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Abstract

The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the
human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve
this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in
the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic
patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at
high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a
method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing
the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D
wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing
algorithm in x-ray dark-field and phase contrast imaging.
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Introduction

By introducing a periodic modulation in the intensity distribu-

tion of a wavefront, perturbations in the phase and lateral

coherence of the wavefront become visible as distortions of the

pattern and attenuation of its amplitude. Early examples are the

Hartmann screen [1] and the Shack-Hartmann lens array [2].

Originally proposed for astronomical telescopes, various embodi-

ments now span diverse areas such as adaptive-wavefront two

photon microscopes [3], free-electron x-ray lasers [4], and

diagnostic exams of the human eye [5].

In x-ray imaging, the idea is being intensively pursued in two

converging efforts: phase contrast imaging and scatter imaging/

correction [6–13]. X-ray phase contrast imaging can detect weakly

absorbing structures by the variation of the refractive index

without the need for significant radiation absorption [14], while

scatter imaging can characterize unresolved microscopic structures

by their diffraction of the x-rays [10,11,15]. Scattering reduces the

lateral coherence of the wavefront, which is detectable as a drop in

the visibility of the modulation pattern. In the human body, x-ray

scattering causes a diffuse background, or ‘‘fog’’, that degrades

image quality in diagnostic exams. The ‘‘fog’’ can be quantified

and removed through grid modulation of the beam [12,13].

The intensity modulation is imposed either with simple

geometric shadowing of an absorption mask or grid [10,12,13],

or several forms of wave interferometry for high density patterns

[7–9,16]. Some means of measuring the position and amplitude of

the fringes of the periodic pattern is needed to retrieve the phase

and scattering information. In a single image, the measurements

can be done directly in real space [2,17], or very rapidly with a

Fourier transformation method [10,18–21]. The tradeoff of these

approaches is that the density of the measurement is limited by the

spacing between the fringes. Thus, the phase stepping method was

created to provide measurements at the full resolution of the

detector. Here, a series of images are taken while the pattern is

shifted incrementally, such that the fringes sweep over every point

in the image [22]. Every point undergoes at least one complete

cycle of intensity oscillation, allowing the fringe position (phase)

and amplitude to be measured for that point. Practically, this is

realized by either physically scanning a grating or grid [8,9,22–

24], or electromagnetically moving the x-ray source spot to cause a

relative displacement between the projection of the sample and the

underlying periodic pattern (electromagnetic phase stepping) [25].

Currently, phase stepping of 2D modulations is thought to

require raster scanning in two directions [26–31]. For example, a

rectangular grid pattern aligned with the X and Y axis is

demodulated by raster scanning in those directions over a 2D

matrix of positions [26]. This adds complexity to mechanical

scanning systems. The electromagnetic phase stepping method is

also suitable for linear scanning due to the design of common x-ray

tubes. Therefore, we present a method of linear phase stepping for

retrieving all the information in a 2D periodic pattern.
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Materials and Methods

Ethics Statement: The ex vivo mouse specimen imaging study was

performed under a National Heart, Lung and Blood Institute

Animal Care and Use Committee approved protocol.

The method can be illustrated with the example of a square

grid, although applicable to all 2D periodic patterns. In the

experimental setup in Fig. 1A, the projection of an absorption grid

creates the 2D pattern on the image plane. The pattern is a sum of

harmonic sinusoidal waves, including the one for the vertical

fringes Hx(r)cos[2px/P+wx(r)+Qxj(r)], for the horizontal fringes

Hy(r)cos[2py/P+wy(r)+Qyj(r)], diagonal mixtures of the two

H1,1(r)cos[2px/P+2py/P+w1,1(r)+Q1,1,j(r)] and H1,21(r)cos[2px/P+
2py/P+w1,21(r)+Q1,21,j(r)], and possibly higher order harmonics.

Here P is the size of the squares, the H(r)s are the amplitudes of the

harmonic oscillations, the w(r)s are the phase distortions of the

harmonics in the X, Y and diagonal directions, and the Qj(r)s are

applied instrumental phase shifts in the phase stepping process in

the jth step.

The desired information is the phase distortions w(r) of the

various harmonics and the associated fringe amplitudes H(r). The

phase distortions w(r) measure the deformation of the harmonic

waves, which are proportional to the gradients in the wavefront

phase distribution. In x-ray imaging they arise from refractive

bending of the rays in the sample. The fringe amplitudes H(r) are

attenuated by x-ray scattering along the directions of the

harmonics, providing a window into the underlying micro

structures and their directional orders.

