ROI pairs. Average fiber length was also computed for each

connection identified.

Resting-state functional connectivity (rs-fcMRI)

acquisition. Functional data was acquired using a gradient-

echo echo-planar imaging (EPI) sequence with the following

parameters: TR=2500 ms, TE= 30 ms, FA=90u, 3.8 mm3

voxels, 36 slices with interleaved acquisition,

FOV=2406240 mm). Subjects were instructed to remain still

and passively fixate on a crosshair for 10–25 minutes. Average

scan time was 17.2 (SD: 6.4) minutes. Since prior work has shown

that connectivity matrices are stable after 5 minutes of scan

acquisition [24], we acquired lengthy scans in order to maximize

the reliability of correlation coefficient estimates. We also note that

our main findings regarding differences in rich club organization

were insensitive to large changes in total scan duration (Table S2).

Rs-fcMRI processing. The raw fMRI data underwent

standard fMRI preprocessing including slice-time correction,

debanding, motion-correction, registration onto the T1 image,

and resampling into 3 mm3 voxel size. Several additional steps

were also taken to prepare the data for connectivity analyses [25],

including temporal bandpass filtering (0.009 Hz,f ,0.08 Hz),

spatial smoothing (6 mm full-width at half-maximum), and

regression of nuisance signals. The latter includes the whole-brain

signal, signals from ventricular matter and white matter, and the

six parameters related to rigid-body motion correction. Nuisance

signals were also bandpass-filtered prior to regression [26].

Motion censoring. Subjects underwent several rigorous steps

to correct for head motion during scanning. First, frame-to-frame

displacement (FD) was calculated for every time point. FD was

calculated as a scalar quantity using a formula that sums the values

Functional and Structural Rich Clubs of the Brain
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for framewise displacement in the six rigid body parameters

(FDi=|Ddix|+|Ddiy|+|Ddiz|+|Dai|+|Dbi|+|Dci|, where

Ddix =d(i21)x 2dix, and similarly for the other five rigid body

parameters) [27]. At each time point, if the FD was greater than

0.2 mm, the frame was excluded from the subject’s time series,

along with 1 preceding frame and the two following frames [27].

Furthermore, if any participant had greater than 50% of frames

removed, that participant was excluded from all analysis related to

functional connectivity. On the basis of these criteria, 6 children

and 2 adults were excluded leaving a final sample size of 12 adults

and 9 children for functional analyses. Of the remaining samples,

average frame removal was greater in children (mean: 33.2%; SD:

11.1%) than for adults (mean: 14.3%; SD: 14.4%). Therefore, we

performed additional analyses to test whether group differences in

rich club coefficients are related to lower frame removal in adults

(Table S2) by randomly removing frames at multiple extents in

adults, recomputing rich club coefficients, and re-testing for

significant differences. We note that the same differences reported

in the main text (increased rich club coefficients in adults across a

wide range of k) were robust to large random frame removal, even

down to only 5 minutes of remaining scan time.

Functional connectivity. The 219 cortical ROIs were first

mapped from surface-space into the native T1 volume space of

each subject. Analysis of the functional time series of each ROI

was then performed using the co-registered fMRI image. Time

series were computed by averaging the signal intensity across all

voxels within an ROI for each time point. Cross-correlations were

computed between the time series of all ROI pairs, yielding a

correlation value between 21 and 1 for each pair. The final result

was a 2196219-size correlation matrix for each subject.

Removal of adjacent connections. Structural and function-

al matrices were filtered through a final step in which connections

between neighboring ROIs (ROIs sharing a border between

voxels) were excluded. Typically, albeit for differing reasons,

structural and functional data are biased toward short-range

connections. As outlined by previous work [10], functional

connectivity data often shows this bias due to nonbiological

reasons such as partial voluming, movement, and the spatial

blurring typically applied in the pre-processing stream. At the

same time, tractography algorithms are typically less likely to

‘‘drop’’ a short-range fiber than a long-range fiber. Thus,

connections between neighboring ROIs were excluded from our

final analyses. Additionally, community detection was performed

on the structural networks after further excluding connections

where the average fiber length was less than 40 mm. We note that

this protocol for excluding short-range connections was not itself a

contributor to our findings of rich club organization, as removal of

this filter led to functional and structural rich club coefficients that

were substantially greater (data not shown).

Group Networks
Structural. For both adults and children, a group-averaged

network was computed according to procedures similar to those

outlined in [5,6]. From the set of individual connection matrices

(14 adults, 36% male; 14 children, 50% male), only connections

that were present in at least 50% of the group were selected for

averaging (note, no participants were dropped at this step; here we

are excluding connections, not people). Next, the group-averaged

matrix was computed by averaging only across the cell values of

the individual subject matrices that were nonzero (again, all

connections present in less than 50% of participants were set to

zero). This yielded connectivity matrices for children and adults

that were well-matched in terms of connection density (5.4% and

5.6% respectively).

