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Abstract

Human dihydroorotate dehydrogenase (hDHODH) is a class-2 dihydroorotate dehydrogenase. Because it is extensively used
by proliferating cells, its inhibition in autoimmune and inflammatory diseases, cancers, and multiple sclerosis is of
substantial clinical importance. In this study, we had two aims. The first was to develop an hDHODH pharma-similarity index
approach (PhSIA) using integrated molecular dynamics calculations, pharmacophore hypothesis, and comparative
molecular similarity index analysis (CoMSIA) contour information techniques. The approach, for the discovery and design of
novel inhibitors, was based on 25 diverse known hDHODH inhibitors. Three statistical methods were used to verify the
performance of hDHODH PhSIA. Fischer’s cross-validation test provided a 98% confidence level and the goodness of hit
(GH) test score was 0.61. The q2, r2, and predictive r2 values were 0.55, 0.97, and 0.92, respectively, for a partial least squares
validation method. In our approach, each diverse inhibitor structure could easily be aligned with contour information, and
common substructures were unnecessary. For our second aim, we used the proposed approach to design 13 novel
hDHODH inhibitors using a scaffold-hopping strategy. Chemical features of the approach were divided into two groups, and
the Vitas-M Laboratory fragment was used to create de novo inhibitors. This approach provides a useful tool for the
discovery and design of potential inhibitors of hDHODH, and does not require docking analysis; thus, our method can assist
medicinal chemists in their efforts to identify novel inhibitors.

Citation: Shih K-C, Lee C-C, Tsai C-N, Lin Y-S, Tang C-Y (2014) Development of a Human Dihydroorotate Dehydrogenase (hDHODH) Pharma-Similarity Index
Approach with Scaffold-Hopping Strategy for the Design of Novel Potential Inhibitors. PLoS ONE 9(2): e87960. doi:10.1371/journal.pone.0087960

Editor: Daniel S. Sem, Concordia University Wisconsin, United States of America

Received September 30, 2013; Accepted January 1, 2014; Published February 4, 2014

Copyright: � 2014 Shih et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the National Science Council in Taiwan (Grant number:NSC100-2221-E-126-010-MY3, http://web1.nsc.gov.tw/). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kcshih0307@gmail.com (KCS); cytang@pu.edu.tw (CYT)

Introduction

Dihydroorotate dehydrogenase (DHODH) is a highly conserved

enzyme that is expressed in all organisms. During the fourth step

in a reported pyrimidine biosynthesis, the enzyme catalyzes the

oxidation of dihydroorotate to orotate, with concomitant reduc-

tion of flavin mononucleotide (FMN) to dihydroflavin mononu-

cleotide (FMNH2) [1]. Because DHODH is required to ensure

proliferating-cell viability [2], inhibitors have been developed to

eliminate human DHODH (hDHODH) activity, which is

associated with cancers, multiple sclerosis, and autoimmune and

inflammatory diseases (see below) [3].

DHODHs are classified according to cellular location [4,5].

Class-1 DHODHs are cytoplasmic and single-domain enzymes,

whereas class-2 DHODHs are membrane-associated and two-

domain enzymes [6]. Both classes of DHODHs use FMN to

oxidize DHODH [7]. To regenerate FMN, class-1 enzymes use a

soluble cofactor, such as NAD+ or fumarate, that binds close to

FMNH2 [8]. Class-2 enzymes use ubiquinone (CoQ) as the

oxidant. CoQ binds in a hydrophobic region of the N-terminal

domain, which does not contain an FMN-binding site [7,9].

Because only class-2 DHODHs contain a CoQ-binding site, we

can exploit this binding characteristic in the design of inhibitors

that select for a specific DHODH class.

The hDHODH protein is a class-2 enzyme containing 396

residues, and is located in the inner mitochondrial membrane

[10,11]. The enzyme has been associated with rheumatoid

arthritis, cancer, and multiple sclerosis [12–14], and so, inhibitors

of hDHODH have been designed to complex with the CoQ-

binding site, thereby reducing the enzyme’s activity [15,16]. Two

such inhibitors, brequinar (BRE) and leflunomide (LEF), have

proven effective as drugs against various cancers and rheumatoid

diseases [17,18]. However, the administration of these medications

is accompanied by multiple side effects [19,20]. The crystal

structures of hDHODH complexed with analogs of BRE and LEF

reveal the formation of strong hydrogen bonds between the

inhibitors and hDHODH, illustrating why the BRE and LEF are

effective inhibitors of the enzyme [21].

