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Abstract

Background: Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display
differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP,
hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced
tissue fibrosis.

Results: We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of
two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE
activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall
conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In
silico analysis demonstrated S333W localized in the S1 pocket of the active site of the N domain with the bulky Trp adversely
affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed
altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant
displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE.

Conclusions and Significance: A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and
lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory
tetrapeptide in blood and tissues), may confer protection against fibrosis.
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Introduction

Angiotensin I-converting enzyme (ACE, CD143) is a Zn2+

carboxydipeptidase which plays a key role in the regulation of

blood pressure and also in the development of vascular pathologies

and tissue remodeling. ACE is constitutively expressed on the

surface of endothelial cells, epithelial, neuroepithelial and cells of

immune system (macrophages and dendritic cells) as a membrane-

bound protein and has been designated as CD143. Two

homologous domains (N and C domains) comprise the majority

of the structure of somatic ACE (sACE) and each contain a

functional Zn2+ binding active center reviewed in [1–2].

The three-dimensional crystal structure of sACE is still

unknown. However, the model of the two-domain ACE has been

recently suggested [3–4] based on the solved crystal structures of

the C and N domains [5–6], epitope mapping of mAbs to ACE

[7], and, on the electron microscopy picture of sACE [3].

Several mutations in ACE have been described: with several

producing familial elevation of blood ACE due to effects on the

rate of ACE shedding such as P1199L [8–11], Y465D [4], and

R532W [12]. In contrast, other ACE mutations abolish trans-

membrane anchoring to cell membrane resulting in direct ACE

secretion into the blood, i.e. W1197X [13], IVS25+1G.A [14].

Finally, yet other ACE mutations such as transport – defective

ACE mutation - Q1069R [15] and likely many others [16]

impaired trafficking to the cell surface and caused renal tubular

dysgenesis due to almost complete absence of catalytically ACE on

the cell surface.

We now report a novel ACE mutation, where residue

substitution (S333W) near the active site, altered kinetic charac-
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teristics of the N domain active center of somatic ACE. Mutated

ACE exhibited decreased hydrolysis of physiological, N domain

specific substrate Ac-SDKP, a negative regulator of the hemato-

poiesis [17] with strong anti-fibrotic properties [18]. Potential

clinical consequences of this mutation may confer protection from

lung fibrosis [19].

Experimental Procedures

Study participants
The study was approved by the Institutional Review Boards of

the University of Chicago and the University of Illinois at Chicago.

Participants provided their written informed consent to participate

in this study. The IRBs approved this consent procedure. Serum

ACE levels were assessed in serum present in the University of

Chicago Biobank obtained from patients with different sarcoidosis

phenotypes (along with controls). One patient (#27) was found to

have serum ACE with an unusual kinetic characteristics –low (0.7)

ZPHL/HHL ratio - normal value -1.0560.05 [20].

ACE activity assay
ACE activity in serum/plasma or culture fluids or lysates from

ACE-expressing cells was measured using a fluorimetric assay with

two ACE substrates (2 mM Z-Phe-His-Leu or 5 mM Hip-His-Leu

[21–22], respectively. Briefly, 40 ml aliquots of samples diluted in

PBS-BSA (0.1 mg/ml), were added to 200 ml of ACE substrate

and incubated for the appropriate time at 37uC. The His-Leu

product was quantified fluorometrically, via complexing with

ortho-phtaldialdehyde. Determination of the ratio of hydrolysis of

the two substrates (ZPHL/HHL) was performed as described [20].

In some experiments samples containing any sources of WT or

mutant ACEs were pre-incubated during 1 hour with different

ACE inhibitors (1 mM) or anti-ACE mAbs (10 mg/ml).

Figure 1. ACE activity in human serum. A–B. ACE activity in 85 samples of human serum from patients with different pulmonary diseases and
unrelated patients (served as a controls) - TRIDOM study, was quantified using a spectrofluorometric assay with Hip-His-Leu (A-5 mM) and Z-Phe-His-
Leu (B-2 mM) as substrates. Data expressed as % of individual ACE’s activity from mean value for whole population (33.0 mU/ml with Hip-His-Leu).
Bars highlighted with blue - samples with values of ACE activity higher than mean + 2SD. Bar highlighted with yellow-sample # 72 with very low ACE
activity –less than 30% of mean value. Bar highlighted with red-putative ACE mutation. C. Ratio of the rate of hydrolysis of the two substrates (ZPHL/
HHL ratio) in the tested samples. Data expressed as % of individual ZPHL/HHL ratio from mean value for whole population (1.05+0.05). Calculation of
this parameter was used primarily for identification of patients with ACE inhibitors in their blood (20): highlighted by red (high concentration) and
orange (low, but detectable concentration of ACE inhibitors). Bar highlighted by yellow (and arrowed)-from patient # 27. The results are shown as
mean values of duplicates. (Values of standard deviations, which were not exceeded 10%, were not shown for clarity).
doi:10.1371/journal.pone.0088001.g001

Catalytically - Defective ACE Mutation
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Immunological characterization of the mutant ACE
Ninety six-well plates (Corning, Corning, NY) were coated with

anti-ACE mAbs [23] and incubated with serum/plasma samples

or medium/lysates of CHO-ACE expressing cells After washing of

unbound ACE, plate-bound ACE activity was measured by adding

a substrate for ACE directly into wells [24].

