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Abstract

We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10
and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term
depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from
the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation).
Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial
recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of
presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the
neuromuscular vesicle release machinery downstream of presynaptic calcium entry.
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Introduction

Retrograde signaling is central to the development, survival and

activity-dependent modulation of synaptic connections [1,2].

Signaling from post- to pre-synaptic cells is required for several

Hebbian forms of synaptic plasticity, believed to underlie learning

and memory [3]. More recently, retrograde signaling has received

renewed attention for its role in homeostatic plasticity. In this case,

postsynaptic detection of perturbations to transmission initiates

precise negative-feedback loops that restore transmission to

baseline levels [4].

A number of postsynaptic signaling pathways involved in

activity-dependent modulation of vertebrate neuromuscular trans-

mission are particularly well described. At the lizard NMJ, muscle-

derived endocannabinoids (eCB) generated by sustained low-

frequency synaptic activity or activation of M3 muscarinic

receptors induce depression of transmitter release. Similarly,

ATP, a known inhibitor of presynaptic secretion [5,6], is released

from skeletal muscles in an activity-dependent manner [7].

Skeletal muscle activity also produces nitric oxide (NO) mediated

depression at the amphibian neuromuscular junction in response

to postsynaptic metabotropic glutamate receptor (mGluR) activa-

tion [8] or skeletal muscle action potential firing [9]. Retrograde

signaling pathways involving a complex interplay between

cannabinoid, prostanoid and NO signaling [10,11], as well as

distinct mechanisms activated by muscle-derived adenosine [12],

have also been implicated in the activity-dependent enhancement

of neuromuscular transmission.

By comparison, the presynaptic targets of retrograde neuro-

muscular signaling pathways are poorly described. Commonly, a

presynaptic locus for depression of evoked release has been

inferred from electrophysiological recordings showing reduced

frequency but not amplitude of spontaneous synaptic events

[11,13,14]. More precise investigations of presynaptic signaling

targets have generally used pharmacological agents to mimic

endogenous retrograde signaling pathways. For example, Newman

et al. [15] used calcium imaging to document a reduction in the

single AP calcium transient in response to exogenous cannabi-

noids, and suggest this mechanism may contribute to eCB-

mediated depression at the NMJ (see also [16]). Contrastingly, NO

donors that depress EPP amplitude at the amphibian NMJ do not

lead to a decrease in resting or activity-dependent calcium levels;

indeed the amplitude of presynaptic calcium transients increased

in presence of a NO donor during high frequency stimulation [17].

These studies suggest that there are likely to be multiple

presynaptic targets for retrograde modulation of transmitter

release at the NMJ; shedding light on the presynaptic mechanisms

underlying one such retrograde signaling pathway was the aim of

the present work.

We have previously characterized a presynaptic form of long-

term depression (LTD) elicited by sustained low-frequency

stimulation (1 Hz for 20 min [13]). The LTD, which lasts .

2 hours, is NO-dependent, with postsynaptic AP firing both

necessary and sufficient to induce reduction in transmitter release.

This unqualified dependence on postsynaptic AP firing distin-

guishes the LTD from most presynaptic forms of plasticity
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expressed at the vertebrate NMJ and suggests that it may play a

novel role in modulating network function [9].

Here, we combine electrophysiological recordings with optical

labeling to directly monitor vesicle recycling during this muscle

AP-dependent form of neuromuscular LTD. Styryl dye labeling

revealed refractory exocytosis of readily releasable vesicles during

LTD, however short-term synaptic plasticity was unchanged. We

conclude that this form of LTD acts subsequent to the entry of

calcium to the terminal. Implications for the reliable control of

motor function are discussed.

Materials and Methods

Ethics Statement
All experiments were performed in accordance with the

Australian Code of Practice for the Care and Use of Animals for

Scientific Purposes (7th edition, 2004). The work was approved by

the Animal Ethics Committee at The University of Western

Australia (Permit 4/100/325).

