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Abstract

Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) from some marine, lacustrine and thermal
environments aggregate into macroscopic cones and conical stromatolites. We investigate the uptake and storage of
inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope
mapping of labeled carbon (H13CO3

2) and immunoassays. Observations and incubation experiments in actively
photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the
active growth layer of cones. These ultrastructurally heterogeneous granules rapidly accumulate newly fixed carbon and
store 18% of the total particulate labeled carbon after 120 mins of incubation. The intracellular distribution of labeled
carbon during the incubation experiment demonstrates an unexpectedly large contribution of PEP carboxylase to carbon
fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria.
This pattern does not occur in obvious response to a changing N or C status. Instead, it may suggest an unusual interplay
between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products that
facilitates uptake of inorganic C and reduces photorespiration in the dense, surface-attached communities of cyanobacteria
from Subsection III.
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Introduction

Cyanobacteria fix inorganic carbon using the enzyme ribulose

1,5 bi-phosphate carboxylase oxygenase (RuBisCO) [1] and

commonly encapsulate this enzyme in polyhedral inclusions called

carboxysomes to improve the carboxylation efficiency [2–5].

Cyanobacterial cells can also contain other carbon- and nitrogen-

rich inclusions, including cyanophycin, but the roles of these

inclusions are less well understood. Cyanophycin, a non-protein,

non-ribosomally produced branched polypeptide is composed of

an aspartic acid backbone and (L)-arginine side chains [6–8] and is

commonly found in stationary phase cells [9–11]. Some studies

suggest that cyanophycin is a dynamic buffer for fixed nitrogen in

cyanobacterial heterocysts and unicellular cyanobacteria [11,12]

and in some filamentous, non-heterocystous, nitrogen-fixing

cyanobacteria [13]. However, less is known about cyanophycin

and other cellular inclusions in non-heterocystous cyanobacteria

[14] and filamentous, non-heterocystous benthic cyanobacteria

(Subsection III) [15], although the latter are common in various

marine and terrestrial benthic environments [16–19]. For exam-

ple, our recent study reported the accumulation of particulate

organic carbon in the abundant, 150–750 nm wide, dark

intracellular granules within photosynthetically active, thin,

cone-forming filamentous cyanobacteria from Yellowstone Na-

tional Park (YNP) [19]. These cyanobacteria are classified into

filamentous, non-heterocystous Subsection III, based on the

analysis of 16S rRNA gene sequences and microscopic observa-

tions of both field and laboratory samples [19]. The large, dark

granules are common in modern coniform mats and visible by

light microscopy, so much so that they inspired the name

Phormidium tenue var. granuliferum [20] for cone-forming cyanobac-

teria. The composition and function of these granules have not

been determined to date.

Here, we analyze the composition and ultrastructure of these

intracellular inclusions by transmission electron microscopy (TEM)

and immunogold labeling. We also track the flow of labeled

carbon in cone-forming cyanobacteria by incubation experiments,

isotopic labeling and nano-scale secondary ion mass spectrometry

(SIMS). These experiments, performed in the laboratory enrich-

ment cultures of cyanobacteria from YNP and in alkaline hot

springs in YNP, identify the large inclusions within cyanobacterial
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cells as cyanophycin and demonstrate ultrastructural and compo-

sitional heterogeneity within individual inclusions. Labeling

experiments coupled with nano-scale secondary ion mass spec-

trometry (SIMS) and transmission electron microscopy (TEM)

reveal a rapid flow of fixed carbon toward cyanophycin, and the

accumulation of a substantial fraction of particulate organic

carbon in this reservoir. This surprising pattern, which involves the

channeling of carbon toward phosphoenolpyruvate (PEP) carbox-

ylase and the synthesis of cyanophycin, may be an important

adaptation of modern, cone-forming cyanobacteria, and other

Subsection III cyanobacteria to life in biofilms and chemically

stratified environments.