Sequencing and genotyping
Genomic DNA was obtained from whole blood of patient # 27

and 13 exons of ACE gene (6th–12th, 19th–24th) were sequenced,

using primers designed by [25], obtained from SeqWright, Inc.

(Houston, TX) and designed in-house.

Molecular modeling of ACE
Analysis of the N domain was based on the recently published

[6] crystal structure (PDB accession number 3NXQ) and the C

domain was based on the structure resolved by Natesh et al. [7]

(PDB accession number 1O86). PYMOL (http://www.pymol.org)

was used to make the S333W substitution in silico using PyMol

Mutagenesis Wizard.

Site-directed mutagenesis and in vitro analysis of the
mutant ACEs

cDNAs encoding mutant ACE proteins were created by

GenScript USA Inc. (Piscataway, NJ) by mutation of the 1)

TCG codon for Ser at position 333 (somatic mature ACE

numbering [26] to codon TGG for Trp and 2) GAT codon for

Asp at position 562 to codon GGT, in expression vector based on

pcDNA3.1+/Hygro (Invitrogen Corp., Carlsbad, CA and con-

taining the full-length somatic ACE cDNA controlled by CMV

early promoter [27].

Figure 2. Effect of of anti-catalytic mAbs to N-domain active center for A and C for B) and from patient # 27 (arrowed in Fig. 1 C)
were incubated with mAbs which are anti-catalytic for the N-domain active center - i2H5 and 3A5 (10 mg/ml) [23,34]. Residual ACE
activity was determined with two ACE substrates as in Fig. 1. We also measured ZPHL/HHL ratio-as in [20] and in Fig. 1 C. Bars highlighted with yellow
- samples with values of ACE activity lower than mean 6 2SD for control sample without mAbs. Bars highlighted with red- samples with values of
ZPHL/HHL ratio higher than mean 6 2SD for control samples without mAbs. Data presented are mean 6 SD of 2–3 independent experiments in
duplicates). * p,0.05 vs. control serum.
doi:10.1371/journal.pone.0088001.g002

Catalytically - Defective ACE Mutation
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Plasmids carrying the coding sequence for wild-type ACE and

above mutants were expressed in CHO cells using Plus Reagent

(Invitrogen Corp., Carlsbad, CA) for transient transfection and

generation of stable cell lines. Serum-free culture medium from

these cells was used as a source of the secreted (soluble) ACE (wild

type and mutants) for biochemical and immunological character-

ization. Lysate of these cells obtained with detergent Triton X-100

(0.5% in PBS) was used as a source of membrane-bound form of

WT and mutant ACE.

Western blot analysis of mutant ACE expression
Lysates from CHO-WT-ACE cells (with ACE activity of 5 mU/

ml using Hip-His-Leu) were compared to lysates from CHO-

ACE–S333W cells normalized by equal protein loading by SDS-

PAGE in 4–15% acrylamide Tris-HCl pre-cast SDS PAGE gels

(Bio-Red Laboratories, Hercules, CA). After electrophoretic

transfer of proteins to microporous PVDF-Plus membrane

Western blotting was performed exactly as in [4].

Kinetic assessment of AcSDKP hydrolysis by recombinant
ACE

An adapted plate assay was designed based on previously

published approach for N-acetyl-angiotensin I [28] using fluor-

escamine (4-phenylspiro[furan-2(3H),19-phthalan]-3,39-dione), a

reagent that forms fluorescent adducts exclusively with primary

amines [29]. 30 ml of 1 mM AcSDKP (Sigma-Aldrich Co.)

substrate in buffer (50 mM HEPES, pH 7.5, 100 mM NaCl,

10 mM ZnSO4) was warmed to 37uC in a 96-well plate. The assay

was commenced by the addition of 10 ml (10 mg total protein) pre-

warmed lysate, incubated for 30 minutes and stopped by the

addition of 50 ml 1 M HCl. The solution was neutralized by the

addition of 50 ml 1 M NaOH and the pH increased to 8.3 by the

addition of 100 ml 500 mM K2HPO4/KH2PO4 buffer pH 8.3.