Animals And Dissection
Iliofibularis muscles with nerve supplies intact were isolated

from young cane toads following euthanasia by double pithing, as

described previously [13]. Unless otherwise indicated, prepara-

tions were maintained at room temperature (21–24uC), in a

modified aerated amphibian Ringer solution containing (mM)

NaCl (114), KCl (2), glucose (5), NaHCO3 (1.8), 3-(N-Morpho-

lino)propanesulfonic acid (10) and CaCl2 (1.5), pH adjusted to 7.4

with NaOH.

Induction Of Long-Term Depression
LTD was induced using repetitive sciatic nerve stimulation with

a platinum-iridium suction electrode (1 Hz stimulation for 20 min

with 1 ms square pulses at optimum voltage), as described

previously [13]. Unless otherwise stated, LTD was induced in

one iliofibularis muscle from an animal and the other iliofibularis

from the same animal was used as a control.

Electrophysiology
Synaptic and action potentials were recorded from iliofibularis

muscles with sharp borosilicate glass electrodes (R = 7–20 MV)

containing 3 M KCl, according to published methods [9,13]. End-

plate potentials (EPPs) were recorded in the presence of

d-tubocurarine chloride (0.6–1.6 mM, Sigma) to minimize muscle

contraction. APs were recorded in the presence of the myosin

ATPase inhibitor N-benzyl-p-toluene sulfonamide (BTS, 50 mM,

Sigma Rare Chemicals). All recordings were performed within

1 hr of induction of LTD.

Fm2-10 Staining And Destaining
Terminal labeling was achieved by sciatic nerve stimulation in

the presence of FM2-10 (70- 200 mM, Molecular Probes, Oregon,

USA) using a platinum iridium suction electrode.

Vesicle pools were selectively labeled using protocols validated

at the amphibian neuromuscular junction [18,19]. The protocols

utilize immediate post-stimulation dye removal to label the RRP,

as the relatively hydrophilic FM2-10 dye partitions easily from

lipid bilayers. In contrast, leaving preparations in dye for several

minutes following stimulation gives time for internalization of the

dye by a larger recycling pool, equivalent to that labeled by more

lipophilic FM dyes [19]. The total recycling pool (TP) was

therefore labeled by prolonged stimulation in the presence of the

dye (30 Hz for 2.5 min), after which the preparation was left in the

dye for an additional 20 min (delayed wash protocol [19]). The

intensity of fluorescent labeling was unchanged by an additional

60 sec of nerve stimulation in the presence of the dye (data not

shown). The RRP of vesicles was labeled to saturation by

stimulating the sciatic nerve at 30 Hz for 15 sec in the presence

of the dye and then immediately rinsing the preparation with dye-

free Ringer solution (immediate wash protocol [19]). After dye

loading, all preparations were washed in Ringer solution at 4uC
for at least one hour before imaging.

For destaining experiments, muscles were pinned out in

Sylgard-lined dishes in a dye-free solution of d-tubocurarine

chloride (7–10 mM, Sigma) to limit muscle contraction. The d-

tubocurarine chloride was only applied after the LFS protocol used

to induce LTD; we have shown previously that post-stimulation

application of the antagonist does not interfere with expression of

LTD, although presence of the antagonist during LFS blocks

depression [9,13]. A labeled nerve terminal was positioned in dye-

free medium within the field of view, imaged, and then sciatic

nerve stimulation (30 Hz for 10 sec, 1 ms square pulses) was

delivered via a suction electrode to destain terminals. Each

preparation was exposed to two 10 sec destaining periods,

separated by interval of at least 3 min.