Results and Discussion

Detection and Characterization of Cyanophycin Granules
Cyanobacteria that form cones and pinnacles in YNP and

laboratory cultures contain prominent, 150–750 nm wide, carbon-

and nitrogen-rich inclusions that appear dark in TEM images

[19]. These granules rapidly concentrate new organic carbon

during active photosynthesis and are localized close to the septa

that separate cells in filaments (Fig. 1). To test for the presence of

RuBisCO in these granules and elsewhere in the cells, we used

Rabbit anti-RuBisCO for immunogold labeling. Antibodies for

RuBisCO were present primarily in the cytoplasm (Fig. 2A) and

much more rarely in the ,100 nm wide inclusions (Fig. 2C), but

were absent from the large granules (Fig. 2B). Instead, immuno-

gold labeling using Rabbit anti-L-arginine demonstrated abundant

L-arginine in the large, dark granules (Figs. 1A and B, Fig. S1; see

Fig. S2 for images of negative controls). Together, these

experiments identified the large, ,150–750 nm wide, dark

granules in thin filamentous cyanobacteria as cyanophycin.

High resolution nano-scale SIMS mapping of the CN- ion

species, used to track proteinaceous compounds [21], revealed the

ultrastructure of cyanophycin granules at an unprecedented scale.

Each large, ,150–750 nm wide granule contained densely

clustered, rimmed, ,100 nm wide subcompartments with a

distinct outer rim (Fig. 1C). The contrast between the interiors

and rims of subcompartments stems from a higher intensity of the

CN- in the rims, suggesting compositional heterogeneity. A higher

intensity of CN- in the rims is consistent with an enrichment of

nitrogen-rich L-arginine in the rims and a higher abundance of

nitrogen-poor L-aspartate in the interiors of the subcompartments

(Fig. 1D). Alternatively, the heterogeneous distribution of CN-

within the bright rims and the duller interiors of cyanophycin

granules, respectively, may track cyanophycin and another

peptide-rich compound, respectively.

Carbon Accumulation and Storage in Cyanophycin
Studies of carbon flux through cone-forming communities in

YNP and laboratory enrichment cultures suggested a central role

for cyanophycin granules in the accumulation and storage of fixed

carbon in the active growth layer of cones (Fig. 1 E, F) [19,22]. To

track the flow of newly fixed carbon through cyanobacterial cells

in time, we grew coniform mats in the laboratory, in media

containing a high concentration of inorganic carbon (Ci). Small

cones were cut out, and incubated in a medium that contained
13C-labeled bicarbonate in the presence of a light source

(Methods). Cones labeled in this manner were sampled at 5, 30,

60 and 120 mins after the start of the incubation. High resolution

nano-scale SIMS mapping of 12CN2 ions and 13CN2 ions (see

Methods) of thin sections through cones showed an increasing

accumulation of labeled particulate carbon in time (Fig. 3A). After

5 minutes of incubation, labeled carbon was only detectable in the

Figure 1. Composition and appearance of cyanophycin granules. (A) TEM image of cyanophycin granules within filamentous cyanobacterial
cells from field samples (YNP). The sample was immunogold labelled by Rabbit anti-L-Arginine at a dilution of 200X. (B) TEM image of filamentous
cyanobacterial cells from a lab cone. The sample was immunogold labelled by Rabbit anti-L-Arginine at a dilution of 400X. Scale bar is 200 nm for (A
and B). (C) High resolution nano-scale SIMS imaging of CN-, showing rimmed globular clusters within cyanophycin granules. (D) The suggested
chemical structure of cyanophycin, with aspartate as the backbone and arginine as the side chain. (E, F) High resolution nano-scale SIMS map of
13CN2 in the granules of cyanophycin from cyanobacteria grown in the laboratory. (F) Ratio map of 13CN2 to 12CN2 in cyanophycin granules. Scale
bar is 1 mm for (C, E, F).
doi:10.1371/journal.pone.0088142.g001
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envelopes of filamentous cyanobacteria (Fig. S3). After 30 minutes,

labeled carbon was present primarily in the cyanophycin granules

(Fig. 3B), where the 13CN2/12CN2 ratio was twice higher than the

background (1.25%, in resin). After an additional 30 minutes

(60 min total), cyanophycin granules occupied 3.9% of the cell

area and accounted for 13.9% of the particulate labeled carbon.