Functional. Within each group (here, 12 adults, 33% male,

and 9 children, 56% male, after excluding subjects for head

motion as explained earlier), group-averaged networks were

created by averaging individual correlation matrices together.

To enable graph analyses relevant to this study, negative

connections were ignored, and group networks were thresholded

to include only the strongest (most positive) correlations. The

results shown in this paper with regard to rich club curves reflect

the network thresholded at a connection density equal to that of

the group structural network for the adults (5.6%), to enable

comparison between functional and structural organization. In

addition, comparisons were performed at a range of connection

densities between 4%–10%.

Graph Analyses
Community detection. The resulting networks were ana-

lyzed with graph theoretical methods [2]. Functional and

structural group matrices were examined for community structure

using the community detection algorithm for undirected, weighted

matrices adapted from Newman [28] and freely available through

the Brain Connectivity Toolbox (http://www.brainconnectivity.

net). The algorithm provides a subdivision of a given network into

non-overlapping groups of nodes (communities) in a way that

maximizes the number of within-group edges, and minimizes the

number of between-group edges.

Rich club organization. The rich club phenomenon is said

to occur when the most highly connected nodes show greater

connectedness to each other than expected by chance. This was

examined in terms of both unweighted and weighted matrices

(weighted by correlation values for functional networks, and by

number of fibers for structural). First, the ‘‘degree’’ of each node

was computed as the number of links to other nodes in the

network. A subgraph of the original matrix was then constructed

for each degree k, from 1 to the maximum k value, in which only

nodes with a degree of at least k were included. For unweighted

matrices, the rich club coefficient W(k) was then calculated as the

ratio of the number of connections between nodes within the kth

subgraph and the total number of possible connections between

them. This is given formally by the equation [4,29]:

w(k)~
2Ewk

Nwk(Nwk{1)

For weighted matrices, rich club organization was quantified

along similar principles. Within each kth subgraph, the number of

all links E.k were counted, and the collective weight of those links

W.k were summed. The weighed rich club coefficient Ww(k) was

then computed as the ratio between the sum of the subgraph

weights W.k and the sum of the strongest E.k connections from

the original weighted matrix. This is given formally by the

equation [30]:

ww(k)~
Wwk

PE
wk

l~1 wranked
l

Next, we compare and normalize the rich club coefficient to sets

of ‘‘equivalent’’ random networks. To do this, a thousand random

networks were generated with equal size and degree distribution

(or weight distribution for Ww(k)). The rich club curve was

computed for each random network, and then averaged across

them to give Wrandom(k). The normalized rich club coefficient

Functional and Structural Rich Clubs of the Brain
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Wnorm(k) was then computed for unweighted or weighted matrices,

respectively, as:

wnorm(k)~
w(k)

wrandom(k)

wwnorm(k)~
ww(k)

wwrandom(k)

The network is said to have rich club organization when Wnorm

or Ww
norm is greater than 1 for a continuous range of k [5].

In addition to normalizing networks with the classic Maslov-

Sneppen rewiring, we performed separate normalizations using

the Hirschberger-Qi-Steuer (H-Q-S) algorithm, which matches the

transitivity that is inherent in correlation networks but does not

preserve degree distribution [31]. Results for this testing are

provided in the supplemental materials.

To assess statistical significance of the rich club curves,

permutation testing was used [3,32]. The set of 1000 random

networks yielded a null distribution of rich club coefficients. Using

this distribution, a p-value was assigned to Wnorm(k) as the

percentage of random (null) values that exceeded Wrandom(k)

(*p,.05, one-tailed).

Differences in rich club organization between the adult group

and the child group were also tested for significance using two

different methods of permutation testing. In the first method, for

each ith iteration of the adult random network MAi and the child

random network MCi, the difference between the rich club

coefficients for MAi and for MCi yielded a null distribution of 1000

random differences. Using this distribution, a p-value was assigned

to each observed difference Wadult(k)–Wchild(k) as the percentage of

null differences that exceeded Wadult(k)–Wchild(k) (*p,.05, two-

tailed). Results using this method are provided in the main text. In

the second method, group labels for children and adults were

randomly reassigned to each subject. The rich club coefficient was

then computed for each randomized group and the difference was

computed and stored to build a null distribution. A thousand

permutations were performed, and a p-value was assigned to each

observed difference as the percentage of null differences that

exceeded the observed difference. Results using this method are

provided in the supplemental materials.

Community index (C). In a previous report, van den Heuvel

[5] used a measure termed ‘‘Participation Coefficient’’ to examine

the level of participation of a node across communities and the

level of community integration that node supports. This measure is

scaled by 1) The number of modules the node connects to, 2) the

number of connections (or distribution) for each module, and 3)

the number of links to a node’s own community. In this report, we

were primarily interested in identifying nodes with a high level of

between-module connectivity, regardless of within-module degree.