Capture And Analysis Of Fluorescent Images
FM2-10 labeled terminals in living muscles were visualized with

a 406 water dipping objective on a Nikon E600FN upright

microscope. Excitation light was delivered by a 100 W mercury

lamp (Lab Supply) through an Olympus B-2E/C filter block

(excitation filter 465–495 nm, dichroic mirror 505 nm and

emission filter 515–555 nm). Fluorescent 8-bit images were

captured with a Spot-RT CCD camera (Diagnostic Instruments)

mounted on the microscope and controlled by SPOT RT software

(version 4.0.2, Diagnostic Instruments). A Uniblitz external shutter

system (Vincent Associates) controlled exposure time.

For each terminal a z-series of images at 0.5 mM intervals was

captured, covering the full range of focal depths of the terminal

branches. The z-series stack was collapsed into a single montage

image using Auto-Montage Pro deconvolution software (fixed

method optimized for precision, version 5.01.005, Synoptics). All

image analysis was performed on the montage images using Scion

Image (version Beta 4.0.2, Scion Corporation).

Styryl dye loading produces punctate labeling of amphibian

motor nerve terminals [20]. The average fluorescent intensity of a

25 square pixel box centered on the most intense pixel in a

punctum, multiplied by the selection size, was used to estimate

total punctum intensity. All intensities were corrected for

background fluorescence (estimated from the median intensity of

terminal-free muscle fiber labeling). Punctum intensities were also

corrected for variation in the gain and exposure settings of the

CCD camera (adjusted for each terminal within a linear range).

The intensity of at least 80 fluorescent puncta, taken from a

minimum of 4 different nerve terminals, was used to calculate the

average intensity of fluorescent labeling for each nerve-muscle

preparation. In destaining experiments, the intensity of the same

puncta was measured in images taken before destaining and after

each destaining stimulus. Preparations were left to relax for 2 min

between the end of the tetanus and imaging.

Statistics
Results are expressed as mean 6 SEM and P values less than or

equal to 0.05 were considered statistically significant.

Statistical analysis of paired pulse facilitation and FM2-10

labeling experiments was performed using the Mixed procedure in

SAS software (version 9.1, SAS Institute Inc., Cary, NC).

Differences between least squares means were calculated for each

Modulation of Exocytosis by Retrograde Signalling
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combination of factors and two-tailed tests of least squares mean

differences were performed where appropriate. The fixed and

random effects investigated for each block of experiments were as

follows;

Paired pulse facilitation: The effects of inter-stimulus interval (20,

40 and 60 ms) and condition (control and low-frequency

stimulated) on paired pulse ratio were modeled. Muscle and

animal were treated as random effects.

FM2-10 labeling: For comparisons of RRP and TP size, the

intensity of dye labeling was modeled as a function of condition

(control vs. low-frequency stimulated) and pool labeled (RRP vs.

TP). In a separate set of experiments, RRP size was modeled as a

function of condition (control vs. low-frequency stimulated) and

duration of the FM2-10 loading tetanus (7.5 vs. 15 seconds).

Results

Paired Pulse Plasticity Is Normal In Presynaptic
Neuromuscular Ltd

The level of paired pulse facilitation (PPF) is inversely

proportional to the initial release probability [21], thus an increase

in PPF during LTD is commonly used as evidence for a

presynaptic change in transmitter release [22]. We measured the

level of PPF at three different inter-stimulus intervals (ISIs, 20, 40

and 60 ms) in control preparations and in preparations where

LTD had been induced by 20 minutes of low-frequency nerve

stimulation (LFS, see [13]). Median EPP amplitude in response to

the first action potential in a pair was 47% lower in LFS

preparations than in controls, consistent with the induction of

LTD by LFS (see representative traces in Fig. 1A and also [13]).

Unexpectedly, we found no difference in the paired pulse ratio

between control and LFS (depressed) preparations (Fig. 1A, B).

Paired-pulse facilitation was observed at all ISIs tested in control

and LFS preparations, and was sufficient to restore muscle AP

firing at short ISIs in profoundly depressed terminals (Fig. 1C).

However, we did not observe the increased PPF commonly

associated with presynaptic forms of LTD.