Decoding by linear phase stepping works by incrementally

shifting the pattern along an oblique axis relative to the fringe

lines. This is graphically illustrated in the 2D Fourier space

(reciprocal space) in Fig. 1B. The 2D Fourier transformation of an

image has distinct peaks corresponding to the various harmonics.

In linear phase stepping, the applied phase shift to each harmonic

peak is proportional to its projection onto the oblique axis. By

choosing the axis such that the projections of all peaks are fully

separated with no two projections coinciding, the 2D harmonics

are mapped onto a single axis as different frequencies of

oscillation. They can then be retrieved by sampling in real space

a series of phase stepped images along the axis. The minimum

number of sampling steps is equal to the number of 2D harmonics

that are within the detector’s resolution. In the example of Fig. 1B,

9 harmonic peaks are captured in the reciprocal space, and hence

Figure 1. Linear phase stepping in x-ray imaging with a square-lattice absorption grid. (A) The projection of the grid imposes a 2D lattice
pattern onto the transmitted wavefront. X-ray refractive bending and scattering in the sample cause the pattern to deform and fade, respectively.
Linear phase stepping is used to measure these effects at high spatial resolution. The X axis of the grid is at an angle h from the phase stepping axis
(PS axis). In mechanical phase stepping, the grid is physically moved along the PS axis. In electromagnetic phase stepping, the focal spot of the x-ray
cone beam is scanned with an electromagnetic field, also along the PS axis. (B) The algorithm of linear phase stepping is illustrated in the 2D Fourier
space (reciprocal space), where the Fourier transformation of the image contains a 363 matrix of peaks marked as (0, 1), (1, 1) etc, within the
detector’s resolution. They correspond to the harmonic sinusoidal waves in real space that make up the 2D lattice pattern. During phase stepping,
the phase shift of each harmonic is proportional to its projection onto the PS axis in the reciprocal space. By setting the angle h to 18.4u, the
projections are all separated. They can then be determined by a minimum of 9 sample steps along the PS axis in real space. Once the component
harmonics are known, both the deformation and the attenuation of the 2D grid pattern are determined at the full resolution of the detector.
doi:10.1371/journal.pone.0087127.g001
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at least 9 steps are required. The general case of a square matrix of

(2N+1)6(2N+1) harmonic peaks is described in Discussion.

Practically, more than the minimum steps are often sampled to

improve the signal-to-noise ratio of the results.

Various instrumental instabilities may cause both temporal and

spatial variations in the phase steps. Therefore, a retrospective

image processing algorithm was created to determine the

distribution of the applied phase shifts from the images themselves

without assuming a priori knowledge [32]. The algorithm is

presented in detail in ref. [32] and summarized here. Mathemat-

ically, the jth image of a phase stepped series can be expressed as

Ij(r)~
X

m

Hm(r) exp½iwm(r)� exp½iQm,j(r)�, ð1Þ

with Hm(r) and wm(r) being the amplitude and phase of the mth

harmonic of the 2D pattern which we aim to recover, and Qm,j(r)

being the applied instrumental phase shift in the phase stepping

process. If Qm,j(r) is known for all phase steps and harmonics and

all locations, then Hm(r) and wm(r) can be determined on a point-

by-point basis with a least-squares fitting procedure. The requisite

condition is that the number of phase steps is no less than the

number of harmonics we need to solve. To retrospectively

determine the applied phase shifts, the value for the first image

of the series (j = 0) is set to zero. The phase increments of the other

images relative to the 1st are determined by the Fourier

transformation method [18], under the assumption that the grid

or grating periods are either uniform or vary smoothly in space.

Specifically, in the 2D Fourier space the positions of the harmonic

peaks are determined either from the known period of the grid or

grating or from the intensity maxima in the Fourier space; a

circular window centered around a peak is selected, making sure

that its radius is less than half the distance to the nearest-neighbor

peak; the window is shifted back to the origin of the Fourier space

and inverse Fourier transformed to yield a low-resolution, complex

image hm,j(r) for the mth harmonic and jth phase step; the phase

differential map of hm,j(r)/hm,0(r) is then the applied phase shift of

the jth phase step. It is interpolated back to the full resolution of

the detector, and fed into a least-squares fitting routine to

determine the phase and amplitude of all harmonics at full

resolution [32].

