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Abstract

The abundance of the subarctic copepod, Calanus finmarchicus, and temperate, shelf copepod, Centropages typicus, was
estimated from samples collected bi-monthly over the Northeast U.S. continental shelf (NEUS) from 1977–2010. Latitudinal
variation in long term trends and seasonal patterns for the two copepod species were examined for four sub-regions: the
Gulf of Maine (GOM), Georges Bank (GB), Southern New England (SNE), and Mid-Atlantic Bight (MAB). Results suggested that
there was significant difference in long term variation between northern region (GOM and GB), and the MAB for both
species. C. finmarchicus generally peaked in May – June throughout the entire study region and Cen. typicus had a more
complex seasonal pattern. Time series analysis revealed that the peak time for Cen. typicus switched from November –
December to January - March after 1985 in the MAB. The long term abundance of C. finmarchicus showed more fluctuation
in the MAB than the GOM and GB, whereas the long term abundance of Cen. typicus was more variable in the GB than other
sub-regions. Alongshore transport was significantly correlated with the abundance of C. finmarchicus, i.e., more water from
north, higher abundance for C. finmarchicus. The abundance of Cen. typicus showed positive relationship with the Gulf
Stream north wall index (GSNWI) in the GOM and GB, but the GSNWI only explained 12–15% of variation in Cen. typicus
abundance. In general, the alongshore current was negatively correlated with the GSNWI, suggesting that Cen. typicus is
more abundant when advection from the north is less. However, the relationship between Cen. typicus and alongshore
transport was not significant. The present study highlights the importance of spatial scales in the study of marine
populations: observed long term changes in the northern region were different from the south for both species.

Citation: Bi H, Ji R, Liu H, Jo Y-H, Hare JA (2014) Decadal Changes in Zooplankton of the Northeast U.S. Continental Shelf. PLoS ONE 9(1): e87720. doi:10.1371/
journal.pone.0087720

Editor: Hans G. Dam, University of Connecticut, United States of America

Received November 7, 2013; Accepted January 1, 2014; Published January 31, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hbi@cbl.umces.edu

Introduction

Zooplankton are drifters in the ocean and often respond to

environmental changes rapidly. Zooplankton also play an impor-

tant role in ecosystems because they link primary producers to

planktivorous fish and the intermediary position of zooplankton

underscores their significance for food web structure. Rapid

changes in zooplankton can potentially have major and rapid

effects on higher trophic level species [1–2].

In the eastern North Atlantic, studies have shown that there can

be strong biogeographical shifts in copepod assemblages resulting

from a northward extension of warm-water species and a decrease in

colder-water species [3–4]. In the Northwest Atlantic including the

Northeast U.S. continental shelf (NEUS), the abundance of small

copepods including Centropages typicus, increased from 1990–2000,

but the abundance of large copepods including Calanus finmarchicus

remained constant or declined slightly during the same period [5–9].

The shifts in plankton are attributed to the relatively low salinity

water that formed near the Canadian Archipelago during 1989 and

propagated from the Labrador Sea to the NEUS [6–7].

The NEUS includes four major subareas: the Gulf of Maine

(GOM), Georges Bank (GB), Southern New England (SNE) and

the estuarine-dominated waters of the Mid-Atlantic Bight (MAB).

The northern part of NEUS, including the GOM and GB, is

affected by changes in the Arctic and subarctic region, whereas the

MAB, the more southerly part of the NEUS ecosystem, is affected

by complex water movements, including freshwater input, Gulf

Stream influences and along-shelf advection from the north. In the

MAB, zooplankton are comprised of species associated with

different water masses [10–11]. The mean flow over the

continental shelf and slope within the MAB is toward the

southwest along the isobaths and this flow is stronger during

winter and is weaker or reverses during summer [12–14]. There is

strong evidence that the slope currents and plankton in the MAB

are influenced by the Labrador Current [11], [15] and the Gulf

Stream [13], [16–17].