We had two research aims for this study. The first was to

construct a computational method for designing novel hDHODH

inhibitors. Inhibitor analysis frequently involves the use of
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3D-QSAR studies. Two main 3D-QSAR methodologies are the

pharmacophore hypothesis [22–25], and comparative molecular

similarity index analysis (CoMSIA) [26–29]. In our survey, several

QSAR calculation approaches of DHODH were proposed, such

as QSAR (Leban et al. [30], Ojha et al. [31], and Vyas et al. [32]),

SOMFA (Shun-Lai et al. [33]), and CoMFA/CoMSIA (Vyas et al.

[34]). For example, Vyas et al. [34] used a series of aryl carboxylic

acid amide derivatives for QSAR or CoMFA/CoMSIA calcula-

tion. These previous approaches have a common factor that is

need a common sub-structure for inhibitor alignment calculation.

This condition will limit these approaches to discover new diverse

inhibitor structures. Our computational method integrates molec-

ular dynamics calculations, pharmacophore hypothesis, and

CoMSIA contour information techniques in a pharma-similarity

index approach (PhSIA). The diverse inhibitor structures can

easily be aligned into the hDHODH PhSIA without the need for a

common structure. The hDHODH PhSIA was established by 25

different structures of inhibitors, and that is able to screen for

diverse compounds in a database. We applied the first hDHODH

PhSIA to identify new inhibitors that match the chemical features

of the hDHODH ubiquinone binding site. Our second aim was to

design novel hDHODH inhibitors, using PhSIA with a scaffold-

hopping method. This strategy easily and quickly identified several

novel potential hDHODH inhibitors.

Thus, we report the first hDHODH PhSIA for screening,

modifying, and optimizing the chemical structures of potential

hDHODH inhibitors in 3D space before synthesis. We demonstrate

the method by designing several novel potential inhibitors. The

proposed PhSIA method provides excellent predictions of bioactiv-

ity and 3D space requirements of novel hDHODH inhibitors.

Results

Pharma-Similarity Index Approach
Following the approach generation workflow outlined in

Figure 1, 25 training set inhibitors were selected according to

the three rules described in Methods. The structures of training set

inhibitors are shown in Figure 2. The biological activities of these

inhibitors are summarized as pIC50 values, shown in Table 1. In

the second step, ten pharmacophore hypotheses for hDHODH

were generated based on the 25 training set inhibitors. Each

hypothesis included three hydrogen-bond acceptor (HA) features

and one hydrophobic aromatic (HYAR) feature. The fixed and

null costs among the ten hypotheses are 83.48 and 399.98 bits,

respectively; thus, there is a difference of 316.50 bits between the

null and fixed costs. The configuration cost of 9.77 bits is less than

the threshold value of 17 bits. Based on these criteria, the total cost

of each hypothesis is close to the fixed cost, and is distant from the

null cost, indicating that each hypothesis is of high quality. The

total cost of the worst hypothesis, Hypo10, is 176.42 bits, and the

cost difference of Hypo10 is .70 bits. The correlation coefficient,

r, of the ten hypotheses ranges from 0.91 to 0.85. Table 2
summarizes information on the ten pharmacophore hypotheses. A

good pharmachphore hypothesis which the r-value must larger

than 0.9. Compared with the other Hypo models, Hypo01 had the

best r-value, and thus was the best pharmacophore hypothesis for

screening databases and determining the alignment rules for the

CoMSIA contour information.

Based on these results, we applied the alignment rules to

Hypo01 for the generation of CoMSIA contour information in the

third step of the approach workflow calculation. The training set

for the CoMSIA contour information was the same as that for the

pharmacophore training set, and Table 3 shows the PhSIA

results.