Therefore we introduced the following: Community index and

Distribution index. These indices are independent of within-

module connectivity, which distinguishes these measures from the

participation coefficient. The Community index for a particular

node is defined as the sum of the number of connections the node

has with modules other than the module to which that node

belongs. Thus, it gives us the direct level of community integration

for that node without considering the number of connections to

any given community (including its own). The community index is

formally given by the following:

Ci~
XNm

m~1
kim

With Nm, the number of modules excluding node-module (mi);

and kim, the connection between the node and the module (is 1

when connected and 0 when not connected).

Distribution index (D). The Distribution index for a node

indicates how distributed its outside community links are. The

Distribution index is calculated by the following steps:

Step 1: Compute the number of connections the node has with

every outside community it connects to.

Step 2: Calculate the relative differences in outside community

links. This is defined as the difference between the number of

connections to two communities, for each unique pair of outside

communities the node connects to. Compute the mean of relative

differences (di) for the node.

Step 3: Find the maximum value (max(d)) of mean relative

differences across all nodes, and subtract each di from this max(d).

Step 4: Weight the subtracted value by multiplying it to the

corresponding node’s community index (Ci).

The Di can thus be expressed by:

Di~Ci|(max(d){di)

Adults vs. children comparison using the Network-based

Statistic. The Network-Based Statistic (NBS) [33] is a recently

established approach for identifying clusters of connections within

a network that significantly differ between two sample populations.

It has recently been applied to task-related functional [34], resting-

state functional [35], and structural [36] connectivity networks.

Here it is used to search for differences in the full, unthresholded

functional connectivity matrices of adults and children. Its main

advent lies in the way it controls for the family-wise error rate,

which differs from more traditional, conservative approaches such

as Bonferroni correction or the use of the false discovery rate,

which assess the existence of an experimental effect at the level of

each connection by correcting for the total number of multiple

tests. By contrast, the NBS looks for an experimental effect at the

cluster level, according to the following procedures (for in-depth

documentation, see Zalesky et al. [33]).

First, a test statistic (T) is computed for every connection

individually. Then, a threshold is chosen so that only connections

exceeding a given test statistic are considered. Among these supra-

threshold connections, the NBS searches for clusters. Two

connections are considered clustered together when they share a

common node, and the total number of connections constitutes the

cluster size. Permutation testing using 10000 iterations is then

performed to generate a null distribution of the largest cluster size.

From this null distribution, a family-wise corrected p-value is

assigned to each observed cluster.

Results

Similarities Exist between the Modular Organization of
Structural and Functional Connectomes
We began our analysis by attempting to detect the community

structure in both our structural and functional matrices (i.e. the

connectomes) in adults. Community structure refers to the

appearance of densely connected groups of nodes (i.e. brain

regions), with only sparse connections between the groups.

Previous work across the connectome using functional data has

Functional and Structural Rich Clubs of the Brain
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consistently identified multiple distinct communities of regions

consisting of both sensory-related and control-related systems

[10,11,37], while with structural data the results have been mixed

[5,18].

With regard to the functional data (Figure 2), and in agreement

with this prior work, we identified six prominent functional

communities in adults. These communities consisted of the default

mode, cingulo-opercular, fronto-parietal, visual, orbitofrontal/

limbic, and somatomotor systems.

For the structural matrices (Figure 2) we also found large-scale

communities that, while not identical, share largely overlapping

region sets. For instance, the grouping of bilateral PCC/precuneus

together with the ventral medial prefrontal cortex/rostral cingu-

late forms a plausible analogue of the default mode network (red

arrows in figure), while the grouping of dorsal ACC with the

anterior insula looks like a unique version of the cingulo-opercular

system (maroon arrows in figure). These findings are consistent

with the idea that the structural and functional connectome share

some core common features. While many studies have related the

strength of functional connectivity to the strength of structural

connectivity (see discussion), these data do show similarities in

whole-brain organization as well.

Structural Connectivity shows a Robust Rich Club
Distributed across Several Brain Systems/Networks
We next attempted to identify the existence of rich club

organization using the structural matrices of the adult participants.

In agreement with past results [5,6], we found significant rich club

organization in the group structural connectome across several

levels of k (i.e. degree). Figure 3b summarizes our statistical

findings for both weighted (by number of fibers) and unweighted

graphs.

The regions comprising the rich club are distributed bilaterally

and include anterior and posterior cingulate cortex, superior

frontal, superior parietal, and insula cortex, as well as the inferior

temporal and fusiform cortex (Figure 3a). While the latter findings

are unique to this sample, the overall patterns are largely

consistent with prior reports [5,6]. Importantly, here we see that

the rich club includes a subset of regions from all the major

communities identified in the structural connectome (Figure 3c).