While Vesicle Pool Size Is Unchanged In Ltd, Rrp Labeling
Is Refractory

The observation that PPF is normal in LTD was somewhat

unexpected, given our earlier conclusion that this form of

depression is expressed presynaptically (from recordings of

spontaneous synaptic potentials, [13]). To clarify the locus of

expression of LTD, we used fluorescent styryl dye labeling, which

is altered in a range of presynaptic forms of plasticity [23,24], to

directly monitor vesicle recycling.

We followed well-established protocols [19] to selectively label

either the readily releasable pool of vesicles (RRP) or the total

recycling pool (TP) with the styryl dye FM2-10 (Fig. 2A). There

was no difference in the overall fluorescent intensity of either RRP

or TP labeling between control and LFS (depressed) neuromus-

cular preparations (Fig. 2B). In both cases, the RRP constituted

approximately 20% of the total recycling pool, consistent with

previous reports at this synapse [19]. Thus LTD does not affect the

total number of vesicles available for recycling or the proportion of

those vesicles that are available for immediate release from the

nerve terminal.

The RRP is thought to maintain transmission at the amphibian

neuromuscular junction at low frequencies [18]. We therefore

focused our investigations on the RRP, varying the duration of the

loading tetanus to investigate the time required for saturation of

this pool with the styryl dye (Fig. 2C). Labeling in control nerve

terminals did not increase between 7.5 and 15 seconds of tetanic

stimulation in the presence of the dye (open bars, Fig. 2C),

consistent with assertions that neuromuscular transmission during

the first 15 seconds of a tetanus is mediated entirely by the small

RRP of vesicles, without recruitment of vesicles from the reserve

pool [19]. By contrast, RRP labeling in LFS preparations was

approximately 50% lower following a 7.5 s loading tetanus,

compared to the level of loading observed following a 15 s tetanus

(filled bars, Fig. 2C). A similar trend was observed with an even

shorter loading time of 3 seconds (n = 4, data not shown), although

low intensity labeling made accurate quantification of fluorescence

Figure 1. Facilitation is normal in LTD and restores muscle
action potential firing in depressed preparations. A, represen-
tative traces of EPPs recorded from a control (black trace) and a low-
frequency stimulated (grey trace) muscle in response to a pair of stimuli
(arrows, 40 ms ISI), showing facilitation of the responses to the second
stimulus in each pair. B, there was no difference in the level of
facilitation, expressed as a paired pulse ratio, between control and LFS
terminals at any of three ISIs tested (n = 7 pairs of muscles, F-test for
main effect of site from mixed model analysis, P = 0.323). C, average
level of muscle action potential firing following LFS evoked in a
representative muscle fiber by pairs of nerve stimuli with varying ISIs.
Muscle action potentials were never observed in response to the first
nerve stimulation in a pair (open circles), consistent with the induction
of LFS-dependent synaptic depression. Despite the intense depression,
strong PPF at short ISIs (#20 ms) was sufficient to completely restore
the reliability of neuromuscular transmission.
doi:10.1371/journal.pone.0087174.g001
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difficult. We conclude that vesicle recycling is refractory in LTD,

increasing the time required to label the RRP to saturation.

Ltd Is Associated With A Reversible Decrease In Rrp
Exocytosis

From our previous work showing an LTD-associated decrease

in the frequency of spontaneous synaptic potentials [13], we had

hypothesized that the LTD involves a refractoriness of the

exocytotic pathway. To examine this hypothesis experimentally

the RRP was loaded to saturation in control and LFS preparations

and we then quantified FM2-10 unloading during stimulation in

dye-free medium (a measure of the level of exocytosis [25]).