10 ml of fluorescamine (2 mg/ml in acetone, Sigma-Aldrich Co.)

was added and the resulting mixture incubated for 3 minutes at

room temperature. Fluorescence intensities were measured at

lex = 390 nm and lem = 475 nm using a Cary Eclipse spectroflu-

orimeter (Varian Inc.). Changes in fluorescence compared to

empty vector lysate were converted to reaction velocities by the use

of a standard curve. The standard was constructed by complete

hydrolysis of various concentrations of AcSDKP by purified N-

domain using the same approach as above.

Results and Discussion

Identification of novel ACE mutations
Screening of serum ACE activity was performed in 84 cases

with pulmonary and extrathoracic sarcoidosis and unrelated

patients serving as controls and resulted in the identification of a

single case (#38) with ACE activity 5-fold higher than controls

(Fig. 1A and 1B). Further investigation led to the discovery that

this patient carried a novel ACE mutation-R532W [12]. ACE

activity in serum of 84 patients was determined with two artificial

‘‘short’’ substrates HHL and ZPHL (Fig. 1A and 1B). Fig. 1C

shows the ratio of the rate of hydrolysis of two ACE substrates,

Figure 3. Effect of of anti-catalytic mAbsto C domain active center on blood ACE activity. Serum samples from pools of healthy
volunteers (Control) and from patient # 27 (arrowed in Fig. 1 C) were incubated with mAbs which are anti-catalytic for the C -domain active center –
1E10 and 4E3 [7]. Residual ACE activity was determined with two ACE substrates as in Fig. 1. We also measured ZPHL/HHL ratio-as in [20] and in Fig.1
C Data presented are mean 6 SD of 2–3 independent experiments in duplicates). * p,0.05 vs. control serum.
doi:10.1371/journal.pone.0088001.g003

Catalytically - Defective ACE Mutation
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ZFHL and HHL (ZPHL/HHL ratio), which was used primarily to

detect presence of ACE inhibitors in the blood of patients at the

time of blood sampling [20]. Eleven patients (red and orange bars

in Fig. 1C) had elevated ZPHL/HHL ratios suggesting the

presence of an ACE inhibitor. However, one patient (#27)

demonstrated a markedly lower ZPHL/HHL ratio of 0.7. This

represents the lowest ZPHL/HHL ratio we have determined in

more than 600 plasma/serum samples (not shown).

The two domains of ACE hydrolyze a range of natural and

synthetic substrates, but with different efficiencies [30–33]. The

two synthetic substrates ZPHL and HHL are used for determi-

nation of ACE activity in laboratories worldwide. These two

substrates display some contrasting enzymatic properties: the C

domain of human ACE hydrolyzes HHL at a much faster rate (9–

fold) than the N domain [30], whereas ZPHL is hydrolyzed at a

similar rate by both domains [23]. As a result, the ratio of the rates

of hydrolysis of these two substrates (ZPHL/HHL ratio) is

characteristic of different forms of ACE: somatic (two-domain)

human ACE - about 1-1.5, N-domain – 5–7, and C-domain - 0.6–

0.8 [20]. The selective inactivation or inhibition of the C-domain

in somatic ACE increases this ratio to higher values more

characteristic for the N-domain, whereas selective inactivation/

inhibition of the N-domain in somatic ACE decreases the ratio

toward lower values predicted for C-domain [20].

Therefore, the lower value of ZPHL/HHL ratio for patient #
27 suggested that the N domain active center could be inactivated

by a mutation in the active site of the enzyme. To further

investigate this, we incubated serum from patient # 27 (and two

controls - healthy individuals with normal ZPHL/HHL ratio) with

mAbs 3A5 and i2H5 which are anti-catalytic towards the N-

domain active center [23,34]. The inhibition of ACE activity from

patient # 27 by the anti-catalytic mAbs 3A5 and i2H5 was weaker

with substrate ZPHL than HHL (Fig. 2). This was surprising,

considering the substrate HHL is preferentially hydrolyzed by the

C-domain and the binding of anti-catalytic mAbs to the epitopes

localized on the N domain essentially did not affect the hydrolysis

of HHL by healthy individuals (controls) (Fig. 3). Moreover, mAbs

1E10 and 4E3 were less effective in the inhibition of ACE activity

with HHL than with ZPHL.

The pattern of inhibition of blood ACE activity from patient

#27 was similar for the short tripeptide ACE inhibitor enalaprilat

(Fig 4A) and long nonapeptide ACE inhibitor teprotide (Fig. 4B)

using substrate ZPHL. However, inhibition by these inhibitors

using substrate HHL was less effective: IC50 for enalaprilat was

2 nM for control serum and 7 nM for serum from patient # 27

(p,0.05); for teprotide IC50 values were 9.5 nM and 13.0 nM,

respectively (p,0.05). Thus, the data presented in Fig. 2-4 may

indicate that the putative ACE mutation in patient # 27 could

affect the overall catalytic ability, which can change the relative

ability to hydrolyse tested substrates rather than just inactivation of

the N-domain active center.