Fischer’s Cross-Validation Test.
We used Fischer’s test determine the confidence of the training

set selection. For this test, set inhibitor pIC50 values were

randomly assigned to members of the training set to generate 49

random pharmacophore hypotheses; other parameters were used

to generate the original set of ten pharmacophore hypotheses. The

Figure 1. The hDHODH PhSIA generation workflow.
doi:10.1371/journal.pone.0087960.g001

hDHODH Pharma-Similarity Index Approach
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total costs of the ten original pharmacophore hypotheses was less

than that of the 49 random pharmacophore hypotheses obtained

after the randomization procedures, indicating a 98% confidence

level for the original training set. Figure 3 summarizes the total

costs of the pharmacophore hypotheses and the ten smallest total

costs obtained after randomization of the pIC50 values, and

confirms that the training set could not have been generated from

a random selection of inhibitors to generate the PhSIA.

Partial Least Squares Validation
The testing set of 76 known hDHODH inhibitors was used to

validate the PhSIA; the testing set used 76 known hDHODH

inhibitors that we did not use for approach generation. The pIC50

values of the testing set are shown in Table S1. We based our

main validation method on the coefficient r2
pred, which we used to

assess the linearity of relationships between actual and estimated

activities. In general, r2pred values of .0.5 are considered good.

Figure 2. The training set of hDHODH inhibitors used to generate the first hDHODH PhSIA.
doi:10.1371/journal.pone.0087960.g002

hDHODH Pharma-Similarity Index Approach
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The PhSIA consists of five fields: steric, electrostatic, hydro-

phobic, hydrogen-bond donor, and hydrogen-bond acceptor. Our

approach scored a q2 value of 0.55, and the non-cross-validation

analysis r2 value is 0.97, with a standard error of the estimate (SEE)

of 0.28 and an F-ratio (F) of 238.25. The relative contributions of

the steric, electrostatic, hydrophobic, hydrogen-bond donor, and

hydrogen-bond acceptor fields are 0.18, 0.21, 0.24, 0.24, and 0.12,

respectively (Table 3). Estimated pIC50 values for the testing set

inhibitors were calculated using this approach (Table S1). Based

on the testing set validation results, the predictive r2pred value of

the approach is 0.92. The Hypo01 model contains three HA, and

one HYAR feature (Figure 4a). Figure 4b shows the training set

aligned onto Hypo01. Contour information for PhSIA is shown in

Figures 529.

Goodness of Hit Test
We used the GH test to assess the ability of our method to

identify high-activity inhibitors in the databases. For a good

screening level, the value of the GH score must be $0.5 [35]. We

screened all 229 known hDHODH inhibitors from the ChEMBL

database, and 34 inhibitors with high biological activity (pIC50

$7.3). The results of this analysis are summarized in Table 4.

The PhSIA screening estimated 25 high biological activity

inhibitors, of these, 17 actually exhibit high activities, thus, PhSIA

scored 68.0% accuracy for the identification of high-activity

inhibitors, with a GH score of 0.61. These results show that the

PhSIA method offers greater accuracy for database screening.

Thus, our statistical analysis found the hDHODH PhSIA has

accurate predictions of inhibition activity, the analysis also

confirmed that the chemical features generated by the training

set inhibitors are representative, and that the Hypo01 model as

good alignment rule for our method.

Contour Analysis of the Pharma-Similarity Index
Approach

The contours generated by PhSIA help provide the 3-

dimentional visualization of inhibitors, displaying favored and

disfavored regions of the inhibitor structure. Contour information

can also facilitate inhibitor optimization, and identify potential

analogs. Inhibitor 1 (most activity) and inhibitor 25 (least activity)

were used as template structures for contour analysis (Figures 5,

6, 7, 8 and 9).

Figure 5 shows two green and three yellow contours, which

denote regions of steric allowed and disallowed space, respectively.

Using inhibitor 1 as a template structure, a large steric allowed

region is visible as a green contour (Figure 5a), and the

Table 1. Actual and Predicted pIC50 Values for the Training
Set Inhibitors, Based on the Pharma-Similarity Index Approach
(PhSIA).