Climate change likely has profound impacts on marine ecosys-

tems and two different types of change in lower trophic levels are

likely to have impacts on higher trophic levels: long term changes in

species composition [18] and changes in phenology including

demographic structure and seasonal patterns [19–20]. Zooplankton

in the NEUS include Arctic-Boreal species, tropical-subtropical

species, and many temperate species [10–11]. Temporal changes in

zooplankton have been examined in several studies [7], [9], [11],

[21–22], and these changes have been related to hydrographic
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variables, but have not been related to physical forcing explicitly.

Meanwhile, knowledge of long term changes in abundance and

seasonal patterns is critical for understanding how large scale ocean

variability affects zooplankton in different regions.

To achieve a clearer understanding of the mechanistic linkage

between large-scale forcing and plankton dynamics and the

associated spatial scales, the present study focuses on two calanoid

copepod species: the subarctic species C. finmarchicus and temperate

species Cen. typicus [4]. For C. finmarchicus, we hypothesize that there

will be no difference in decadal changes in abundance and seasonal

peak time between the north (the GOM and GB) and south (the

MAB). We predict that this hypothesis will be falsified and data will

show that C. finmarchicus peaks in the north and declines in the south.

When significant southerly transport is detected, C. finmarchicus

abundances will increase. We predict that this will be shown by a

significant, negative relationship between C. finmarchicus, southward

alongshore transport and the GSNWI. For Cen. typicus, we

hypothesize that there will be no difference in decadal changes in

abundance and seasonal peak time between the north and south.

We predict that this hypothesis will be falsified and data will show

that data will show that Cen. typicus peaks in the south and declines in

the north. When significant northward transport is detected, Cen.

typicus abundances will increase. We predict that this will be shown

by a significant, positive correlation between Cen. typicus, northward

alongshore transport and the GSNWI.

Data and Analysis

1 Ethics Statement
Shelf-wide plankton surveys are conducted 6–7 times per year

over the continental shelf from Cape Hatteras, North Carolina to

Cape Sable, Nova Scotia, by the Northeast Fisheries Science

Center, the National Marine Fisheries Service. Zooplankton data

are available at ftp://ftp.nefsc.noaa.gov/pub/dropoff/jhare/

EcoMon_Data/and temperature data are available at http://

www.nefsc.noaa.gov/epd/ocean/MainPage/ioos.html.

2 Zooplankton Data
Plankton samples were collected from 1977 to 2010 with a 61-

cm bongo frame fitted with a net of 333 mm mesh, towed obliquely

to a maximum depth of 200 m or 5 m from the bottom and back

to the surface with a flowmeter in the center of the Bongo frame to

measure the volume of water filtered during the tow. Samples were

preserved in 5% formalin and were sorted, counted, and identified

to the lowest possible taxa. See Kane [7] for detailed information

on survey cruises. Temperature profiles were measured with a

CTD at each station and the mean temperature for the upper 3 m

was used in this analysis. Because survey cruises did not cover the

region at the same time each year, bi-monthly abundance was

calculated with data from complete surveys whose midpoint fell

within the two-month bin.

The present study focused on C. finmarchicus and Cen. typicus,

which were among the most common zooplankton species and

made up to ,40% (16%–68%) of the total abundance. Data were

binned to every two degrees, e.g., 35–36uN, to examine latitudinal

variation in seasonal patterns. Time series analysis was performed

in four sub-regions: the GOM, GB, SNE, and MAB, to investigate

variation in seasonal pattern and long term abundance for the two

species.

3 Time Series Analysis of the Long Term Trend
To examine the long term trend of two copepod species, we

performed time series analysis. The principal of time series models

is similar to regression model in which the explanatory variables

are functions of time and the parameters are time-varying [23].

The simple univariate time-series models are based on a

decomposition of the series into a number of components

including a local trend, a deterministic seasonal component, and

error terms,

yt~TtzStzvt

Tt~wTt{1zwt{1

�

where Tt is the trend, St is the seasonal component, w is the auto-

correlation coefficient for Tt, vt and wt{1 are independent error

terms and both approximate a standard normal distribution

N(0,1). The coefficients were estimated using the Kalman Filter

algorithm in Matrix Laboratory (MATLAB, [24]). The local trend

(Tt) is autocorrelated, i.e., the trend at time tz1 is a function of

the trend at time t. The seasonal component (St) is modeled by the

trigonometric seasonal model; a combination of sine and cosine

functions with a seasonal period of 12 months [25].