Loaded terminals were exposed to two consecutive destaining

stimuli (each involving 30 Hz stimulation in dye free medium for

10 seconds). Terminals were imaged before and immediately after

each of the destaining stimuli and the same puncta were identified

in each of the images (see representative examples in Fig. 3,

relationship between puncta and nerve terminal branches

illustrated in Fig. 2A), to quantify the amount of exocytosis at

each time point. On average, the intensity of control puncta

following the first destaining stimulus was 7663% of the initial

level, falling to 5762% following the second destaining stimulus

(n = 274 puncta sampled from 12 preparations). Strikingly, the

level of FM2-10 destaining from LFS puncta (n = 161 puncta from

6 preparations) was less than half of that seen in controls, reaching

only 9161% and 8162% of the initial level after the first and

second destaining stimuli respectively (two-way ANOVA showed a

significant condition x destaining time interaction, p,0.0001,

Bonferroni post-tests revealed significantly less destaining from

LFS preparations with both 10 s and 20 s of destaining, p,0.0001

in both cases).

Further FM2-10 destaining experiments revealed significant

restoration of synaptic vesicle exocytosis when preparations were

left to recover for 2 hours following a period of LFS. The average

labeling in recovered preparations fell to 8463% and then

6963% of the initial level after the two destaining stimuli (n = 155

puncta from 6 preparations). This FM2-10 unloading from

recovered LFS preparations was significantly greater than seen

in LFS preparations that were unloaded immediately following the

LFS routine (two-way ANOVA showed a significant condition x

destaining time interaction, p,0.0001, Bonferroni post-tests

revealed significantly less destaining from LFS preparations with

both 10 s and 20 s of destaining, p,0.05 and p,0.001

respectively). We observed significant recovery of the nerve-

evoked muscle twitch over the same period (from ,20% to

4267% of baseline, n = 6 muscles). We conclude that the

Figure 2. Loading of readily releasable pool vesicles with FM2-
10 is refractory in LFS preparations. A, end-plate zone of
amphibian skeletal muscle fibers showing nerve terminals where the
RRP has been labeled to saturation with FM2-10. All nerve terminals
within the focal range exhibit punctate staining associated with vesicle
release sites. Inset is an enlarged section of a terminal branch, showing
the fluorescent puncta analyzed to quantify FM2-10 labeling. Scale bar
20 microns. B, there was no difference in the intensity of FM2-10
fluorescence between control (open bars, n = 9 muscles) and low-
frequency stimulated (LFS, filled bars, n = 11 muscles) terminals when
synaptic vesicle pools were labeled to saturation (F-test of main effect
of condition from mixed model analysis, P = 0.621). The quick wash
protocol selectively labels the readily releasable pool (RRP), while the
delayed wash labels the total recycling pool (TP). C, There was no
increase in FM2-10 fluorescence associated with labeling of the RRP in
control terminals (open bars) between 7.5 (n = 8 muscles) and 15
seconds (n = 9 muscles) of tetanic stimulation. In contrast, labeling of
the RRP in low-frequency stimulated terminals was significantly lower
after 7.5 seconds of tetanic stimulation (n = 6 muscles) than after a 15
second loading tetanus (n = 11 muscles, *, difference of least squares
means P,0.05).
doi:10.1371/journal.pone.0087174.g002

Figure 3. LFS is observed as a reversible reduction in vesicle
exocytosis from the readily releasable pool. Puncta reflecting
FM2-10 labeled readily releasable pool vesicles in motor nerve terminals
before destaining (top row), after a single destaining stimulus (30 Hz
stimulation for 10 sec in dye-free medium, middle row) and after two
consecutive destaining stimuli (bottom row). Destaining was compared
between control preparations, low-frequency stimulated (LFS) prepara-
tions, and LFS preparations that were left for two hours to recover
before destaining (LFS + recovery). An individual punctum in each
image is circled to assist visual comparison of destaining in the three
conditions. Scale bar 5 microns.
doi:10.1371/journal.pone.0087174.g003
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depression of synaptic vesicle exocytosis induced by LFS is

reversible.

Discussion

We demonstrate here that LTD induced by low-frequency

stimulation of the somatic neuromuscular junction produces

lasting refractoriness of synaptic vesicle recycling. Labeling with

the fluorescent styryl dye FM2-10 revealed that readily releasable

(RRP) and total recycling pool (TP) sizes were normal in LTD.