No. Pharma-Similarity Index Approach

Actual pIC50 Estimated pIC50

1 9 9.07

2 8.22 7.90

3 8.15 8.04

4 7.74 7.97

5 7.39 7.48

6 7.24 7.53

7 7.05 7.04

8 7.05 6.69

9 6.69 6.35

10 6.65 6.71

11 6.38 6.37

12 5.68 5.09

13 5.59 5.31

14 5.52 5.64

15 5.14 5.42

16 5.08 5.55

17 4.77 4.61

18 4.59 4.52

19 4.30 4.24

20 4.30 4.64

21 4.30 4.45

22 4.30 4.27

23 3.87 4.36

24 3.87 3.68

25 3.70 3.62

doi:10.1371/journal.pone.0087960.t001

Table 2. The Ten Pharmacophore Hypotheses Generated from the hDHODH Training Set Inhibitors.

Hypothesis no. Total cost Cost-diffa Error cost RMS deviation Training set (r) Featureb

1 142.42 256.96 126.88 2.08 0.91 HA*3, HYAR

2 153.81 246.17 140.70 2.33 0.89 HA*3, HYAR

3 153.93 246.05 139.65 2.32 0.89 HA*3, HYAR

4 154.61 245.37 141.66 2.35 0.89 HA*3, HYAR

5 155.87 244.11 143.71 2.39 0.88 HA*3, HYAR

6 163.84 236.14 152.19 2.52 0.87 HA*3, HYAR

7 164.05 235.93 150.14 2.49 0.87 HA*3, HYAR

8 168.40 231.58 156.60 2.59 0.86 HA*3, HYAR

9 171.43 228.55 159. 90 2.64 0.86 HA*3, HYAR

10 176.42 223.56 164.95 2.72 0.85 HA*3, HYAR

aCost difference = (null cost – total cost), where null cost = 399.98, fixed cost = 83.48, and configuration cost = 9.77. All costs are in units of bits.
bHA, hydrogen bond acceptor; HYAR, hydrophobic aromatic.
doi:10.1371/journal.pone.0087960.t002

hDHODH Pharma-Similarity Index Approach
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1-methoxy-2-methylbenzene group partly inserts into this space.

The group’s steric freedom is likely to increase inhibitor activity.

For inhibitor 25, there are three regions of steric disallowed space

(Figure 5b). The inhibitor inserts into the middle yellow contour,

accounting for the inhibitor’s limited bioactivity. Thus, the

presence of a green contour allows the possibility of increasing

the potency of an inhibitor, and the presence of a yellow contour,

to decrease the inhibitor’s potency.

The electrostatic contours for positively and negatively charged

regions are shown in blue and red, respectively in Figure 6.

Charged regions are fairly evenly distributed in inhibitor 1

(Figure 6a). However, the 3D conformation of inhibitor 25 does

not fit the blue and red contours well (Figure 6b), possibly

accounting for the differences in activity between inhibitors. An

inhibitor structure that better fits the electrostatic contours in 3D

space, should exhibit increased biological activity.

Figure 7 clearly shows hydrophobic favored and disfavored

regions as yellow and white, respectively. The 2,3,5,6-tetrafluoro-

2’-methoxybiphenyl group of inhibitor 1 is surrounded by a

hydrophobic favored region, and the propan-2-one group inserts

into the disfavored region (Figure 7a). The ethane and benzene

groups of inhibitor 25 are hydrophobic, however, they are not

surrounded by hydrophobic favored regions, but instead are close

to disfavored contours (Figure 7b). Thus, an inhibitor structure

that more closely fits hydrophobic favored regions while avoiding

disfavored regions is predicted to exhibit enhanced inhibitory

activity.

In Figure 8, the hydrogen-bond donor’s favored and

disfavored regions are depicted with cyan and purple colored

contours, respectively. For inhibitor 1, a methanol group is

oriented toward a favored region (Figure 8a). In inhibitor 25, the

hydrogen-bond donor is a dimethylamine group, which is aligned

with a disfavored contour (Figure 8b). Additionally, inhibitor 25

is not oriented toward any cyan-colored contours. This illustrates

how the various inhibitor structures interact with the hydrogen-

bond donor contour, resulting in the observed differenced in

hDHODH inhibition activity.