The isotopic enrichment, expressed as 13CN2/12CN2 ratio, was

2.0% (60.6%) and 7.2% (61.0%) in the cytosol and cyanophycin,

respectively. After 120 mins, the large cyanophycin granules were

enriched isotopically by 11.5% (62.9%) relative to the 3.6%

(61.3%) enrichment of the cytosol (Fig. 4A). At this time,

cyanophycin granules accounted for about 5.7% of the cell area

and for 18% of the labeled carbon in cyanobacterial cells (Fig. 4B,

C). The inflow of 13C into cyanophycin requires that cone-forming

cyanobacteria rapidly channel fixed carbon via phosphoenolpyr-

uvate (PEP) carboxylase to PEP pool and aspartate (Fig. 5). These

fluxes of fixed carbon resemble the reported rapid production of

labeled aspartate and PEP in the unicellular cyanobacterium

Synechocystis sp. strain PCC 6803 acclimated to low Ci and subject

to a pulse of 13C-labeled medium with very high Ci [23]. Longer

term labeling experiments, pulse-chase experiments, and the

tracking of soluble metabolites could evaluate fluxes of carbon

through different pools of carbon in filamentous, cone-forming

cyanobacteria, and in other cells within the community.

Photosynthetically active cone-forming cyanobacteria from

untreated YNP samples and laboratory cultures contain RuBisCO

(Fig. 2) and rare carboxysomes [19]. These organisms also excrete

glycolate in the presence of high Ci under our laboratory

conditions [24]. Therefore, cone-forming cyanobacteria use

RuBisCO to fix inorganic carbon under all tested experimental

and field conditions (Fig. 4). Surprisingly, the intracellular

distribution of labeled particulate organic carbon in cone-forming

cyanobacteria also provides evidence for a substantial flow of fixed

carbon toward PEP carboxylase, and the synthesis of aspartate,

arginine and cyanophycin (Fig. 5). This occurs both in laboratory

enrichment cultures (Figs. 1, 4) and in field cones from YNP [19].

PEP carboxylase contributes to carbon fixation in the stationary

cultures of unicellular cyanobacteria Aphanocapsa 6308 [25] and in

the cultures of Synechocystis sp. PCC 6803 acclimated to low

concentration of inorganic carbon (, 60 mM Ci) but experiencing

a pulse of high Ci [23]. In contrast, we speculate that

cyanobacterial filaments in modern coniform mats channel fixed

carbon toward PEP and synthesize cyanophycin even when

growing actively and in the presence of both low and high Ci. We

infer this from the following: 1) cyanophycin granules are common

in the actively growing tips of laboratory and field cones even

before the transfer to the labeling medium [19,22] (Methods); 2)

cyanobacteria in the tips of laboratory cones grow in solutions

containing , 25 mM Ci, i.e., two order of magnitude higher

concentration than low Ci conditions in Synechocystis cultures

(0.18 mM); and 3) cyanobacterial cones were transferred to

labeling solutions with , 25 mM Ci (Methods).

Studies of unicellular cyanobacteria that do not fix nitrogen and

studies of N- and C-fixing cyanobacteria show that cyanophycin is

typically synthesized by cyanobacteria that transition between a

nitrogen-replete to a nitrogen-poor regime, and may be degraded

during the transition from low to high Ci concentrations to balance

the internal C/N ratio [11–13,23,26,27]. The observed flux of

carbon toward PEP carboxylase and cyanophycin under our

laboratory conditions did not occur in response to a changing N

regime because both the growth and the incubation media

contained comparable concentrations of Ci and Ni (,25 mM DIC

and 1.8 mM nitrate). Cells grown and incubated under these

conditions contained rare carboxysomes and abundant cyanophy-

cin granules. Cyanophycin is also synthesized during typical

growth conditions in coniform mats in YNP, because cyanobac-

teria in the field cones contain abundant cyanophycin granules

and rare carboxysomes [19]. The field conditions are likely

characterized by less than 5 mM DIC and 0.05 mM Ni in the

solution above the coniform mats [28,29]. Because the field

structures grew acclimated to low Ni, but were labeled in the

medium that contained 1.8 mM nitrate [19], it is possible that our
13C-labeling experiment in the field probed the response to a

changing N regime. Notably, we observed similar patterns of C

flow through cyanobacterial cells both in the laboratory and in the

field [19].