As visualized with the spring embedding diagram of the rich club

nodes, these data may highlight at least one route on which data

may be integrated between otherwise segregated large-scale brain

systems.

To quantify some of these qualitative phenomena, we generated

two indices aimed to calculate the extent to which these nodes

connect to communities (systems) outside of their own (see

Materials and Methods). The first, the community index (C),

quantifies the number of communities a given node links to outside

of its own. The second, the distribution index (D), quantifies the

number of communities a given node connects to and considers

the overall distribution of those connections. For example, if Node

A connected to three communities but the distribution of these

connections was skewed heavily towards one community, it would

have a lower distribution index than node B who has an equal

number of connections to all three. As shown in Figures 3d and 3e,

these indices indicated that the nodes of the rich club generally

connect to multiple communities, and that links to the multiple

communities are generally equally distributed.

Functional Connectivity shows Rich Club Organization as
well
We next turned our focus toward the functional connectome.

Figure 4b shows the normalized rich club coefficients of the adult

functional matrix. For both weighted and unweighted matrices,

rich club organization of the functional connectome is quite high

and significant across nearly all k levels, excluding just the upper

and lower ends. Rich club organization was additionally

confirmed for a wide range of k using the H-Q-S normalization

(figure S1).

Much like the structural rich club, the regions in the functional

rich club are also distributed preferentially along midline anterior,

midline posterior, and insula cortex (Figure 4a). This phenome-

non, capturing the similarities across the rich clubs, is visualized in

Figure 5, showing nodes present in both the functional and

structural rich clubs. We found that 34 nodes overlapped among a

total of 92 structural rich nodes (37%) and 81 functional rich nodes

(42%). Another correspondence between the structural and

functional matrices regards the systems represented. The func-

tional rich club nodes are dispersed broadly among the default

mode, cingulo-opercular, visual, somatomotor, and fronto-parietal

systems (Figure 4c).

Although there were striking and important similarities between

the nodes that comprise the rich club for both functional and

structural data, marked discrepancies were also observed. As

visualized with the spring embedding diagram of the rich club

nodes (Figure 4c), we can see that, unlike the structural data, most

rich club nodes in the functional data are strongly and primarily

connected within their own system. While there are some

Figure 2. Community detection in functional and structural group networks from healthy adults. Brain regions are colored according to
which community they belong to. In the functional network (left), six predominant communities were identified, comprising the Default Mode (red),
Cingulo-opercular (pink), Fronto-parietal (yellow), Visual (blue), Orbitofrontal/Limbic (dark red), and Somatosensory (light blue) systems. Communities
resembling analogues of the functional systems were identified in the structural network as well (right).
doi:10.1371/journal.pone.0088297.g002
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exceptions, notably connections between the somatomotor and

cingulo-opercular systems, few connections are identified among

the rich club nodes that integrate across systems. This phenom-

enon is captured in our community (C) and distribution (D)

indices, which show that few nodes had strengths equal to that of

the structural rich club (Figures 4d and 4e).

Figure 3. Rich club phenomena in structural group network of adults. (a) Regions comprising the structural rich club are displayed on an
average brain surface. Degree k.= 14 was used to define rich club nodes, reflecting the peak value observed in the weighted rich club coefficient
curve in (b). Results highlight the involvement of medial parietal/PCC, superior frontal/ACC, insula, and inferior temporal cortex. (b) Rich club
coefficients relative to random are shown as weighted in red and as unweighted in dark red. Significant values (p,.05) are signified with an asterisk.
(c) Rich club regions from (a) are colored according to community assignments. Below, a spring embedded graph shows rich club nodes and links
between them, reflecting a high level of integration between systems. (d, e) Rich club regions with a high Community Index (C .= 3) and a high
Distribution Index (D.= 10) are colored. A large proportion of regions are colored, reflecting high levels of integration.
doi:10.1371/journal.pone.0088297.g003

Figure 4. Rich club phenomena in functional group network of adults. (a) Functional rich club regions were defined as having degree
k.= 14, equal to the degree threshold for the structural rich club. In agreement with prior research, these results highlight the involvement of medial
parietal/PCC, medial frontal/ACC, and insula cortex. (b) Rich club coefficients relative to random are shown as weighted in red and as unweighted in
dark red (*where both curves are significant, p,.05). (c) Rich club regions are colored according to which community they belong to. Below, spring
embedded graph of rich club nodes and links between them, reflecting a low level of integration between systems. (d, e) Rich club regions with a
high Community Index (C .= 3) and regions with a high Distribution Index (D.= 10) are colored. Nearly all regions are subthreshold, indicating very
low levels of integration.
doi:10.1371/journal.pone.0088297.g004
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Children have Highly Similar Structural Rich Club
We concluded our analyses with a brief examination of rich club

organization in a population of children (n = 14). Using the exact

same procedures of analysis, and starting with the structural

matrices, we identified a rich club organization that was highly

similar to the adult population (Figure 6, right). Among the 81

adult rich nodes and 70 child rich nodes, 57 nodes (70% in adults;