In Figure 9 shows the contours for the hydrogen-bond

acceptor favored and disfavored regions in magenta and red,

respectively. The formaldehyde group in inhibitor 1 is aligned with

the favored region, and its thiophene moiety inserts into the

disfavored region (Figure 9a). For inhibitor 25, hydrogen-bond

acceptor groups are surrounded by red (disfavored) contours, and

no part of the inhibitor oriented toward the magenta (favored)

contour (Figure 9b); thus, all of the hydrogen-bond acceptor

groups in inhibitor 25 align with disfavored regions. This analysis

revealed that an inhibitor structure that better fits both the

hydrogen-bond acceptor favored and disfavored regions, is

predicted to have a greater activity.

Based on the above discussion, contour information describes

chemical characteristics and reflects the relative activities of

inhibitors. Thus, PhSIA is effective at predicting activity, which

could lead to more effective screening, optimization, and

modification of designed hDHODH inhibitor structures.

Table 3. Summary of the PhSIA Analysis.

Parameter q2 NC r2
ncv SEE F-value r2

pred
Contour contributionsa

S E H D A

PhSIA 0.55 3 0.97 0.28 238.25 0.92 0.18 0.21 0.24 0.24 0.12

aS, steric; E, electrostatic; H, hydrophobic; D, hydrogen bond donor; A, hydrogen bond acceptor.
doi:10.1371/journal.pone.0087960.t003

Figure 3. Total costs obtained using the original approach, and for the 10 results that gave the lowest total cost using the 49
randomization procedures approach.
doi:10.1371/journal.pone.0087960.g003

hDHODH Pharma-Similarity Index Approach
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Design of Novel hDHODH Inhibitors
Based on our analysis, the PhSIA method effectively identifies

hDHODH inhibitors, and each inhibitor can be directly screened

and analyzed based on contour information. The contour

information generated in this approach clearly shows the required

chemical features in 3D space, and facilitates optimization of the

inhibitor’s molecular weight.

We applied PhSIA with a scaffold-hopping strategy to design

novel hDHODH inhibitors; Figure 10 shows the design work-

flow. In the first step, we use Hypo01 to enumerate novel

inhibitors. To screen the fragment database, we divide Hypo01

into two parts, Hypo01a and Hypo01b. Hypo01a has three HA

features, and Hypo01b has one HYAR feature. To complete the

step, Hypo01 generates 13 novel hDHODH inhibitors using the

Vitas-M Laboratory fragment database. In the second step,

contour information is used to predict biological activity and

constrain the molecular weight of the novel hDHODH inhibitors.

The estimated biological activities of 13 novel hDHODH

inhibitors, their fragments, and structures are shown in Table S2.

We used two novel hDHODH inhibitors, EnFrag01 and

EnFrag13, with steric contours, as our template for analysis

(Figure 11). EnFrag01 is predicted a potential hDHODH

inhibitor, and is modeled as surrounded by steric contours of

allowed and disallowed regions (Figure 11a). The EnFrag01

mesitylene group orients to insert into the main green contour,

suggesting that the steric tolerance of this chemical moiety would

increase inhibitor activity. The 3D EnFrag01 model does not

make contact with any steric disallowed regions. EnFrag13, on the

other hand, is predicted to be biologically inactive; the main green

contour does not surround its 1H-pyrazol-5-amine group (Figure
11b), indicating that the presence of this bulky group would

improve the effectiveness of an inhibitor. Based on contour

analysis, the activity of an inhibitor will be greater if the inhibitor’s

structure fits well into the tolerated contours.

Discussion

We successfully developed the first hDHODH PhSIA, based on

25 diverse inhibitor structures, and applied a scaffold-hopping

strategy to design 13 novel hDHODH inhibitors. This approach

integrated molecular dynamics, pharmacophore hypothesis, and

CoMSIA contour information techniques. Three statistical meth-

ods were used to validate our approach: Fischer’s test, predictive r2

analysis, and the GH test; the hDHODH PhSIA method identified

potential inhibitors and predicted their activity with accuracy.