The model was fit to zooplankton abundances from 1977 to

2009 at 6 bi-monthly points per year (n = 198). This allows for an

estimate of long term trends and seasonal components: long term

trends should be relatively smooth and the seasonal component

should remain similar among years because the trigonometric

seasonal model uses a combination of sine and cosine functions to

model the recurrent patterns in the dataset. Samples were not

collected in 1989–1991 in the south, therefore time series analyses

were performed for two different time periods: 1977–1988 and

1992–2009.

Long term abundance, seasonal peak time and abundance were

compared among four sub-regions. The observed data often had

Figure 1. Zooplankton sampling area in the Northeast U.S.
continental shelf including the Gulf of Maine (GOM), Georges
Bank (GB), Southern New England (SNE) and the estuarine-
dominated waters of the Mid-Atlantic Bight (MAB). The defined
path for alongshore current derived from altimeter sea level data (black
bar) at 39.3uN.
doi:10.1371/journal.pone.0087720.g001
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missing values which make it difficult to compare seasonal

patterns, therefore we used fitted data from the univariate time

series models. Note that the long term trends and seasonal changes

estimated from the model indicate the relative changes in

abundance rather than the absolute values, i.e., seasonal changes

are relative to long term abundance, therefore the estimated

seasonal changes are often negative.

Figure 2. Comparison of satellite altimetry derived alongshore current and measurements from Acoustic Doppler Current Profiler
along a spatially close track line. Shaded bars represent alternate years.
doi:10.1371/journal.pone.0087720.g002

Figure 3. Bimonthly mean abundance of Calanus finmarchicus, a large subarctic associated copepod in the study area. A: entire region,
B: Gulf of Maine (GOM), C: Georges Bank (GB), D: Southern New England (SNE) and E: Mid-Atlantic Bight (MAB). Red circles represent observed bi-
monthly abundance. Solid black lines represent seasonal patterns determined from the univariate time series analysis, which indicate relative changes
to the long term trend rather than absolute abundances. Shaded bars represent alternate years.
doi:10.1371/journal.pone.0087720.g003
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4 Sea Level Anomaly and Geostrophic Current
Satellite altimetry can be an effective tool to study sea level

variability over continental shelves, particularly for interannual,

seasonal, and intra-annual variations (periods from 20 days to

1 year) [26]. These data have been used to estimate alongshore

coastal current on the west coast [1], [27–28] and east coast [29–

31] of the United States. Feng and Vandemark [30] reported the

root mean square error of 3–4 cm s21 and 6 cm s21 between

altimetry measurements and tide gauge and sea surface layer

current measurement at the 60 day time scale for the MAB.

To analyze alongshore current velocities, gridded satellite

altimeter sea level anomalies and geostrophic velocities were

downloaded from AVISO (http://www.aviso.oceanobs.com/

duacs/). We chose the delayed time, updated version of AVISO

geostrophic velocities, gridded weekly at 1/3u in a rectangular

projection for 35uN –45uN from October 14, 1992– September

28, 2011. In the present study, we calculated alongshore current

velocities at 39uN within 2u of the coast. To avoid land

contamination, we discarded data from the first two gridded cells

and calculated a mean alongshore current velocity for the

remaining 4 gridded cells (Figure 1). To remove high-frequency

signals and match the zooplankton data, bi-monthly average

velocities and anomalies were calculated. Annual cumulative

northward current (positive values) and southward current

(negative values) were calculated to examine interannual variation.

The problem of applicability of satellite altimetry data to the

NEUS continental shelf is of interest because the shelf tends to be

relatively shallow and affected by tides. Hence, it is important to

verify the estimates of geostrophic current from satellite altimetry

data. We downloaded hourly Acoustic Doppler Current Profiler

(ADCP) measurements for the upper 100 m between 39uN –40uN
within 2u of the coastline from the Oleander Project (http://po.

msrc.sunysb.edu/Oleander/). For details, see Flagg et al. [16], [32].