Actively growing cone-forming cyanobacteria from cone tips do

not appear to synthesize cyanophycin in response to a changing N

Figure 2. Immunogold TEM images of cyanobacterial cells from
YNP samples. All cells were immunogold labelled by Rabbit anti-
RuBisCO (large subunit, form I and II, AS03 037) at a dilution of 1000X.
The gold particles are uniformly sized and dark, two examples are
marked by red arrows in (A, B, C). (A) The distribution of immunogold
particles tagging free RuBisCO in a cell lacking cyanophycin or
carboxysomes. SiO2 around the cell is marked by a black arrow, these
granules are bigger than gold particles. (B) The absence of immunogold
particles in cyanophycin granules indicates the absence of RuBisCO. (C)
Immunogold particles tagging RuBisCO in small inclusions suggest the
presence of morphologically atypical carboxysomes. These inclusions
are rare and are found in the same areas where large cyanophycin
granules typically occur. Few gold particles outside the cell in (A, B, C)
indicate a low level backgroung. Scale bars: 200 nm in (A, B), and
100 nm in (C).
doi:10.1371/journal.pone.0088142.g002
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regime. Instead, morphological, chemical and isotopic patterns

observed in the macroscopic, surface-attached, diffusion-limited

[22,30] or even carbon-limited cones [28] suggest that cone-

forming cyanobacteria may synthesize cyanophycin in response to

the low or changing C/O ratios. Mutants of Synechococcus sp. strain

PCC 6803 that lack carboxysomes and are impaired in the ability

to concentrate carbon and those that accumulate the products of

RuBisCO oxygenation such as glycolate (Fig. 5) channel larger

portions of fixed carbon toward PEP carboxylase [23,31]. Wild-

type cone-forming cyanobacteria exhibit similar trends under our

Figure 3. Temporal dynamics of 13CN2 in cyanophycin. (A) Average accumulation of labeled carbon within the cells (N.10) at different time
points. (B) Accumulation of labeled carbon within cyanophycin after 30 min of incubation. The 13CN2/12CN2 ratio was 2.5% (i.e., twice above the
1.25% background). Cyanophycin is marked by a red arrow. Labeled carbon is also present in or close to cell envelopes (white arrow). Scale bar is
3 mm.
doi:10.1371/journal.pone.0088142.g003

Figure 4. Carbon accumulation and storage within cyanophycin over time. (A) Isotopic enrichment in cyanophycin granules and cell
cytosol after 60 and 120 mins of incubation (see images ‘‘60 mins’’ and ‘‘120 mins’’). (B) Labeled carbon in cyanophycin granules expressed as the
percentage of total labeled carbon in samples shown in (60 mins, 120 mins). (C) Percentage of cellular area that is occupied by cyanophycin
granules in (60 mins, 120 mins). (60 mins) Nano-scale SIMS image of large cyanophycin granules in filamentous cyanobacteria ,120 mm below
the surface of the cone after 60 min of incubation in the labeling medium. (120 mins) Nano-scale SIMS image of cyanophycin granules in
filamentous cyanobacteria,120 mm below the surface of the cone after 120 mins of incubation in the labeling medium. Cyanophycin granules in (II)
contain more labeled carbon and are larger. Scale bar is 5 mm for (D, E).
doi:10.1371/journal.pone.0088142.g004
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experimental conditions (,25 mM Ci in the bulk medium): they

excrete glycolate, and incorporate aspartate derived from the PEP

carboxylase pathway into cyanophycin granules (Fig. 5). Given

that phosphorespiratory products, including glycolate, inhibit

enzymes of the Calvin Benson Basham pathway [32,33], and that

the clumping behavior of cone-forming cyanobacteria promotes

the removal of glycolate and does not occur at low oxygen

concentrations [24], both clumping and the increased flux of

carbon through PEP carboxylase may compensate for some of the

inhibitory effects of photorespiration. This pathway may be of

particular importance in dense, surface-attached cyanobacterial

communities where the transport of metabolites is limited by

diffusion [22]. These hypotheses can be explored by quantifying

the production of glycolate and cyanophycin in coniform mats and

dispersed mats exposed to different C/O ratios and by further

exploring the dynamics of carbon cycling through cyanophycin

granules.

Cyanophycin seems to play an extraordinary role in the cycling

of carbon in thin filamentous cyanobacteria from modern cone-

forming aggregates. The previously unrecognized flux of fixed

carbon toward PEP carboxylase and the incorporation of this

carbon into cyanophycin directly links the cycles of carbon,

nitrogen and oxygen, and may be one of many unusual

adaptations of thin, filamentous cyanobacteria to life in macro-

scopic aggregates in the presence of low flow [19,20,22,24,30,34].

Cyanobacteria from Subsection III that live in environments other

than hot springs also have the capacity to synthesize cyanophycin

and often do so [16–18,35], under conditions that remain to be

elucidated.