PhSIA can screen inhibitor databases, optimize inhibitor struc-

tures, and restrict molecule weight in 3D space, without the need

for docking analysis. PhSIA offers several advantages over other

methods: (i) the method’s ability to predict biological activity is

greater than that using a pharmacophore alone. There are a

maximum of five pharmacophore chemical features available as

criteria using standard pharmacophore methods. This restriction

may result in an incomplete description of the chemical features of

an inhibitor, whereas contours generated by CoMSIA do not have

this limitation, and thus can more accurately model chemical the

features of inhibitor activity, thereby providing better predictions.

(ii) The CoMSIA model the restriction that each calculated

inhibitor needs a common structure for alignment. This means

that diverse inhibitor structures cannot be aligned. In our

approach, diverse inhibitor structures can easily be aligned into

the CoMSIA models without the need for a common structure.

Diverse inhibitors were aligned to the 3D conformations based on

the pharmacophore for CoMSIA. Thus, using our approach, the

CoMSIA model is able to screen for diverse compounds in a

database. (iii) A docking method is generally used after

pharmacophore screening to determine the 3D space parameters

between an inhibitor and a binding site. In our approach, contour

information provides the 3D space boundaries for inhibitor

structures. Consequently, it is not necessary to apply docking

methods to determine the 3D space boundaries of the binding sites

of screened or designed inhibitors. The CoMSIA model provides

contours to define the limits of the 3D molecular weight range to

fit the target binding site. This approach provides a useful tool for

the discovery or design of potential inhibitors of hDHODH, and

Figure 4. The alignment rule of the hDHODH PhSIA. (a) Chemical features of hypothesis 1 (Hypo01) in approach. (b) The training set of
hDHODH inhibitors was aligned based on the chemical features of Hypo01.
doi:10.1371/journal.pone.0087960.g004

Table 4. Statistical Results of GH Test Validation.

Serial no. Parameter PhSIA

1 Total no. of inhibitors in database (D) 229

2 Total no. of highly active inhibitors in D (A) 34

3 Predicted no. of highly active inhibitors (Ht) 25

4 Actual no. of highly active inhibitors in Ht (Ha) 17

5 % Yield of Ha in Ht [(Ha/Ht) 6 100] 68.0

6 Enrichment factor (E) [(Ha 6D)/(Ht 6 A)] 4.58

7 No. of false negatives [A – Ha] 17

8 No. of false positives [Ht – Ha] 8

9 GH score [Equation 3] a 0.61

aGH test score . 0.6 indicates a very good model.[35].
doi:10.1371/journal.pone.0087960.t004

hDHODH Pharma-Similarity Index Approach
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does not require docking analysis; thus, the method may assist

medical chemists in their efforts to identify novel inhibitors.

Methods

Biological Data Set
A set of 101 hDHODH inhibitors, collected from the ChEMBL

database [36], was used to generate and validate the PhSIA. These

inhibitor structures and their biological activities (pIC50 values) are

shown in Figure 2 and Table S1.

Constructing the Training and Testing Inhibitor Sets
Constructing the inhibitor training and testing sets is a crucial

step for generating and validating the PhSIA. We used the

following rules to select the training set inhibitors: (i) a minimum of

16 diverse compounds were selected, to ensure that statistical

significance could be properly assessed, (ii) biological activity data

associated with the compounds should span at least 3.5 orders of

magnitude, and (iii) the training set should include high biological

activity and biologically inactive compounds. The remaining

inhibitors, not chosen for the training set were assigned to the

testing set. Thus, of the 101 inhibitors, 25 were included in the

training set (Figure 2) and 76 were assigned to the testing set

(Table S1).

Generation of the Pharma-Similarity Index Approach
The training set inhibitors were used to generate a PhSIA

model, and the testing set of inhibitors was used for validation.

The PhSIA model generation workflow comprises three steps

(Figure 1). The first step is to generate 3D structure conforma-

tions of the training set inhibitors. In the second step, these 3D

conformations are used to generate ten theoretical pharmacophore

hypotheses. In the third step, the ‘‘best’’ pharmacophore

hypothesis is determined using specific criteria (described below),

and is used as the alignment rule for generation of the CoMSIA

contour information.