The hourly ADCP measurements were first binned into weekly data

to match the satellite altimetry data for each location. Then, the

estimate at each point was compared to the satellite estimate from

the same grid. Because satellite estimates were at a weekly time scale

and 1/3u spatial grid and ADCP estimates were at an hourly scale in

most cases at a single spatial point, it was difficult to formulate a

rigorous statistical comparison. When comparing the satellite

derived alongshore current velocities to the ADCP estimates in

the same area and time frame, in general satellite derived values

were consistent with ADCP estimates, except that ADCP

measurements tended to have more northward measurements and

show larger variation in the 1990s (Figure 2). Furthermore,

Lillibridge and Mariano [33] showed that alongtrack altimetry

Figure 4. Bimonthly mean abundance of Centropages typicus a small temperate coastal copepod in the study area. A: entire region, B:
Gulf of Maine (GOM), C: Georges Bank (GB), D: Southern New England (SNE) and E: Mid-Atlantic Bight (MAB). Red circles represent observed bi-
monthly abundance. Solid black lines represent seasonal patterns determined from the univariate time series analysis, which indicate relative changes
to the long term trend rather than absolute abundances. Shaded bars represent alternate years.
doi:10.1371/journal.pone.0087720.g004
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data were consistent with the ADCP measurements from the

Oleander Project.

5 The Gulf Stream North Wall Index (GSNWI)
The GSNWI was constructed from the latitude of the north wall

at each of the six longitudes (79, 75, 72, 70, 67 and 65uW) through

principal component analysis [34]. The index was calculated as a

weighted average of the standardized latitude series where the

weighting factors are derived from principal component analysis

and it has positive correlation coefficients of about 0.5 with the

latitude of the north wall at each of the six longitudes. The details

and full data are available at http://www.pml-gulfstream.org.uk/

data.htm.

Results

1 Spatial and Seasonal Patterns
C. finmarchicus and Cen. typicus exhibited different spatial and

temporal patterns (Figures 3 and 4). C. finmarchicus had the highest

abundance in the GOM (2336213 ind m23, mean 6 standard

deviation) and GB (1836243 ind m23), followed by the SNE

(1526196 ind m23), and the lowest mean abundance in the MAB

(55673 ind m23). Cen. typicus showed the opposite spatial patterns

with the highest mean abundance in the MAB (4936468 ind

m23), followed by the SNE (3426276 ind m23), and lowest

abundance in the GB (2116256 ind m23) and GOM (1696

243 ind m23).

C. finmarchicus showed a single annual peak in May – June

throughout the entire study region except in the most northern

area (43–44uN) where the peak time extended to July- August

(Figures 5A). Cen. typicus also had a single annual peak and

relatively large variation between north and south (Figure 5B). The

peak time mostly occurred in September – December in the north,

but January – April in the south with a second peak in November -

December.

2 Long Term Variation in Seasonal Abundance
The seasonal patterns derived from the univariate time series

analysis suggested that the C. finmarchicus seasonal peak abundanc-

es had relatively large interannual variation in the SNE, GOM

and GB (Figure 3 and Figure 6A). The peak abundance in the

MAB tended to be relatively low with less interannual variation

compared to other sub-regions. Note that the peak abundance

declined after 2005 in all four sub-regions. The seasonal peak time

remained consistent throughout the study period in all four

regions: most peaks were in May – June with a few years in March

– April and July – August (Figure 3 and Figure 6B).

Cen. typicus seasonal peak abundances were more consistent in

three sub-regions before 2000 (Figure 4 and Figure 7A). In 2000–

2005, the seasonal peak abundance in the MAB was much higher

than other sub-regions. However, seasonal peak time showed large

spatial and temporal variation (Figure 7B). In the MAB, the peak

time switched from November – December to January – February

or March – April after 1985 except in 1988, 1998 and 2001 when

the peak time was in May – June. In the SNE, the peak time switch

was more variable, but mostly in November – December before

1995 except 1985–1986. After 1995, the seasonal peak time in the

SNE only occurred in November – December in 1998–2000 and

fluctuated between March – April and September - October in

other years. In the GOM and GB, the peak time was mostly in

November – December.