In order to characterize the conformation of blood ACE from

patient #27 we performed conformational fingerprinting of blood

ACE, using a panel of mAbs directed against 16 different epitopes

located on the N-and C-domain of catalytically active human

ACE [24]. We recently demonstrated that the pattern of

precipitation of ACE activity – (conformational fingerprint of

ACE) using a set of mAbs directed against 16 different epitopes of

human ACE provides a sensitive means of identifying changes in

local conformation of ACE due to inactivation, inhibition,

mutations, etc. [24]. Moreover, we successfully used this set of

mAbs to detect several new human ACE mutations and

characterized the conformation of Pro1199Leu [35], Trp1197Stop

[13], Q1069R [15], Y465D [4] ACE mutations.

Figure 4. Effect of ACE inhibitors on blood ACE activity. Serum samples (1/5 dilution in PBS) from pool of 10 healthy volunteers (control) and
from patient # 27 (arrowed in Fig. 1 C) were incubated with different concentration of ACE inhibitors: short –enalaprilat (A) and long –teprotide (B).
Residual ACE activity was determined with two ACE substrates (and ZPHL/HHL ratio) as in Fig. 2. Data presented are mean 6 SD of 2–3 independent
experiments in duplicates). * p,0.05 vs. control serum.
doi:10.1371/journal.pone.0088001.g004

Catalytically - Defective ACE Mutation
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The immunoprecipitation profile of plasma ACE from subject

# 27 is quite different to that of plasma ACE from healthy

volunteers with normal ZPHL/HHL ratio (Fig. 5A). The binding

of 11 of the 16 mAbs ACE from this patient decreased, while

binding of mAb 1G12 and mAb 1E10 increased significantly. This

suggests that there is a change in overall conformation of ACE

from patient #27. We also estimated local conformational changes

of blood ACE from this patient, by calculating the relative binding

of mAbs to different epitopes on the N- and C-terminal domain.

Binding of several mAbs, sensitive to local conformational changes

in ACE (due to denaturation, glycosylation, and inhibitor binding)

[24,36] relative to binding of mAb 9B9, directed to the epitopes

resistant to such changes [37] is shown in Fig. 5B. These results

confirmed that the region on the surface of the N domain of ACE

containing overlapping epitopes for mAbs 1G12 and 6A12 and the

region on the C domain of ACE containing epitope for mAb

1E10, undergoes a significant conformational change.

We demonstrated previously that binding of mAbs 1G12 and

6A12 to blood ACE dramatically (3–4-fold) increased in the

presence of ACE inhibitors [36] ACE inhibitor enalaprilat

increased binding of mAb 6A12 to ACE from control and patient

# 27 to a similar extent, whereas increase in mAb 1G12 binding

to ACE from patient # 27 was lower to normal ACE from control

blood. Moreover, this difference was apparent only with substrate

Hip-His-Leu and not with Z-Phe-His-Leu (Fig. 5C). This suggests

that conformational changes in blood ACE of patient # 27 could

be very localized proximal to the region where Hip-His-Leu binds

to the N-domain active site.

Therefore fine analysis of enzymatic activity, sensitivity to ACE

inhibition and conformational analysis of blood ACE from patient

# 27 (Figures 1–5) unequivocally demonstrated profound local

and overall conformational changes in ACE from this patient,

which likely altered the interactions of ACE from this patient with,

at least, artificial ACE substrates.

We sequenced those exons of the ACE gene from this patient

which code amino acid residues comprising the N- and C-domain

active sites [26], or contribute to N-and C-domain substrate

specificity [38] - 6th–12th exon of the N domain and 19th–23th

exon of the C domain. We identified several known polymorphic

variants of ACE gene in patient # 27: i) rs 12709426

(c.1809A.G; p.D592G), which correspond to D563G substitution

- mature somatic ACE numbering [26] in 12th exon of ACE; ii)

rs12720737 in intron 23; and iii) rs4362 (c.3421T.C, synonymous

substitution in 1129 codon for Phe).

A heterozygous mutation was found in the 7th exon c.1119

C.G, p.S362W (Fig. 6A). Additional screening revealed that none

of the 100 randomly chosen genomic DNA samples from healthy

controls showed this mutation indicating that this substitution is

not a polymorphism. This mutation results in the substitution of a

highly conserved serine (Fig. 6B) with a tryptophan, which

corresponds to a S333W substitution in the N-domain of somatic

ACE. Unfortunately, other members of patient’s family (Fig. 6C),

were not available for analysis.