Generating the 3D Training set Conformation Structures
The 3D conformations of the training set were generated by

molecular dynamics modeling with CHARMm force field

parameters [37] using Discovery Studio 2.1 software (Accelrys,

Inc., San Diego, CA). The procedure involved the following steps:

(i) Conjugate-gradient minimization in torsion space, (ii) Conju-

gate-gradient minimization in Cartesian space, and (iii) Quasi-

Newton minimization in Cartesian space. The conformational-

space energy, which corresponds to the maximum energy allowed

above the global energy minimum, was constrained to #20 kcal/

mol. The generated by this stage was kept and performed the

structural comparison. If the RMSD (Å) of any of the two

snapshots are less than 0.2, compounds were considered as

duplicate structure and were removed, and the maximum

allowable number of 3D conformations for each inhibitor was

restricted to 255.

Generating the Pharmacophore Hypotheses
The 3D conformations generated in the previous step (Section

4.3.1) were used to produce ten pharmacophore hypotheses using

the HypoGen algorithm, as implemented using Discovery Studio

Figure 5. Steric contour regions calculated using the PhSIA. (a) Inhibitor 1 (most active), and (b) inhibitor 25 (inactive). Steric allowed and
disallowed regions are shown by green (contribution level, 80%) and yellow contours (contribution level, 20%), respectively.
doi:10.1371/journal.pone.0087960.g005

Figure 6. Electrostatic contour regions calculated using the PhSIA. (a) Inhibitor 1 (most active), and (b) inhibitor 25 (inactive). Positive
charged and negative charged regions are shown by blue (contribution level, 80%) and red contours (contribution level, 20%), respectively.
doi:10.1371/journal.pone.0087960.g006

hDHODH Pharma-Similarity Index Approach
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2.1 software. Biological activities of the training set inhibitors are

shown in Table 1. During the initial phase, the pharmacophore

generation procedure considered the HA and HYAR chemical

attributes. Default values were used for all other parameters.

A numeric score, called cost was generated during the

procedure of pharmacophore hypothesis. The success of each

pharmacophore hypothesis was assessed using two important

theoretical cost calculations after pharmacophore generation: One

was the fixed cost, which represents the simplest model that fits all

data perfectly. In the fixed cost hypothesis, the predicted results

are exactly the same as the activity values of training set inhibitors.

On the contrary, the activity predicted by the null hypothesis is the

average activity values of the training set inhibitors. When the

difference between the null and the fixed costs is large, the

pharmacophore is statistically significant. Specifically, for a ‘‘good-

quality’’ pharmacophore hypothesis, the difference between the

total cost and null cost is .70 bits, and the total cost should be

close to the fixed cost and much lower than the null cost. [22]

According to Accelrys Inc. suggestions, the configuration should

not be greater than 17.0 in standard HypoGen model. [38]

Generating the CoMSIA Contour Information
This step was performed using Sybyl-X 1.0 software. Alignment

rules were applied to the best pharmacophore hypothesis — the

selection of alignment rules is important because they affect the

quality of the resulting CoMSIA contour information. Inhibitor

3D conformations were aligned based on the 3D geometric

chemical features of the pharmacophore hypothesis. The inhibitor

training set inhibitors for establishing CoMSIA contour informa-

tion were also used for generating the pharmacophore hypothesis.

Gasteiger-Hückel charges were assigned to each of the 3D

inhibitor structures. An sp3-hybridized carbon atom with a +1

charge was used as the probe for the CoMSIA contour calculation.

CHARMm force field parameters were used in the calculation of

inhibitor 3D conformations. Five fields, namely steric, electrostat-

ic, hydrophobic, hydrogen-bond acceptor, and hydrogen-bond

donor were calculated with an attenuation factor of 0.3 for the

CoMSIA contour dataset. A Gaussian distance-dependence

function between the probe and each inhibitor atom was applied.

Validation Methods for the Pharma-Similarity Index
Approach

We used three methods to validate the quality of the PhSIA: (i)

Fischer’s cross-validation test [23–25] (Fischer’s test) was used to

assess the confidence of the training set selection; (ii) the partial

least squares (PLS) validation method [26–29,39,40] was used to

assess PhSIA prediction quality and accuracy; and (iii) the GH test

method [35,41–44] was used to determine the confidence of

statistical significance when screening compound databases.