3 Spatial Variation in Long Term Changes
The long term trends derived from the univariate time series

analysis showed much less interannual variation than seasonal

variation (Figures 8 and 9). The long term variation of C.

finmarchicus in the entire region ranged from ,150–236 ind m23,

whereas the seasonal variation ranged from 2217–724 ind m23.

The long term variation of Cen. typicus ranged from 198–362 ind

m23, whereas the seasonal variation ranged from 2603–700 ind

m23.

The long term variation of C. finmarchicus in the entire region

declined from 1977–1980 and was followed by two periods with

elevated abundance: 1984–1990 and 2000–2006 (Figure 8). In the

GOM and GB, the long term variation of C. finmarchicus was

consistent with the overall trend and showed a relatively small

range from 193–304 ind m23 in the GOM and 155–219 ind m23

in the GB. The long term trend of C. finmarchicus showed more

variation in the SNE (128–236 ind m23), but less variation than

the MAB (22–128 ind m23). C. finmarchicus showed slightly

elevated abundance in 1985–1990 and 2000–2005 in the MAB

and SNE, i.e., the long term trend of C. finmarchicus was similar in

the MAB and SNE.

The long term variation of Cen. typicus gradually increased in

1977–2000 and declined afterwards (Figure 9). The long term

variation in the SNE and GOM were similar, both were consistent

with the overall long term trend. However, the long term pattern

was remarkably different in the MAB compared to the GB. In the

Figure 5. Latitudinal variation in seasonal patterns. Bi-monthly
log transformed mean abundance of Calanus finmarchicus (A) and
Centropages typicus (B) from 1977–2009 within each region (binned by
2u latitudes) of the US northeast shelf ecosystem. Numbers are
individual m23. Warm color (red) represents high abundance and cold
color (blue) represents low abundance. Black squares indicate the peak
month.
doi:10.1371/journal.pone.0087720.g005
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MAB, the long term variation declined from 1977–1990 and

increased after 1992. In the GB, Cen. typicus had an elevated

abundance in 1987–2001 and showed a relatively larger fluctu-

ation than other sub-regions.

4 Alongshore Transport, the GSNWI and Local
Temperature and Copepods

The bi-monthly satellite derived mean alongshore current over

the MAB shelf estimated from satellite altimetry data was mostly

southward but with large inter- and intra- annual variations

(Figure 10A). The strong northward or weakened southward

current was clear in 1996–1999 and 2005–2010. The peak

abundance of C. finmarchicus in the entire region showed negative

relationship with the alongshore current, i.e., strong southward

water movement relates to higher peak abundance (Table S1 in

File S1). The negative relationship between the alongshore

transport and C. finmarchicus peak abundance persisted in all four

sub-regions, but only significantly in the SNE. The peak

abundance of Cen. typicus did not show significant relationship

with the alongshore transport (Table S1 in File S1).

The bi-monthly GSNWI varied from 23 to 3.9 during the study

period with mostly positive anomalies in 1985–1995 and 2000–

2004 (Figure 10B) which appeared to be coincident with the

elevated level of long term abundance for Cen. typicus in the GB.

The peak abundance of C. finmarchicus only showed significant

correlation with the GSNWI in the MAB (Table S2 in File S1),

whereas the peak abundance of Cen. typicus showed significant

correlation with the GSNWI in the GOM and GB. Furthermore,

local temperature did not show significant correlations with the

abundance of C. finmarchicus and Cen. typicus in any of the four sub-

regions (Table S3 in File S1).

The GSNWI was negatively correlated with alongshore

transport (Figure 11), i.e., when the Gulf Stream north wall was

southward, the southward alongshore transport was strong. The

negative relationship between the GSNWI and alongshore

velocities persisted at both bimonthly (Figure 11A) and annual

scales (Figure 11B). However the relationship is quite variable

depending on the location of the defined pathway for transport.