81% in children) overlapped. Of the remaining 24 nodes in adults,

21 were adjacent to (sharing a border with) child nodes. Likewise,

12 of the remaining 13 nodes in children were adjacent to adult

nodes. Regarding rich club coefficients, both populations showed a

continuous range of values that significantly deviates from random

and peaks near a k level of 15 (Figure 6, left). We tested a

comparison of the rich club coefficients in the children and found

no significant differences at any k level, and only at one point using

the group-randomization method (figure S2). The regions

comprising their rich clubs are also highly overlapping, forming

the same profile of midline frontal, midline posterior, insula,

inferior temporal, and cingulate cortex. Taken together, these

findings support the notion that the structural rich club is already

well-defined by late childhood (age 7–11).

Difference between Age Groups are Observed in the
Functional Rich Club
With regard to the functional connectome, we found an

increase in the rich club coefficient across a broad and consistent

range of k levels. Furthermore, this increase was greater than what

we would expect to see between random networks, for k levels

between 7 and 21 (Figure 7). Comparisons using group

randomizations yielded weaker, but largely consistent findings

(figure S2). This comparison was performed using connection

densities equal to the density of the adult structural matrix

(,5.6%), although comparisons of group functional data per-

formed at 4, 6, 8, and 10% densities yielded consistently significant

results as well (figure S3). In addition, comparison of rich club

curves using H-Q-S normalization confirmed increased rich-club

organization in adults (figure S1).

To compare the organization of adult and child rich clubs, we

mapped the regions onto the surface for both children and adults

Figure 5. Regions that overlap between functional and structural rich clubs in adults. Overlapping regions, colored in yellow, defined as
having degree k.= 14 in both the structural and functional group networks (the rich clubs). Structural-only and functional-only rich nodes are colred
in green and red, respectively.
doi:10.1371/journal.pone.0088297.g005

Figure 6. Comparison of structural rich club organization in adults versus in children. (Left) Normalized rich club coefficients for structural
data are shown for weighted (adults = red, solid; children = pink, solid), and unweighted (adults = brown, dashed; children = tan, dashed) networks. No
significant differences were observed for weighted or unweighted coefficients. (Right) Regions with degree k.= 14 are shown, to facilitate direct
comparison with adults. Results indicate substantial overlap in spatial layout with adults (Fig. 1a).
doi:10.1371/journal.pone.0088297.g006
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at k.=19, which represented the peak difference in rich club

coefficients that was significant (Figure 7a and 7b). The pictures

show us a high level of similarity, including medial prefrontal,

PCC/precuneus, inferior parietal, ventral visual, ventral somato-

motor, and several regions in and around the insula (Figure 7b, red

arrows), suggesting similar overall rich club patterns despite the

decrease in strength in children. Each group had exactly 36 rich

nodes, 20 of which (56%) overlapped. Of the remaining 16 nodes

in the adults, 12 were adjacent to one or more rich nodes in the

children. Likewise, 11 of the 16 rich nodes in the children were

adjacent to adult rich nodes. With that said, there are at least 3

bilateral groups of nodes present in the adult group that are not

present in children. These nodes include the dorsal aspect of the

superior parietal cortex, the supramarginal cortex, and a large

portion of the insula (Figure 7b, blue arrows). Group comparisons

of the full matrices of individual subjects using the Network-Based

Statistic [33,35] show a cluster of connections that are greater in

adults that seem to be most influential in these rich club changes

(Figure 7d). These connections adjoin regions of the dorsal

superior parietal, supramarginal, and insula cortex, and are indeed

the same regions identified as being integrative across communities

within the adult rich club and as being absent from the child rich

club.

Discussion

Neuroimaging studies have increasingly relied on graph

theoretical methods to explore questions about large-scale system

organization that were previously difficult to attain. The current

study is unique in that it used both high-angular resolution DWI

and rs-fcMRI to explore structural and functional rich club

organization and how it develops. In agreement with prior reports

[5,6] we were able to show that global network architecture as

measured by fiber tractography indeed has a rich club organiza-

tion. We then demonstrated that this type of organization also

applies to the functional brain as measured by correlated

spontaneous activity, at least in typically developing populations.

The rich club nodes for both data types were comprised of

bilateral superior frontal and parietal cortex, together with

anterior and posterior cingulate cortex, and the insula, comprising

a number of previously identified brain systems [9–11,37]

including the default mode, fronto-parietal, cingulo-opercular,

visual, and somatosensory systems. Importantly, the structural rich

club showed a highly integrated region set, while the functional

rich club was much more segregated into the known functional

systems – suggesting that while at rest functional rich club nodes are

less involved in integrating information across systems. We

concluded the investigation with a brief examination of rich club

organization in a childhood sample, demonstrating structural

stability with key functional differences across age (i.e. for some

nodes the ‘‘rich get richer,’’ for others they ‘‘get rich’’).