Fischer’s Cross-Validation Test
We applied Fischer’s randomization test to cross-validate the

training set selection. The affinities for the active training set

compounds were reshuffled and used to generate pharmacophore

hypotheses by taking the same features and parameters used to

develop the original set of pharmacophore hypothesis. To achieve

Figure 7. Hydrophobic regions calculated using the PhSIA. (a) Inhibitor 1 (most active), and (b) inhibitor 25 (inactive). Hydrophobic favored
and disfavored regions are shown by yellow contours (contribution level, 80%) and white contours (contribution level, 20%), respectively.
doi:10.1371/journal.pone.0087960.g007

Figure 8. Hydrogen bond donor regions calculated using the PhSIA. (a) Inhibitor 1 (most active), and (b) inhibitor 25 (inactive). Hydrogen
bond donor favored and disfavored regions are shown by cyan contours (contribution level, 80%) and purple contours (contribution level, 20%),
respectively.
doi:10.1371/journal.pone.0087960.g008
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a confidence level of 98%, the procedure was performed 49 times,

using to the Equation (1),

Confidence,98%~ 1{(1z0)=(xz1)½ �|100% ð1Þ

Where x is the number of times the procedure is performed.

Partial Least Squares Validation Method
PLS analysis of the PhSIA indicated a linear relationship

between actual and predicted activities. The filtering column value

was set to a default value of 2.0. We also applied the leave-one-out

method (described below) to determine the optimal number of

components. The q2 coefficient was calculated based on a cross-

validation analysis. In the leave-one-out method, one inhibitor is

removed from the training set, and then, by manipulating the

model established by the remaining training set inhibitors, the

activity of the removed inhibitor is calculated. When the r2loo

coefficient is .0.5, we can derive the optimal numbers of

components to use in the calculation of q2 for the cross-validation

analysis, and r2 for the non-cross-validation analysis. The

predictive term r2pred is thus an assessment of the predictive

ability of PhSIA, and it is calculated using Equation (2):

Figure 9. Hydrogen bond acceptor regions calculated using the PhSIA. (a) Inhibitor 1 (most active), and (b) inhibitor 25 (inactive). Hydrogen
bond acceptor favored and disfavored regions are shown by magenta (contribution level, 80%) and red contours (contribution level, 20%),
respectively.
doi:10.1371/journal.pone.0087960.g009

Figure 10. Workflow for the design of novel hDHODH inhibitors.
doi:10.1371/journal.pone.0087960.g010

Figure 11. The novel hDHODH inhibitors were constrained by steric contours in PhSIA. (a) The novel hDHODH inhibitor (EnFrag01),
predicted to highly active. (b) The novel hDHODH inhibitor (EnFrag13), predicted to be inactivity.
doi:10.1371/journal.pone.0087960.g011
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r2
pred ~1{

PRESS

SD
ð2Þ

Where SD is the sum of the squared deviations between the

actual activity of the testing set and the mean activity of the

training set, and PRESS is the sum of the squared deviations

between the predicted and actual activities for each inhibitor in the

testing set.

Goodness of Hit Test
The GH test was applied to screen the database of known

inhibitors to assess the quality of model screening ability in silico.

Because the PhSIA can be used to screen databases of hDHODH

inhibitors with diverse structures, we applied the GH test to assess

the quality of this approach. The GH test score ranges from 0 to 1,

where a score of ‘‘0’’ indicates a null approach, and a score of ‘‘1’’

indicates an ideal approach. To calculate the GH test score, we

used the following parameters: D, the number of known

hDHODH inhibitors in the database; A, the number of activity

inhibitors in the database; Ht, the number of inhibitor hits in the

hit list; Ha, the number of activity inhibitors in the hit list; %Y, the

activity inhibitor percentage yield ; E, the enrichment factor; and

GH, the GH test value. Equation (3) was applied to calculate the

GH test score, used to screen databases of known inhibitors:

GH test score~
Ha(3AzHt)

4HtA

� �
| 1{

Ht{Ha

D{A

� �
ð3Þ
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