Materials and Methods

Culturing and Isotope Labeling
Field work was performed in August 2008 and 2009 in Mound

Spring at Sentinel Meadows, Yellowstone National Park (YNP)

under the permit YELL-2008-SCI-5758 and coniform mats were

sampled and transported as described previously [19,34]. Labo-

ratory enrichment cultures were grown as described previously

[36], in 200 ml glass beakers at 45uC, in a modified Castenholz D

medium, on silica or aragonite sand as solid substrate. Genomic

DNA was extracted from cones grown in laboratory enrichment

cultures. Primer sets of 27F/1492R for universal bacterial 16s

rRNA sequences, and cyanobacteria-specific primers 338F/781R,

359F/781R were used for PCR and nested PCR as described in

references [19,34]. The cultures were grown at a light intensity of

180 mE/m2/s using cold fluorescent light with a day-night cycle of

12–12 hours. Three weeks after the inoculation, and 3–7 days after

the appearance of , 5 mm tall and , 2 mm wide cyanobacterial

cones in laboratory enrichment cultures, the liquid medium above

the surface-attached cyanobacteria was replaced by the fresh,

modified Castenholz D medium [36,37] that contained 1.8 mM

NO3
2 and ,25 mM sodium bicarbonate enriched in 13C (98

atom%, Isotec, Miamisburg, Ohio) and equilibrated with 5%
13CO2 in the culture headspace. Cones were incubated for 5, 30,

60 and 120 mins in separate containers.

Isotopic Mapping of Labeled Carbon by Nano-scale SIMS
After the incubation with isotopically labeled inorganic carbon,

the samples were fixed with 2.5% glutaraldehyde in 0.1 M sodium

cacodylate buffer (pH 7.4), washed with the same buffer, and post-

fixed in 1% osmium tetroxide and 1.5% potassium ferrocyanide.

The fixed samples were dehydrated in a gradient series (30–100%)

of acetone/water solutions and embedded in epoxy resin (Epon).

Thin sections (300 nm) were obtained using a Reichert-Jung

Ultracut E ultramicrotome with a diamond knife. The sections

were collected and transferred onto a clean Si chip for SIMS

imaging.

Nano-scale Secondary Ion Spectrometry (Nano-scale SIMS)

analyses were carried out at the Institut Curie, Orsay, France

using a NanoSIMS-50 ion microprobe (Cameca, Gennevillieres,

France). Measurement conditions were described in details in

Figure 5. Proposed scheme of central carbon and nitrogen metabolism in cone-forming cyanobacteria. Adapted from Huege et al.,
2011 and Hackenberg et al., 2012. Key metabolites including arginine, cyanophycin and glycolate and enzyme (RuBisCO) detected in this study are
marked in dark.
doi:10.1371/journal.pone.0088142.g005
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previous studies [19,22]. The optical system in the microprobe was

adapted to ensure high transmission with a high mass resolution.

The primary beam was operated in the probe scanning mode over

the sample surface to create elemental and isotopic images. To

obtain high resolution images of individual cell details, the raster

was reduced to 6, 12 and 20 mm, with the probe size smaller than

100 nm and an intensity of about 1 pA. Images were created for

ion species 12C2, 13C2, 12C14N2, 13C14N2 and 32S2. The dwell

time per pixel was 30 ms for high resolution images. High mass

resolution setup was used to separate 13C14N2 from the isobaric
12C15N2 species on one hand [21], and on the other hand, to

prevent the mass interference from 11B16O2 species that was likely

present in the embedding resin.

Nano-scale SIMS Data Processing
Ion species 12C14N2 and 13C14N2 were used to detect carbon

associated with biomass, as they have higher intensity and are

more statistically reliable than 12C2 and 13C2. The ratio (%) of
13C14N2/12C14N2 was used to quantify the uptake of carbon

(enrichment over the background). Color ratio image was

generated by using OpenMIMS, an ImageJ plugin [38] developed

by Claude Lechene’s Laboratory. OpenMIMS allows the visual-

ization of ratio value in a HSI (Hue-Saturation-Intensity) image

[39,40]. To compute the average 13C14N2/12C14N2 ratio in the

cells in each image, the information pertaining to microbial

biomass (enriched in 13C) was separated from the background

resin (natural abundance of 13C) by a mask. The binary mask was

generated by adjusting the threshold level on the sum image of
13CN2 and 12CN2. Each pixel containing biomass was assigned a

value of 1, other pixels were assigned a value of 0. A 13CN2/

12CN2 ratio map was obtained by multiplying the measured
13CN2/12CN2 ratio image with the binary mask image to

eliminate the resin background. The ratio characteristic for the

unlabeled controls (N= 3, numerical value 1.25) was first

subtracted from each pixel value, and pixel values in the corrected

ratio of 13CN2/12CN2 were integrated over all pixels. The

isotopic enrichment in carbon concentrating granules was

determined using ultra-high resolution images.