Rich Club Organization in both Structural and Functional
Connectomes
With regard to modalities, the general architecture of the rich

club was quite similar for both structural and functional data in

adults. Both data types identified rich club nodes comprising

bilateral regions of the midline frontal, midline posterior, and

Figure 7. Comparison of functional rich club phenomena and network organization in adults versus in children. (a) Normalized rich
club coefficients for functional data are shown for weighted (adults = red, solid; children = pink, solid), and unweighted (adults = brown, dashed;
children = tan, dashed) networks. Significant differences are indicated with an asterisk at the top of the graph for weighted networks, and at the
bottom for unweighted. Significant differences are observed (adults.children) across a wide range of k. (b) Rich club regions are displayed for the
point of maximal difference in rich club coefficients that was significant (k.= 19). While many regions overlap (red arrows, for example), there are
bilateral regions that appear only in adults (blue arrows, for example). (c) Rich club connections (k.= 19) are depicted for adults and for children. (d)
Comparisons of the full, unfiltered matrices for adult vs. children subjects (non-group-averaged) using the Network-Based Statistic shows a single
bilateral cluster of connections between regions of the insula, supramarginal, and superior parietal cortex. Cluster size was significantly greater in
number than what we would expect at random (p,.01, one-tailed, T.4.5; significant clusters centered around the same nodes were also observed at
T.4 and T.5 thresholds (p,.05, data not shown)). These connections primarily linked regions of the adult functional rich club as seen in (b) (k
.= 19; lightly colored).
doi:10.1371/journal.pone.0088297.g007
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insula cortex, although the exact positioning of the nodes differed

slightly (see Figures 3a, 4a, and 5). These findings are in large

agreement with other studies, which have identified correspon-

dence of functional and structural connectivity in samples of

healthy adults [16,17,38–40]. With that said, structural and

functional connectivity also diverge in important ways. For

instance, functional connectivity can be indirect, comprising both

monosynaptic and polysynaptic connections [41]. Some of the

overlap we observe might be related to the matching of connection

density across both methods, which we performed in order to

maximize comparability. This matching required thresholding the

functional network and choosing only the strongest connections. It

might be expected that monosynaptic connections underly the

strongest functional links, which in turn might account for some of

the similarity between the modalities.

Even so, some regions appear exclusively in the structural data

(e.g. inferior temporal/fusiform cortex in the structural), while

others exclusively in the functional data (e.g. lateral inferior

parietal). Additionally, Figures 3 and 4 reveal that while the spatial

patterns of the rich club for both structural and functional data cut

across several systems, there were apparent differences in the

patterns of cross-modular linking. In the structural data, rich club

nodes link to other rich club nodes outside their own community

or system (i.e. they don’t simply connect to their own community).

On the other hand, the functional rich club has relatively strong

segregation between systems, although there are some connections

between the somatomotor and cingulo-opercular systems. The

disparity in terms of structural integration vs. functional segrega-

tion was observed for children as well (data not shown). This

phenomenon might be related to previous conjectures regarding

the role of intrinsic correlated brain activity in maintaining

network or system relationships [8,25,42]. Indeed, homeostasis in

neural systems is central to proper functioning and has been a

topic of inquiry for decades. Importantly, a as noted by Turrigiano

and Nelson [43], along with various ‘‘housekeeping’’ mechanisms

aimed at maintaining temperatures, electrolytes, pH, etc., neural

activity itself is important for homeostatic regulation. They argue

that without stabilizing, or homeostatic, mechanisms, such as

spontaneous activity, selective changes in synaptic weights in the

form of hebbian rules would drive evoked neural activity toward

‘‘runaway excitation or quiescence.’’ It might be reasoned that the

cortical networks currently being described in the fcMRI literature

during the resting condition, are reflective of similar or related

homeostatic phenomena. With that said, undoubtedly the cortical

work conducted within any given network during task conditions

needs to be integrated for proper brain function. Along these lines

several reports have proposed that phase synchronization via

intrinsic activity of specific neural assemblies or networks is

important for coordinating segregated and distributed neural

processes. For example, Varela et al. [44] point out that terms

such as bottom-up and top-down are only heuristics ‘‘for what is in

reality a large-scale network that integrates both incoming and

endogenous activity.’’ They continue, ‘‘it is precisely at this level

where phase synchronization is crucial as a mechanism for large-

scale integration.’’ With this in mind, the rich club nodes and the

integration across systems of the structural networks potentially

highlights the ‘‘highways’’ at which functional integration of this

type might occur during specified task demands; however, because

participants are ‘‘at rest’’ (not performing an explicit task here), the

synchronization across these highways may not be observed. Such

a view is consistent with recent work highlighting the dynamic

task-dependent reorganization of multiple large-scale cognitive

networks [45,46]. Additional work across various task conditions

will be able to further evaluate the notion of cross-systems

integration in task contexts compared to rest (although see Fair

et al. [47] highlighting difficulties toward this end).