However, loading of the RRP to saturation required a longer

period of stimulation and FM2-10 destaining experiments

indicated reduced synaptic vesicle exocytosis in LTD. Specifically,

induction of LTD by low-frequency stimulation reduced exocy-

tosis from the RRP, which then slowly recovered towards baseline

levels following a period of non-stimulation (2 hours). We

therefore provide direct evidence for refractory synaptic vesicle

exocytosis following induction of a skeletal muscle-dependent form

of LTD.

Transmitter release is the result of multiple convergent

presynaptic processes. Presynaptic depression can result from

reduced RRP size, reduced refilling of vesicle pools by endocytosis,

reduced Ca2+ availability/responsiveness or modified activity of

the exocytotic machinery (for review see [26–29]). Altered

releasable pool size has been implicated in several forms of

neuromuscular plasticity [23,30–32], however our results argue

against transfer of vesicles between the resting, recycling and

readily releasable pools induced by this form of LTD. In our

control muscles, the RRP constituted approximately 20% of the

total recycling pool (Fig. 2B), consistent with previous work at the

amphibian neuromuscular junction [18,19]. The level of RRP

labeling in LTD was the same as controls, whether expressed in

absolute fluorescent units (Fig. 2B) or as a proportion of the total

recycling pool (Fig. 2C). The size of the total recycling pool was

also unchanged by LTD (Fig. 2B). By contrast, both loading and

unloading of dye from the RRP took longer in LTD (Fig. 2C, 3B).

Refractory unloading of dye from the RRP has also been

demonstrated in NO-mediated hippocampal LTD [24,33], and

at the NMJ in response to exogenous NO [34]. We conclude that

our form of LTD specifically targets the availability, but not the

total size, of the readily releasable vesicle pool (RRP).

A reduction in endocytosis can potentially decrease the

availability of RRP vesicles and on first investigation our FM2-

10 loading experiments, which show refractory dye loading in

LTD, are consistent with this possibility. However, refractory dye

loading can be a function of either reduced vesicle exocytosis or

reduced vesicle endocytosis (or a combination of the two).

Although we cannot rule out modulation of endocytosis during

LTD (e.g. vesicles in depressed terminals being preferentially

endocytosed into cisternae that are unavailable for destaining

during subsequent stimulation [19,35]), our findings favor a

change to the exocytotic process as the dominant presynaptic

mechanism underlying LTD. We have previously demonstrated

profound (.40%) LTD of EPPs evoked by single APs fired at very

low frequency (0.2 Hz, [13]). At the neuromuscular junction, an

average of less than one vesicle out of a pool of ,270 vesicles is

released per active zone per stimulus [36] and the vesicle recycle

time is approximately 75 s [37]. Thus, at these low stimulation

frequencies, endocytotic pathways would likely be functioning

below maximum capacity and disruption to endocytosis seems

unlikely to be the major mechanism underlying the large reduction

in EPP amplitude observed.

How, then, might LTD alter synaptic vesicle exocytosis?

Alteration to presynaptic Ca2+ dynamics, via modulation of

voltage-sensitive channels or alterations to nerve terminal Ca2+

buffering, is a common target of neuromuscular plasticity

[15,31,38,39]. While we did not measure the presynaptic Ca2+

signal directly, our observation that paired pulse facilitation (PPF)

is unchanged in LTD (Fig. 1B) is inconsistent with a significant

change in presynaptic Ca2+ signaling during the depression. Short-

term synaptic facilitation (enhancement of transmitter release in

response to repetitive stimulation at short time intervals) is highly

dependent on presynaptic Ca2+ handling [27,40], thus normal

PPF is unlikely in the face of even a small reduction in presynaptic

Ca2+ influx.