A set of reference data of H9m(r) and w9m(r) are acquired without

any sample to provide a baseline. They are used to normalize the

sample data in order to remove instrumental factors, such as

defects in the grid. In the final results, the normalized attenuation

of the zeroth order or DC peak, 2ln[H0(r)/H90(r)], is the

conventional intensity attenuation. The attenuation of the mth

harmonic peak includes contributions from x-ray scattering along

the direction of that peak. These are quantified by 2ln[Hm(r)/

H9m(r)]+ln[H0(r)/H90(r)], which is the directional scattering, or

dark-field image [10,11,33,34]. The differential phase image

wm(r)2w9m(r) measures the refractive deflection of the x-rays in the

direction of the mth harmonic peak [21,26].

The experimental setup (Fig. 1A) consists of a tungsten-target x-

ray tube operating at 1 mA cathode current with a focal spot size

of approximately 50 mm, an x-ray detector with a pixel size of

60 mm and a matrix size of 102461024, and a square absorption

grid of 127 mm period placed in the x-ray beam. The detector is a

Princeton Instruments SCX:4096 x-ray camera consisting of a

CCD array coupled to a GdOS phosphor via a 1:1 fiber optic

coupler. The CCD array of 409664096 15 mm pixels is binned to

102461024 to match the resolution of the phosphor. To correct

for the detector’s sensitivity pattern and dark baseline signal, a

dark baseline image and a flat-field image are acquired

beforehand. The dark baseline is subtracted from data images,

which are then divided by the flat-field image. The x-ray tube

voltage is set to 40 kVp to image the St. Johnswort stems and

60 kVp to image the mouse specimen.

In the system layout in Fig. 1A, several factors are considered in

setting the distances between the components. One is that the grid

has a nominal focusing distance of 76 cm (30 inches), meaning that

the passing slots in the grid are aimed at a focal spot at that

distance. The second is that the source-to-detector distance should

not be too great in order to maintain the photon flux density on

the detector. The third is that the minimal angle of x-ray refraction

and scattering that can be detected with this method scales with

the ratio of (fringe period)/(grid to detector distance) [10,35]. With

these factors in mind, the distance between the source and detector

is set at 108 cm, with the imaged sample and the grid arranged

equidistant in between. The grid is rotated around the beam axis

by 18.4u relative to the horizontal, phase stepping axis. This angle

satisfies tan(h) = 1/3, such that in the 2D Fourier space the

projections of the 363 harmonic peaks onto the phase stepping

axis are evenly spaced (Fig. 1B). A phase stepping series has 14

images, which is more than the minimum of 9 in order to improve

signal-to-noise ratio of the results. The exposure for each image is

60 sec.

The experiments employ motionless electromagnetic phase

stepping (EPS) [25] (Fig. 1A), where a magnetic field is applied to

the x-ray tube via a solenoid coil to deflect the source point of the

beam. This results in opposite displacements of the projection

images of the sample and the grid. Since the sample and the grid

are at different distances to the source point, there is a relative

movement between them. The EPS images are digitally moved

back to re-align the projections of the sample, leaving the grid

shadows to scan over the sample. This effectively synthesizes the

phase stepping process without physical movements.

Results

In a first demonstration, the stems of a St. Johnswort (Hypericum

calycinum) plant are imaged in the arrangement of Fig. 1A. X-ray

scattering by the ordered cellulose fibers of the stems is anisotropic

and strongest in the plane perpendicular to the length of the stems.

As a result, the fringes of the 2D grid pattern are blurred to various

degrees dependent on how the stems are aligned with them. This

effect is quantified by the scattering, or dark-field images, of the

harmonics (Fig. 2). The relationship between the direction-

dependent scattering signal and the underlying structural order

is mathematically the same as that of the diffusion-weighted

magnetic resonance image with the underlying diffusion tensor of

water molecules.

In another demonstration, the head region of a mouse specimen

is imaged in the same arrangement. The mouse specimen was

obtained in a protocol approved by the institutional Animal Care

and Use Committee. A C57BL/6 wild-type 5 year old male mouse

was euthanized and fixed in 10% buffered formalin solution for

imaging experiments. The differential phase images of the various

component harmonics of the 2D grid pattern are shown in Fig. 3.

They quantify the refractive bending of the x-rays in the sample,

or the equivalent gradient field of the wavefront phase distribution.

Each harmonic is sensitive to the component of the gradient vector

in its direction. Refraction is the strongest at interfaces of rapid

transitions of the refractive index. It can be seen that the various

harmonics highlight different segments of the bone-tissue inter-

faces based on their orientations.