Immunohistochemistry and Transmission Electron
Microscopy Imaging
Samples of cyanobacterial cones were frozen using a high

pressure freezer (Leica EMPACT2) at pressure 2000–2050 bar.

Freeze substitution was performed in anhydrous ethanol (contain-

ing 0.2% uranyl acetate and 0.2% glutaraldehyde) using a Leica

EM AFS2 (automatic freeze substitution). The samples were kept

at 290uC for 3 days, at 260uC for 1 day, at 220uC for 1 day, at

0uC for 1 day and were then warmed to room temperature. The

LR Gold resin was used for infiltration and embedding. Ultrathin

sections (90–120 nm) were obtained using a Reichert Ultracut S or

Leica EM UC6ultramicrotome (Leica, Vienna, Austria) with a

diamond knife. The sections were collected and transferred onto

100-mesh nickel grids.

In immunogold labeling experiments, the individual grids were

floated on Tris-buffered saline (TBS) for 15 mins, and 1% bovine

serum albumen (BSA) in TBS for 15 mins. To determine whether

L-Arginine was present in the large intracellular granules, the grids

were incubated with Rabbit anti-L-Arginine (Acris, AP31587SU-

S) diluted 200X, 400X and 800X in TBS and 1% BSA for 1 hour

(Fig. S1). Normal Rabbit Immunoglobulin G (IgG) (Millipore, 12–

370), diluted 200X, 500X and 800X, was used as a control (Fig.

S2). After 4 washes with TBS, the grids were floated on an excess

(1:20 dilution) of 12 or 18 nm colloidal Donkey anti-rabbit IgG

(Jackson Immuno Research, West Grove, PA, USA) at room

temperature for 1 hour. The grids were washed sequentially with 3

drops of TBS, followed by three washes with ddH2O. After

immunogold labeling, the sections were stained with 5% uranyl

acetate in water for 10 mins and 0.4% lead citrate in water for

6 mins. Sections were imaged using a Philips CM 100 Transmis-

sion Electron Microscope at 80 kV and recorded by a GatanOrius

CCD camera at the Plant Cell Biology Core Lab, Institute of Plant

and Microbial Biology, Academia Sinica. To determine the

distribution of RuBisCO in thin filamentous cyanobacteria,

immunogold labeling was also performed using Rabbit anti-

RuBisCO large subunit (1000 dilution in TBS and 1% BSA,

Agrisera, AS03 037) following the protocol described above (Fig. 2).

Supporting Information

Figure S1 (A, B) TEM image of cyanophycin granules within

filamentous cyanobacterial cells from YNP cones. The samples

were immunogold labelled by Rabbit anti-L-Arginine at 200X and

400X dilutions. (C) TEM image of cyanobacteria from a lab

culture. The samples were immunogold labelled by Rabbit anti-L-

Arginine at a dilution of 800X. Scale bar for (A, B, C) is 100 nm.

Small amount of L-Arginine may be present in the cell, accounting

for a certain level of background.

(TIF)

Figure S2 TEM image of controls for immunogold labelling

using Normal Rabbit IgG antibody (Millipore, 12–370). (A, B, and
C) show samples that used the antibody at dilutions of 200X,

500X and 800X, respectively.(A and C) are field samples from

YNP, B shows cells from a laboratory culture. The 200X dilution

generates a low background cross-reaction, 500X and greater

dilutions show zero cross-reaction. The scale bars are 0.5 mm for

(A and C), and 0.2 mm for (B).
(TIF)

Figure S3 Nano-scale SIMS isotopic ratio map of 13CN- to
12CN2 for filamentous cyanobacteria from the tip of a cone after a

5 min incubation. Labeled carbon scattered around cell envelopes,

suggesting that the initial carbon incorporation possibly occurs

there. Scale bar is 5 mm.

(TIF)
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