Discussion

1 Seasonal Patterns
The current study highlights the importance of the spatial and

temporal scales in understanding seasonal dynamics of marine

populations. For example, we showed that the timing of the

seasonal peak for Cen. typicus shifted from September – December

to January - February in the MAB after 1985 and in the SNE the

seasonal shift was more variable. Durbin and Kane [21]

investigated seasonal patterns for Cen. typicus using the dataset

(1977–2003) and concluded that Cen. typicus in the MAB did not

show strong seasonal variation with two peaks in January – March

and September – December. The present study showed that Cen.

typicus only showed one seasonal peak, the second peak (September

– December) in the previous study was actually caused by a shift in

Figure 6. Annual peak abundance and time of Calanus finmarchicus in the Gulf of Maine (GOM), Georges Bank (GB), Southern New
England (SNE), and Mid-Atlantic Bight (MAB). A: peak abundance and B: peak time.
doi:10.1371/journal.pone.0087720.g006
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the timing of the seasonal peak. The shift was also observed in the

SNE, especially in late the late 1990s and 2000s. The occurrence

of the shift in the MAB and SNE suggests that the NEUS system

underwent significant changes, but the potential causes for the shift

in annual peak time remain elusive.

The univariate time series analysis suggested that seasonal

abundance also showed large interannual variation and it

explained a large portion of the interannual variation for both

species. Therefore, knowledge of population processes and related

local physical and biological processes is critical to understand the

interannual variation of copepod abundance in the NEUS. For

example, Ji et al. [35] found that the abundance of Cen. typicus was

significantly correlated with predator abundance in the GB. Liu

et al. [36] reported that significant dynamical interaction and

coherence between Cen. typicus and Atlantic mackerel and haddock

on Georges Bank. Other factors affecting fecundity and growth,

such as food quality and availability and local temperature, need

to be considered to understand the seasonal dynamics and the

interannual variation in seasonal dynamics.

The shift in seasonal peak time has important ramifications for

trophic interactions, altering food web structure, and eventual

ecosystem level changes [19]. In the south, many fish larvae rely

on zooplankton [37]. For example, Atlantic menhaden (Brevoortia

tyrannus) larvae generally peaked in September – October in the

MAB and they chiefly feed on small copepods such as Cen. typicus

[38–39]. The potential mismatch in the timing of the seasonal

peak between Atlantic menhaden larvae and Cen. typicus may have

impacts on early recruitment.

2 Spatial Distribution and Long Term Changes
The abundance of two copepod species showed large north-

south variability and the comparative approach provides a useful

tool to investigate the structure and scales in the NEUS. C.

finmarchicus, a subarctic species, was more abundant in the GOM

and GB, but less abundant in the MAB. In contrast, Cen. typicus

was more abundant in the MAB, but less abundant in the GOM

and GB. Meanwhile, the SNE appeared to be a mixed region

because the abundance of C. finmarchicus was generally higher than

in the south, and the abundance of Cen. typicus was generally higher

than in the north. The distinct spatial structure offered a unique

opportunity to understand the dynamics of two copepod species

and their potential drivers.

The long term trends in four sub-regions showed large

differences, particularly between the MAB and GB. The long

term trends across the entire region for C. finmarchicus were

relatively stable and consistent with the trends in the GOM and

GB. But the long term trends of C. finmarchicus were more variable

in the MAB, whereas the long term trends of Cen. typicus tended to

be more variable in the GB. This pattern is consistent with the

general spatial distribution pattern: if we consider that C.

finmarchicus, a subarctic species, is advected to the south (MAB)

from the subarctic waters of the North Atlantic, and Cen. typicus as

a temperate coastal species propagating from south to north, it is

Figure 7. Annual peak abundance and time of Centropages typicus in the Gulf of Maine (GOM), Georges Bank (GB), Southern New
England (SNE), and Mid-Atlantic Bight (MAB). A: peak abundance and B: peak time.
doi:10.1371/journal.pone.0087720.g007

Decadal Changes of Zooplankton

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e87720



reasonable to expect changes would be more obvious for C.

finmarchicus in the south and Cen. typicus in the north. Hare and

Kane [40] emphasized that the historical context, i.e., temporal

scale, is important in understanding the observed copepod

abundance data. The present study highlights that the observed

changes need to be considered in the proper spatial context. For

example, the observed long term changes for Cen. typicus in the

north can not be extended to the south, and the observed long

term changes for C. finmarchicus in the south can not be extended to

the north because the long term changes were different between

the north and south for both species.