Efficient Decoding of 2D Structured Illumination
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Discussion

Compared to 2D raster scanning, single-axis linear scanning

simplifies the hardware instrumentation for wavefront measure-

ments. It also enables electromagnetic phase stepping of 2D

periodic patterns, in which the x-ray source is electronically

scanned. EPS removes the need for mechanical movements and

the associated stability and reproducibility issues. It also reduces

hardware cost by replacing precision motor systems with a

magnetic field coil. On the other hand, linear phase stepping of 2D

patterns involves more computation. Specifically, the inverse

Fourier transform in 2D raster scanning is replaced with a least-

square fitting.

Linear phase stepping samples the sum of a number of

oscillations of different frequencies along a single axis. To

adequately capture and resolve the frequency components, both

the sampling density and sampling range have certain require-

ments. The sampling density is represented by the step size d in

real space, which should be sufficiently small to resolve the smallest

oscillation period Pmin along the scan axis, i.e., d,Pmin/2; the

Figure 2. Imaging of x-ray scattering in St. Johnswort stems in multiple directions. The experimental setting is shown in Fig. 1A. A
photograph of the stems is shown in the lower left. The mid-left image is the conventional intensity attenuation in negative log scale. The stems are
arranged parallel with the X and Y axis of the absorption grid. The other images are dark-field images from the component harmonics of the 2D grid
pattern, as defined in the main text. They measure the attenuation of the visibility of the pattern due to x-ray scattering in the sample. The mid-right
image is the (1, 0) dark-field image, which measures scattering in the X direction. The top-left image is from the (0, 1) harmonic and measures
scattering in the Y direction. The other two images measure scattering in the diagonal directions. The microscopic cellulose fibers of the stems are
organized along their lengths, such that the x-rays are most strongly scattered perpendicular to the fibers and thus the axes of the stems. This gives
rise to visibly different scattering signals from the same location between the (0, 1) and (1, 0) dark-field images. The anisotropy of x-ray scattering
reflects the directional order of the composite structure of the stems. The orthogonal harmonic components have higher amplitudes than the
diagonal ones, leading to higher signal-to-noise ratio in their dark-field images. Scale bar in mid-left image, 4 mm.
doi:10.1371/journal.pone.0087127.g002
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sampling range D should be large enough to resolve the smallest

difference in the frequencies of the various oscillations Dfmin, i.e.,

D.1/Dfmin.

Generally, a square grid pattern with detectable harmonic

amplitudes up to the Nth order contains a (2N+1)6(2N+1) square

matrix of harmonic peaks in the reciprocal space. By choosing a

phase stepping scan axis at an angle h = arctan[1/(2N+1)] from

the horizontal fringe line, the projections of the peaks onto the

scan axis are evenly spaced. If we denote the spacing between

adjacent projections as Df, the harmonics can be adequately

sampled in real space by (2N+1)6(2N+1) points of uniform spacing

of 1/(2NDf). This follows the rule that the minimum number of

sampling points is equal to the number of 2D harmonic peaks to

be determined. In practice, more sample points can be taken for

better signal-to-noise ratio.

Beyond square and rectangular patterns, a generic 2D periodic

pattern may not yield a rectangular lattice of harmonic peaks in

the reciprocal space. As a result, their projections onto a scan axis

are not evenly spaced. For a specific 2D modulation, non-uniform

sampling steps may be considered in conjunction with the angle of

the scan axis to optimize the stability of the inversion process from

real space to the reciprocal space.

Figure 3. X-ray differential phase contrast images of the head region of a mouse specimen. The mid-left image is the conventional
intensity attenuation in negative log scale. Other images are differential phase maps of the component harmonic waves of the 2D grid modulation.
They measure the displacements of the lines in the grid pattern, the result of refractive bending of the x-ray wavefront. The differential phase map of
the (1, 0) harmonic measures refractive bending along the X direction, while that of the (0, 1) harmonic is along the Y direction. The diagonal
harmonics yield refraction information along those directions. Refractive bending occurs in areas of rapid transitions of the refractive index, such as
bone-soft tissue interfaces. Thus, the differential phase images represent the gradient of the phase distribution of the wavefront in their respective
directions. The harmonics highlight different segments of the interfaces, based on the alignment of the interfaces with the directions of the harmonic
peaks. The orthogonal harmonics have higher amplitudes than the diagonal ones, yielding differential phase images of higher signal-to-noise ratio.
Scale bar in mid-left image, 4 mm.
doi:10.1371/journal.pone.0087127.g003
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