The mutation in the same codon of ACE coding for Ser333 of

mature ACE was found previously in at least six individuals in

North America (GenBank – rs142328237, http://www.ncbi.nlm.

Figure 5. Conformational fingerprinting of serum ACEs with a set of mAbs to ACE. A. Sixteen monoclonal antibodies were used to
precipitate ACE from sera. Immunoprecipitated ACE activity is presented as a normalized value (‘‘binding ratio’’), to highlight differences in
immunoprecipitation pattern (‘‘conformational fingerprint’’) among blood ACE from patient # 27 and blood ACE from healthy individuals (which
were expressed as 100%). B. Binding of several mAbs to serum ACE from control samples and serum from patient # 27-relative to binding by mAb
9B9. Data expressed as % of mAbs/9B9 binding ratio for serum from patient # 27 to that for control serum. Bars highlighted with yellow - samples
from serum of patient # 27 with values of precipitated ACE activity 20% lower than this value for control sample. Bars highlighted with red- samples
from serum of patient # 27 with values of precipitated ACE activity 20% higher than this value for control sample. C. Effect of ACE inhibitor
enalaprilat (100 nM) on binding of mAbs 1G12 and 6A12 to serum ACE from control samples and serum from patient # 27. All data presented as a
mean of 3–5 independent determinations. * p,0.05 indicates values shown is significantly different.
doi:10.1371/journal.pone.0088001.g005
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nih.gov/projects/SNP/). Besides, the S333W substitution, an

S333L substitution was found the GenBank in the same codon

which should have a lesser effect on the N domain active center

than the S333W substitution, due to the smaller size of the Leu

side chain, compared to Trp.

Functioning of ACE as an enzyme is not tolerated by this

(S362W) amino acid change (S333W for mature ACE protein)

according to Polyphen-2 analysis (http://genetics.bwh.harvard.

edu/pph2/, based on [39] which predicts that this mutation is

damaging with a probability 100%. SIFT software [http://sift.jcvi.

org/based on [40] also predicts damaging effect of this mutation:

SIFT Score: 0, Median Information Content: 2.4.

Analysis of the 3D-structure of the N domain, co-crystallized

with lisinopril, demonstrated that Ser333 is located deep in the

active site cleft close to lisinopril (Fig. 7A). Closer inspection of the

structure of the N-domain active center showed that the S333W

substitution could be responsible for the dramatic decrease in the

ZPHL/HHL ratio of the mutant ACE. The distance between

S333 and the P1 phenylalanine of the ACE inhibitor lisinopril of

about 6.2 Å is too far for a direct interaction with substrate, or

interference with the residues in the active center responsible for

substrate specificity or domain specificity of ACE inhibitors

(Fig. 7B). However, if the Trp is substituted for Ser333, rotation

about the side chain torsions x1 and x2 can result in a steric clash

with the P1 Phe of lisinopril. Similarly, with a more extended

ligand such as the N-domain selective phosphinic peptide inhibitor

RXP407, it is likely that the influence of steric hindrance of the P1

group with Trp333 would adversely affect its binding to the active

Figure 6. Identification of novel ACE mutation- Ser333Trp. A. Sequencing of ACE gene in patient # 27. Heterozygous mutation Ser333Trp
(S333W) in 7th exon was revealed by the sequencing 6–12th, 19th–24th exons of ACE gene of this patient. B. Alignment of amino acid sequences from
ACE of several vertebrate species indicates that S333 and the flanking residues are highly conserved. The numbering relates to the mature ACE. C.
Family tree of patient # 27 with new (S333W) mutation in ACE gene. Genotyped individual with S333W mutation are indicated by yellow color.
Individuals found to have low value of ZPHL/HHL ratio for serum ACE are marked by upward pointing arrows. Following abbreviations are used for
known clinical diagnoses: SCD-Sickle Cell Disease, DM–diabetes mellitus, HTN–hypertension. Among individuals in whom both genotyping and
serum ACE determination was performed, there was 100% concordance between presence or absence of the S333W mutation and low or non-
elevated ZPHL/HHL ratio for serum ACE, respectively.
doi:10.1371/journal.pone.0088001.g006

Figure 7. Localization of ACE mutation (S333W) in the N
domain of human ACE. A. A molecular surface representation of the
N-domain crystal structure (PDB code 2C6N [6] showing the active-site
channel and the bound lisinopril (yellow stick representation). The
surface of Ser333 is shown in purple. Helices a1, a2 and a3 that form a
cover over the central channel have been deleted to visualize the
inhibitor and the location of Ser 333. B. Details of the active site of a
ribbon diagram of the N-domain where Ser333 has been replaced with
a Trp (red stick representation) using PyMOL Mutagenesis Wizard
(DeLano Scientific, Palo Alto, CA, U.S.A). Ser333 is located 6.2 Å from the
P1 Phe of the ACE inhibitor lisinopril shown in yellow. Whereas Trp333
could potentially result in a steric clash with the P1 residue of the
bound ligand.
doi:10.1371/journal.pone.0088001.g007

Catalytically - Defective ACE Mutation
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site (Fig. 8). Thus, these molecular models suggest that substitution

of Ser333 by Trp could be responsible for the changes in the

substrate specificity that we observed with blood ACE of the

patient # 27.