The long term changes in the four sub-regions were different for

both species, but the drivers remains elusive. The present study

extends previous studies of zooplankton from the Northwest

Atlantic shelf, in which many different large scale forcings were

related to different copepod species. Low salinity water from the

Labrador Sea could affect copepod abundance in the Northwest

Atlantic, specifically the increasing abundance of small copepods

[6], [8], [41]. The abundance of C. finmarchicus in the NEUS has

been related to the North Atlantic Oscillation (NAO) index [42].

Furthermore, Kane [22] examined the copepod assemblage and

species abundance in relation to the Atlantic Multidecadal

Oscillation (AMO). Biological mechanisms, such as top-down

control, i.e., predation, have been considered as factors that could

affect the abundance of Cen. typicus in the GB, but not in the GOM

[35]. Other factors such as food quality and availability and local

temperature can also affect long term trend through regulating

population growth and fecundity.

The present study considers transport as a mechanistic linkage

between large scale forcing and local ecosystem structure. Most

large scale indicators, e.g., NAO and AMO, reflect changes in

atmosphere or sea surface temperature at regional and basin

scales, and do not directly reflect changes in the water column.

Furthermore, changes in the Labrador Sea reflect changes in a

remote location. Zooplankton are by definition drifters, therefore

it is reasonable to consider alongshore transport as a mechanism

linking large scale forcing and local zooplankton dynamics. The

present study provides evidence that alongshore transport could

serve as the linkage between large scale forcing (e.g., the Gulf

Stream), and lower trophic levels. For example, the abundance C.

finmarchicus was negatively correlated with alongshore transport,

i.e., when alongshore transport was negative, more water flowing

from the north, the abundance of C. finmarchicus was high. The

abundance of Cen. typicus did not show a significant correlation

with alongshore transport, but was positively correlated with the

GSNWI which is a measure of the transport of the Gulf Stream

system [43] from south. Furthermore, alongshore transport was

negatively correlated with the GSNWI. Overall, results suggested

Figure 8. Long term changes of Calanus finmarchicus in the study area. A: entire region, B: Gulf of Maine (GOM), C: Georges Bank (GB), D:
Southern New England (SNE) and E: Mid-Atlantic Bight (MAB). The long term trend was estimated from time series of bi-monthly mean abundance in
each subregion by removing seasonal variation. Shaded bars represent alternate years.
doi:10.1371/journal.pone.0087720.g008
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that the abundance of C. finmarchicus, a subarctic species, was high

when there was more water coming from the north and the

abundance of Cen. typicus, a temperate coastal species was positively

related to the GSNWI. One of the potential issues with this study is

the relatively low correlation between the abundance of C.

finmarchicus and alongshore transport and the abundance of Cen.

typicus and the GSNWI. One of the reasons might be that the

NEUS is a complicated system and it is difficult to estimate

alongshore transport representing the entire region from a fixed

location. At the same time, the resolution of satellite altimetry data

was insufficient to characterize alongshore transport at the same

spatial scale as our zooplankton samples. Another potential

consideration is the intrinsic dynamics of marine organisms. A

recent study found that copepod species exhibit clear nonlinearity

on Georges Bank [36]. In nonlinear systems, forcing and response

variables may show weak or no correlation despite clear

deterministic, mechanistic relationships among them. Therefore,

correlation-based approaches may be not sufficient in such a case.

3 Large Scale Forcing and other Factors
The northwest Atlantic slope waters respond as a coupled

system to major changes in climate [44–45]. The strength of the

Labrador Current is inconsistent with the NAO index: the

Labrador Current is stronger when the NAO is positive [46–47],

but Rossby and Benway [14] reported an opposite relationship:

when the NAO is positive, the Labrador Current is weaker.