Interestingly, our findings regarding low integration of func-

tional rich nodes during rest are largely corroborated by two very

recent studies. Using independent components analysis to define

functionally rich nodes, Yu et al [48] reported relatively low

overall resting functional connectivity between these nodes.

Complimentary to these findings, Collin et al [22] showed that

nodes participating in the structural rich club have low intrahemi-

spheric functional connectivity relative to non-rich-club nodes.

These studies demonstrate that rich clubs defined across modalities

tend to have low functional integration.

On a related note, recent resting-state studies highlight the

importance of identifying nodes that participate in multiple

functional networks [49,50]. These reports advocate for the

investigation of so-called ‘‘transmodal’’ regions as brain hubs,

rather than nodes of high degree. Nodes identified by these studies

are also distributed, but differ somewhat from reports examining

nodes of high degree. Additional work across species provides

multiple lines of evidence that nodes within the brain’s structural

rich clubs coincide with areas of overlapping functional systems

[51,52]. In line with our resuts, these reports support the notion

that structural rich clubs play a crucial role in the integration of

functionally segregated domains. Again, future work such as lesion

studies or functional activation paradigms can directly test

predictions about whether these nodes contribute to cross-systems

integration during task conditions.

Structural Rich Club Organization is Present in Childhood
In comparing rich club organization across age, we find little

evidence of meaningful change in the structural networks. There

appears to be robust rich club organization in both children and

adults, and the spatial distribution of rich club regions bore

obvious similarities across the groups (see Figure 6). With the

exception of one degree-point (Figure S2), significant differences

between child and adult groups were not present, although there

appears to be a trend towards greater rich club organization in

children. This result is not readily interpretable. While others have

identified protracted microstructural white matter changes that

occur over this age range [18,53,54], the data here suggests that

despite the reduced myelination and FA, there is enough sensitivity

of the tractography algorithms to identify the major fiber bundles

in both populations. However, it is possible that alternative

tractography approaches (i.e. probabilistic, see below) may be

more sensitive to these changes. While we hesitate to make

definitive conclusions about null findings, these findings suggest

that the general architecture of the structural core identified by

Heuvel and Sporns, and corroborated by this study, is likely in

place by late childhood and relatively stable into adulthood.

Functional Rich Club Organization Increases across
Development
In contrast to the structural results, we do find evidence that the

rich club organization of functional networks increases across age

(qualified by noting a small gender difference in our adult and

child sample – see Materials and Methods). Our results showed a

significant difference between the rich club coefficients of adults

and children across a broad range of k. These changes can be

described as some nodes becoming ‘‘richer’’ (e.g. insula cortex) in

adulthood relative to childhood, and some nodes absent in

childhood that ‘‘get rich’’ (e.g. supramarginal cortex, dorsal aspect

of superior parietal cortex) by adulthood (Figure 7). However,

these findings do not directly demonstrate which connections

contribute to these changes. Furthermore, since the rich club
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coefficient is a normalized metric, the interpretation of a difference

in values is complex. To investigate brain regions which might

contribute to these differences, we indepedently identified a

bilateral cluster of connections between superior parietal and

insula cortex that were significantly stronger in adults. Nearly all

nodes within this cluster participate in the adult functional rich

club. Furthermore, this cluster is predominantly comprised of the

nodes that became ‘‘richer’’ (insula) and those that got ‘‘rich’’

(supramarginal, superior parietal cortex), suggesting that over

development, the most prominent functional changes that we can

identify are those that enhance rich club organization. Lastly, this

cluster includes some of the few connections which serve to

integrate between the somatosensory and cingulo-opercular

systems within the functional rich club (Figure 4), which is

otherwise highly segregated. Taken together, these results suggest

that this developmental period involves the strengthening of a

particular set of connections which serve to integrate information

across key hub nodes, and potentially across distinct functional

systems.

Overall, these results indicate that, spanning this developmental

period, the most prominent structural tracts are in place while

functional relationships evolve. This notion agrees with previous

work regarding developing functional brain networks. Hwang

et al. have identified a particular set of connections to high-degree

nodes, which they term ‘‘spoke’’ connections, that strengthens

across adolescence [19]. Similarly, combined diffusion and resting-

state imaging work has demonstrated that the brain’s major

cortical white-matter tracts give rise to functional connections

which strengthen across this age range [55], and that functional

coupling between key network nodes tends to be greater in adults.