Characterization of S333W ACE Mutant
To elucidate the mechanism by which S333W substitution (or

D563G) might be responsible for the changes in enzyme activity of

this blood (and perhaps tissue) ACE in the affected individuals, we

performed site-directed mutagenesis of human recombinant

somatic ACE. These mutants of somatic ACE were expressed in

CHO cells and the biochemical and immunological characteristics

of these mutants were compared with WT somatic ACE.

As expected, based on published crystal structures of the N

domains with ACE inhibitors [6,41], D563G substitution did not

cause any changes in kinetic properties of recombinant mutant

ACE. In contrast, the recombinant mutant (S333W) expressed in

CHO cells exhibited a dramatic decrease in ZPHL/HHL ratio

(Fig. 9A) when compared to wild-type enzyme. The 65% decrease

of ZPHL/HHL ratio for recombinant S333W ACE was signifi-

cantly higher than the 33% we observed for blood ACE from

patient #27 (Fig. 1C). This could be explained by the fact that

blood of patient #27 contains a mixture of WT and mutant alleles

of ACE, and thus the apparent ZPHL/HHL ratio of ACE

determined in plasma of this patient is not an accurate reflection of

this parameter. Mutant recombinant membrane-bound ACE also

demonstrated lower sensitivity towards ACE inhibitor enalaprilat

with substrate Hip-His-Leu than towards Z-Phe-His-Leu (Fig. 9B),

similar to what we observed with plasma ACE from patient # 27

(Fig. 4). Therefore, these data unequivocally demonstrate that the

heterozygous S333W substitution found in ACE of patient # 27 is

largely responsible for the altered enzymatic activity of blood

ACE, and, likely, tissue ACE in this patient.

We also performed conformational fingerprinting of recombi-

nant S333W ACE (Fig. 9C–E) in the same way as we did for

plasma ACE from patient #27 (Fig. 5). The conformational

fingerprint of mutant ACE (i.e. the pattern of binding of 16 mAbs

to ACE) was quite different to that seen for WT ACE, supporting

the hypothesis that a single amino acid substitution can cause

overall conformational changes in the ACE molecule as well as

local conformational changes close to this residue. However these

changes were greatly dependent on the type of ACE and on ACE

substrates used.

The overall precipitation of ACE activity (measured with Hip-

His-Leu as a substrate) from membrane-bound mutant ACE by

mAbs directed to the epitopes localized on the N-domain was

lower than that by mAbs to C-domain. The mean S333W/WT

ratio of ACE activity precipitation for 8 mAbs to the N domain

calculated from the data presented in Fig.9C was 0.7960.13

versus 1.0660.11 (p,0.05) for mAbs directed to C domain, and,

especially, binding of mAbs i2H5, 1G12 and 6A12 whose epitopes

overlap [23,36] decreased significantly. The pattern of overall

precipitation of ACE activity from membrane-bound mutant

ACE, measured with ZPHL was quite different from that

measured with HHL, but also differs between N and C domain

mAbs. Furthermore, the changes due to the S333W mutation were

more prominent for mAbs having overlapping epitopes– i2H5,

1G12,and 6A12 (Fig. 9D).

These data suggest that the S333W substitution leads to local

conformational changes in the N-domain of the mutant ACE

(selective, local denaturation of the N domain of ACE) which then

leads to changes in the hydrolysis of some substrates.

Figure 8. Critical residues in the active center of the N-domain of mutant ACE. The RXP407–N-domain co-crystal structure of the N domain
of ACE with N-domain specific inhibitor RXP407 - PDB accession code 3NXQ [42]. Key amino acids in the N domain crucial for substrate specificity and
ACE inhibition are denoted by somatic ACE numbering and are shown as green sticks. The catalytic zinc ion is shown in slate blue and RXP407 in blue.
A water molecule that could possibly be involved in an interaction between the C-terminal amide of RXP407 and Thr358 is given as a small blue
sphere. Image generated using PyMOL software and Ser333 has been replaced with a Trp (purple stick representation) using PyMOL Mutagenesis
Wizard (v 0.99, DeLano Scientific).
doi:10.1371/journal.pone.0088001.g008
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We also assessed the ZPHL/HHL hydrolysis by mutant ACE

bound to antibodies. The ZPHL/HHL ratio of WT ACE bound

to mAbs did not change significantly except for mAb 4E3 which is

strongly anti-catalytic for the C domain active center [7].