Fluctuations in the NAO index are correlated with the location of

the Gulf Stream [34], [48] whereby high values of the NAO index

correspond to more northerly paths of the Stream. Furthermore,

there have been changes in outflow of low salinity water from the

Arctic and a general freshening of shelf waters from the Labrador

Sea to the MAB beginning in the late 1980s [6], [49]. This

freshening has altered circulation and stratification patterns and

has been linked to changes in the abundances and seasonal cycles

of phytoplankton, zooplankton, and fish [6], [18]. Meanwhile,

other inputs such as St. Lawrence discharge can affect Scotian

shelf flow by increasing outflow of relatively fresh surface water

from the gulf to the eastern Scotian shelf and penetration of slope

water at depth onto the shelves [50].

To understand the relationship between long term changes in

copepod abundance and large scale forcing, it is necessary to

identify local factors that can manifest the changes in large scale

forcing. For example, Hare and Kane [40] proposed a conceptual

model to examine the abundance of C. finmarchicus in the GOM in

relation to large scale variability. As the NAO fluctuates, the

circulation patterns in the northwest Atlantic vary and the coupled

slope water system is affected, as indexed by the regional slope

water temperature, which in turn affects C. finmarchicus. Local sea

surface temperature also affects C. finmarchicus; potentially through

Figure 9. Long term changes of Centropages typicus in the study area. A: entire region, B: Gulf of Maine (GOM), C: Georges Bank (GB), D:
Southern New England (SNE) and E: Mid-Atlantic Bight (MAB). The long term trend was estimated from time series of bi-monthly mean abundance in
each subregion by removing seasonal variation. Shaded bars represent alternate years.
doi:10.1371/journal.pone.0087720.g009
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physiological processes (e.g., metabolism) and population processes

(e.g., growth, recruitment) or indirectly through trophic interac-

tions and advective influences. The present study indicated both

copepod species showed different long term trends between north

and south. To understand the causes for the observed difference

between north and south, it is necessary to identify local factors

that can reflect how different regions respond to large scale

variability.

The present study sheds light on the linkage between copepods

and ocean transport, which could facilitate our understanding on

ecosystem dynamics. However, there are several observations that

would benefit from more thorough investigation in the future.

First, the long term change of Cen. typicus in the north is puzzling:

the decline after 2000 could not be explained by salinity because

the salinity tended to be low in the north [38]. Second, the annual

peak time for Cen. typicus switched from November – December to

January - February in the south (after 1985) and central regions

(after 2000). Third, from the spatial distribution patterns of two

copepod species, it appeared that C. finmarchicus can be transported

from the GOM and GB to the SNE, and Cen. typicus can be

transported from the MAB to the SNE, but the low abundance of

C. finmarchicus in the south and the low abundance of Cen. typicus in

the north suggest that they may experience high advection loss or

high mortality in the middle region.

Although over broad time and space scales, the dynamics of

marine zooplankton is controlled by bottom-up rather than top-

down processes, the intrinsic biological processes and trophic

Figure 10. Bimonthly alongshore current velocities the Gulf Stream North Wall Index (GSNWI). A: Bi-monthly alongshore current
velocities with positive values indicating northward current and negative current indicating southward current. B: Bi-monthly values of GSNWI.
Shaded bars represent alternate years.
doi:10.1371/journal.pone.0087720.g010

Figure 11. Regression analysis for alongshore velocities and
the Gulf Stream north wall index (GSNWI). A: bi-monthly
alongshore velocities from satellite altimetry data and GSNWI and B:
annual mean velocities and mean GSNWI.
doi:10.1371/journal.pone.0087720.g011
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interactions among adjacent trophic levels become prominent at

smaller spatial and shorter temporal scales [51–52]. For example,

Liu et al [36] found that C. finmarchicus tend to exhibit nonlinear

dynamics, but Cen.typicus does not in the GB eco-region. Moreover,

C. finmarchicus showed strong dynamical interaction and coherence

with Atlantic herring, while Cen. typicus tend to dynamically

interact and associate with Atlantic markerel and haddock on

Georges Bank. Given the complex dynamics of marine organisms,

toward a thorough understanding of these questions, we need to

synergistically consider both physical forcing i.e., cross-shelf

advection and local hydrographic conditions, and ecological

processes i.e., food quality and concentration, and detailed

information on population processes in different regions.
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