Together with results presented here, this work suggests that

functional remodeling of hub connections occurs over this

developmental time period, is supported by underlying structural

pathways, and may be associated with increased demands for

flexible and complex cognition in adulthood.This is somewhat

supported by recent work linking structural and functional rich

club alterations with Schizophrenia [48,56]. Future studies could

further test these predictions by comparing rich club dynamics

during the task and rest conditions.

Limitations
There are several methodological limitations to this study. One

consideration is that rich club quantification was not performed at

the level of the single subject. The analyses in this study, and

commonly in related studies, were conducted on group-averaged

matrices, which were thoroughly filtered according to steps

evaluated in prior work. Establishing appropriate and thoroughly

evaluated methods of obtaining accurate and reliable networks

(and therefore rich clubs) within single subjects remains a critical

challenge for the field. This is particularly a concern with regard to

structural networks, where noise within DWI scans can and do

lead to estimation of spurious tracts. While this concern is beyond

the scope of this particular study, establishing optimal methods to

assess intersubject variability of these measures will represent a

crucial advancement for the field.

Similarly, the small sample size of this study presents a

limitation. To validate and explore these findings as potential

markers of development, future studies will require the inclusion of

larger subject pools at multiple timepoints. This will allow for

tighter control of potential confounds (e.g. gender, brain size, head

motion), more precise estimates of node-network interactions, and

greater insights regarding longitudinal trajectories.

Lastly, future research should assess different approaches to

construct connectivity matrices. For instance, probabilistic tracto-

graphy allows for the construction of full structural connectivity

matrices, which may facilitate comparison with functional data

(although this may present complexitiy in the interpretation of

low-to-medium-probability connections). Likewise, region selec-

tion is another critical decision point that may affect connectivity

analyses. While this study looked exclusively at corticocortical

networks, subcortical and cerebellar regions will undoubtedly

contribute to integration of corticocortical networks at both the

structural and functional level. It also is likely that a functionally

derived parcellation (see [10,11]) would reveal unique information

relative to the anatomically defined parcellation used here,

although see [1] regarding difficulties posed by parcellations with

unequal region sizes.

Conclusions
The results presented here suggest two broad hypotheses to be

validated and explored. First, it appears rich club organization of

structural connections is in place by late childhood and stable

across the ensuing period of development until early-to-mid

adulthood. Second, we showed that rich club organization exists in

functional brain networks during childhood, and strengthens and

modifies in important ways across this same period. Testing these

findings across different ages, including during adolescence, will

help to better chart the trajectory of rich club organization

throughout development, and to establish its stability across and

within individuals. It will also be critical to determine how the

identified network phenomenon relates to various behavioral and

cognitive measures, and whether deviations from this trajectory

are predictive of specific psychiatric disorders. The findings

presented here provide a foundation for examining structural

and functional rich club phenomena in multiple contexts.

Supporting Information

Figure S1 Functional rich club curves in adults and
children using HQS normalization. Unweighted rich club

coefficients relative to random are shown for children (pink) and

adults (red). Normalization was performed using the Hirschberger-

Qi-Steuer (H-Q-S) algorithm, as opposed to the Maslov-Sneppen

rewiring used for all figures in the main text. Asterisks denote

significantly greater than random values (P,.05, permutation

testing). Curves demonstrate significant values across a broad

range in both groups, but greater values and a broader range in

adults.

(TIFF)

Figure S2 Adults versus children comparisons of rich
club coefficients using group-randomizations. Rich club

curves reflect the same data as that presented in the main text. In

order to compute significance values here, a null distribution of

differences was obtained by randomizing group assignments as

described in the methods and materials. Normalized rich club

coefficients for structural data (left) and functional data (right).

Color-coding shows weighted (adults = red, solid; children= pink,

solid), and unweighted (adults = brown, dashed; children= tan,

dashed) networks. Significant differences are indicated with an

asterisk at the top of the graph for weighted networks, and at the

bottom for unweighted.

(TIFF)

Figure S3 Group differences in functional rich club
coefficients persist across distinct connection densities.
(a) Normalized rich club coefficients for functional data are shown

for unweighted networks (adults = red, children= pink) at multiple

connection densities (4%= top left, 6%= top right, 8%=bottom
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left, 10%=bottom right). Significant differences, indicated with

asterisks, are observed (adults.children) across a wide range of k

at on each graph.

(TIFF)

Table S1 List of regions used for analysis.
(DOCX)

Table S2 Group differences in rich club coefficients are
insensitive to removal of BOLD scan frames. BOLD frame

removal was carried out in adults using two distinct methods: 1)

random removal and 2) removal of latter scan portion. Frames

were removed from each subject until the amount of remaining

scan time did not exceed a particular threshold (15 min, 10 min,

or 5 min). Tabulated values represent degree thresholds (K) at

which significant differences in rich club coefficients (adults.chil-

dren) were observed. Opposite differences were not observed.

These values are compared to differences displayed in figure 7

(K= 5, 7–17, 19, 20), which are closely matched here.

(DOCX)
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