However, the putative selective denaturation of the N domain of

mutant ACE was partially restored after binding to those mAbs

which showed impaired binding (Fig. 9C). The ZPHL/HHL ratios

for the mutant ACE precipitated by mAbs to the C-domain was

the same as that for mutant ACE in solution, whereas the ZPHL/

HHL ratio for mutant ACE bound to mAbs 3A5, i2H5, 1G12 and

Figure 9. Characterization of recombinant mutant (S333W) ACE. A. ACE activity of the membrane-bound form of ACE of CHO cells (lysates)
transiently expressing WT and mutant ACE was determined as in Fig. 1. Ratio of hydrolysis of the two substrates (ZPHL/HHL ratio) in the tested
samples are presented as mean (6SD) from 4 independent experiments. *p,0.05 vs. WT. B. Effect of ACE inhibitors and anti-catalytic mAbs on
mutant ACE activity. Lysates form CHO cells expressing mutant and WT membrane-bound ACE were incubated with ACE inhibitor enalaprilat
(100 nM). Residual ACE activity was determined with both substrates and ZPHL/HHL ratio was determined as in A. C–F. Conformational fingerprinting
of mutant ACE. C–D. Membrane-bound WT and mutant ACE (lysates from corresponding CHO cells) were normalized to achieve 5 mU/ml ACE
activity with Hip-His-Leu as substrate and incubated in microtiter plate wells covered with 16 mAbs to human ACE as in Fig. 4 Data (mean 6 SD of 2–
3 independent experiments in duplicate) are expressed as ratio of ACE activity with HHL (C) and ZPHL (D) precipitated by mAbs from mutant ACE to
that of WT ACE. Bars highlighted with yellow – the values of precipitated ACE activity from mutant ACE was 20% lower than this value for WT. Bars
highlighted with red- the values of precipitated ACE activity from mutant ACE was 20% higher than this value for WT. E–F. The data presented in C
and D were expressed as the ZPHL/HHL ratio of ACE activity precipitated by each mAb. Data are mean 6 SD of 6–8 independent experiments in
duplicate. Bars highlighted with yellow – the values of ZPHL/HHL ratio of the precipitated ACE activity was 20% lower than this value for this type of
ACE in solution. Bars highlighted with red - the values of ZPHL/HHL ratio of precipitated ACE activity was 20% higher than this value for this type of
ACE in solution. * - p,0.05 vs. ZPHL/HHL ratio for corresponding values of WT and mutant ACE in solution (horizontal lines in E and F). The ratio for
any duplicate samples of WT ACE or mutant ACE for each mAb was approximately 1.0 and the SD was less than 10%.
doi:10.1371/journal.pone.0088001.g009
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6A12 t significantly increased, demonstrating a shift towards

higher values characteristic of native two-domain ACE (Fig.9E).

We already observed a local chaperone-like effect of mAbs to the

C-domain of ACE directed to the regions close to a mutation in

the C-domain - Q1069R [15].

We also performed Western blotting of cell lysates from CHO-

WT-ACE and CHO-S333W-ACE using mAb to denatured

human ACE -1D8 which recognize sequential epitope in the C

domain [42]. Western blot of recombinant wild-type and

membrane-bound mutant ACE with mAb 1D8 demonstrates the

amount of mutant ACE protein loaded for electrophoresis was

three times lower than the amount of wild-type ACE (Fig. 10),

despite the fact that ACE activity of both proteins was equilibrated

with Hip-His-Leu. Bearing in mind that the ACE activity in

mutant protein determined with substrate Z-Phe-His-Leu was 3-

fold less, it is likely that mutant ACE hydrolysed substrate Hip-

His-Leu roughly 3-fold faster than wild type N domain.

Our data indicates that dramatic changes in enzymatic activity

of mutant S333W ACE (ZPHL/HHL ratio) could be due to two

reasons: 1) the presence of a bulky Trp in the active site cleft that

might affect the binding of ACE substrates due to steric hindrance;

and 2) selective denaturation of the N-domain of mutant ACE,

perhaps due to incorrect folding and trafficking to the cell surface.

We demonstrated that this mutation (S333W) abolished

substrate specificity of the N-domain at least for two artificial

substrates Hip-His-Leu and Z-Phe-His-Leu. The N-terminal

domain of WT human ACE cleaves Hip-His-Leu much slower

than the C-domain [23,30], whereas the N-domain active center

cleaves substrates such as LH-RH and AcSDKP much more

efficiently [31,43]. Several active site residues determine the

substrate specificity of the N- and C-domains active centers of

somatic ACE [15,38].