Instead, we propose that the LTD acts to provide a break on the

vesicle release machinery at a late stage of exocytosis, downstream

of the presynaptic Ca2+ signaling that triggers exocytosis and

underlies PPF. This finding provides important direction for future

work exploring the presynaptic target(s) of neuromuscular LTD, as

many of the most thoroughly explored pathways target voltage-

gated Ca2+ or K+ channels that modulate transmission upstream

of Ca2+ entry [41]. Of the mechanisms for presynaptic inhibition

of transmitter release downstream of Ca2+ entry, we suggest that a

signaling pathway implicated in LTD of glutamatergic transmis-

sion at hippocampal synapses warrants particular investigation. In

this form of LTD (reviewed in [42]), activation of presynaptic G-

protein coupled receptors, including mGluRs and A1 adenosine

receptors (both established modulators of neuromuscular trans-

mission [8,43]), is proposed to promote binding of Gbc to the C-

terminus of the target-membrane soluble NSF attachment

receptor (SNARE) protein SNAP25. Gbc competes with the

calcium-sensing vesicle SNARE synaptotagmin for binding with

SNAP-25, thus inhibiting exocytosis [44,45]. Of particular interest

here, this LFS-dependent hippocampal LTD requires the

concomitant retrograde action of NO, produced in response to

activation of neuronal nitric oxide synthase, to activate presynaptic

soluble guanylyl cyclase and generate cGMP [24]. NO signaling,

as implicated in this form of neuromuscular LTD by our previous

pharmacological experiments [13], appears necessary for convert-

ing short-term depression of hippocampal transmitter release into

LTD [46]. Our pharmacological experiments indicated that

maintenance of neuromuscular LTD requires sustained elevation

of NO signaling, possibly via dephosphorylation of muscle

neuronal NO synthase by calcineurin [13]. In the context of the

above signaling pathway, this sustained NO signaling would be

expected to maintain the cGMP elevation required for long-term

refractoriness of exocytosis in LTD [46,47]. SNAP-25 is already

implicated in short-term depression at the NMJ [48] and it will be

interesting to see if an additional role for SNAP-25 modulation in

neuromuscular long-term depression will emerge, as recently

observed in the hippocampus.

The somatic NMJ differs from most synapses because its

primary functional requirement is reliability, rather than nuanced

integration of subthreshold synaptic potentials. There is now

substantial evidence for precise homeostatic control of synaptic

transmission by a multiplicity of cell intrinsic and intercellular

synaptic mechanisms (for review see [15,49–53]), which are likely

to contribute to this synaptic reliability. However, these precise

homeostatic processes may act in parallel with feedback mecha-

nisms that maintain synaptic processes within broad functional

limits but do not fit the classical definition of homeostatic plasticity,

where baseline synaptic transmission is restored (see, for example

[54]). We speculate that the LTD provided here may fulfill such a

role, constraining transmitter release at the NMJ to a functional,

sustainable level. The involvement of NO-mediated plasticity in

transmitter conservation at the amphibian NMJ, via a different

cellular mechanism, has recently been postulated [10].

Modulation of Exocytosis by Retrograde Signalling
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Our LTD is well suited to such a role, as it provides reversible

depression of presynaptic release at all terminals innervating a

muscle fiber in response to repetitive muscle AP firing [9].

Furthermore, the LTD acts at a late stage of transmitter release

and therefore does not impede other forms of plasticity (e.g. PPF)

that may be important for activity-dependent modulation of

synaptic function (see discussion by [26,31]). Indeed, presynaptic

modulation downstream of calcium influx, as implicated in our

LTD, is proposed as an important contributor to synaptic stability

at the NMJ [55]. We have shown that PPF at high frequencies

restores the reliability of neuromuscular transmission (Fig. 1C), so

it seems that during in vivo patterns of synaptic activity (short, high-

frequency bursts repeated at low-frequency [56]) the LTD could

restrain functionally redundant exocytosis without a cost to

synaptic reliability.
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