Therefore we tested the effect of the S333W mutation on the

hydrolysis of the natural substrate AcSDKP (Fig. 11). Stable

transfection of CHO cells with WT- and S333W-ACE revealed a

similar decrease in enzymatic activity for the mutant ACE to that

seen with transient transfections using substrates HHL and ZPHL.

Hydrolysis of the N-domain selective substrate AcSDKP by

S333W was approximately 5-fold lower than that of WT ACE

(Fig. 11D). These data suggests that patients with the S333W

mutation might have increased endogenous levels of AcSDKP.

(Unfortunately, repeat blood/urine samples from this patient as

well as blood samples from the other 6 individuals from the NCBI

data base were not available for further analysis). Nevertheless we

believe that the carriers of this mutation might demonstrate

decreased predisposition to certain types of fibrosis due to

increased levels of the anti-fibrotic AcSDKP.

The rising burden of pulmonary fibrosis in the U.S. currently

accounts for more than 40 000 deaths annually. Moreover, few

effective drugs are presently available for the treatment of

pulmonary fibrosis. Activation of the renin-angiotensin system

(RAS) and production of Angiotensin II is associated with tissue

fibrosis, therefore ACE inhibition and/or AII antagonism has

been suggested as a possible anti-fibrotic therapy -see for review

[18].

AcSDKP is a natural inhibitor of hematopoietic stem cell

proliferation [17] and natural substrate for N-domain active center

of ACE [43] has recently emerged as an anti-fibrosis molecule-for

review see [18,44]. Several in vivo studies demonstrated that

AcSDKP injection [45–47] or specific prevention of AcSDKP

degradation [19] may suppress fibrosis in several animal models.

ACE is the primary enzyme responsible for the degradation of

AcSDKP and its actions in producing the profibrotic molecule

angiotensin II and in degrading the anti-fibrotic molecule

AcSDKP suggest that ACE and the RAS might be important in

some fibrotic diseases [19]. Anti-fibrotic effect of AcSDKP are

likely mediated via prevention of TGFb-induced Smad2 phos-

phorylation-for review see [18].

The inhibition of ACE in both mice and humans causes a 5-fold

increase in AcSDKP levels [48]. A similar increase in AcSDKP is

observed in ACE-null mice and mice with enzymatically inactive

N-domain [49]. The carriers of S333W mutation in the active

center of the N domain of ACE (where almost exclusive hydrolysis

of AcSDKP occurs) could be protected to some extent from

AcSDKP-dependent lung (and other tissues) fibrosis.

In summary, we identified a patient with a novel mutation of

ACE-S333W. In silico analysis demonstrated that this mutation was

localized in the S1 pocket of the active site of the N domain and it

is likely the bulky Trp (W) would affect the binding of ACE

substrates due to steric hindrance. We studied the effect of this

mutation on the hydrolysis of several artificial and natural

substrates were determined. Mutant ACE (S333W) expressed in

CHO cells decreased significantly the hydrolysis of N-domain

Figure 10. Mutant ACE protein quantification (Western Blot-
ting). CHO cells were transiently transfected with plasmids coding for
wild-type (WT) and mutant (S333W) ACE (4 mg of plasmid DNA per
35 mm dish). The lysates of these cells (normalized by equal protein
loading of 10 mg per lane) were subjected to SDS-PAGE (4–15%
gradient gel) in reducing conditions for Western blotting (A) or protein
quantification (B). A. Western blotting was performed with mouse mAb
1D8 that recognizes the denatured epitope on the C-domain of human
ACE [45]. Proteins transferred on PVDF-Plus membrane were revealed
with 1/5 dilution of culture medium from hybridoma cells producing
mAb 1D8. Molecular weight markers are shown by arrows on the left of
panel A, which is a representative experiment. B. The relative amount of
WT and mutant ACE revealed by Western blotting with mAb 1D8 (A)
was quantified by the image analysis (densitometry) using ImageJ
software (NIH). Data are expressed as mean 6 SD of 2 independent
measurements.
doi:10.1371/journal.pone.0088001.g010
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specific substrates, including the anti-fibrotic Ac-SDKP. Besides,

expression of mutant ACE in CHO cells allowed us to study

immunoreactivity, conformation, rate of ACE shedding and

trafficking to the cell surface for the mutant ACE. Using a novel

conformational fingerprinting approach for ACE, we demonstrat-

ed that S333W mutation lead to conformational changes in whole

ACE, and specifically (preferentially) in the N-domain. Therefore,

this study provides important insights into the mechanism by

which the novel ACE mutation (S333R) results in changed kinetic

characteristics of mutant ACE.
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