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Abstract

Differential gene expression profiling studies have lead to the identification of several disease biomarkers. However, the
oncogenic alterations in coding regions can modify the gene functions without affecting their own expression profiles.
Moreover, post-translational modifications can modify the activity of the coded protein without altering the expression
levels of the coding gene, but eliciting variations to the expression levels of the regulated genes. These considerations
motivate the study of the rewiring of networks co-expressed genes as a consequence of the aforementioned alterations in
order to complement the informative content of differential expression. We analyzed 339 mRNAomes of five distinct cancer
types to find single genes that presented co-expression patterns strongly differentiated between normal and tumor
phenotypes. Our analysis of differentially connected genes indicates the loss of connectivity as a common topological trait
of cancer networks, and unveils novel candidate cancer genes. Moreover, our integrated approach that combines the
differential expression together with the differential connectivity improves the classic enrichment pathway analysis
providing novel insights on putative cancer gene biosystems not still fully investigated.
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Introduction

Over the past few years, cancer research has experienced

remarkable advances provided by new systems biology approaches

following the development of high-throughput technologies

coupled to novel statistical techniques [1,2]. One of the most

used methods for the study of genetic patterns in cancer tissues is

the gene expression profiling via RNAseq or microarray analysis

that provides measurements of mRNA levels of the whole genetic

landscape in a given biological sample. Generally, diseased tissues

are compared with normal controls in order to identify groups of

genes whose expression levels are significantly different in the two

phenotype conditions and consequently associated to the disease

[3,4]. This population of genes, defined as differentially expressed

(DE), is usually considered made of candidate biomarkers for the

onset and progression of the pathology and has been widely

studied for the identification of disease-related pathways [5,6].

Although differential expression studies have been widely and

successfully applied in many approaches, they present severe

shortcomings in the investigation of complex pathologies. A crucial

example is represented by carcinogenesis which is a multi-step

process involving the gradual accumulation of genetic mutations,

that can occur indifferently in regulatory or coding sites of genes.

As a matter of fact, the coding region alterations and the post-

translational modifications (e.g. phosporylation, acylation, meth-

ylation, etc.) can modify the protein activity without affecting the

gene expression level, but altering the interaction pattern with

other genes.[7]. For instance, missense and nonsense mutations in

the sites coding for protein binding regions could disrupt several

fundamental protein-protein interactions without modifying ex-

pression levels. A well-known case of this kind of changes in

cancers involves Adenomatous Polyposis Coli (APC), which is the

most common mutated gene in colorectal cancer [8,9]. The most

frequent APC mutation leads to a truncated protein that lacks the

binding sites for some interacting proteins [10]. Therefore, an

analysis based uniquely on differential expression studies could be

ineffective for the highlighting of some key genetic drivers in

neoplastic lesions. On the other hand, another crucial drawback of

the differential expression analysis consists in the fact that genes

are treated individually, so that interactions are not taken into

account. Indeed, it is widely accepted that the comprehension of

mechanisms underlying the evolution of genetic disorders like

cancer must consider the contribution of interactions among genes

[11]. Furthermore, it is essential to investigate the way these

interactions change in the disease phenotype, with respect to the

wild-type condition [12–14] since it is well established that not all

genes are active in both states. For instance, [15] showed that in

response to diverse perturbations the interaction patterns of

transcription factors can be altered causing a rewiring of the

network.

In the framework of gene expression profiling, the study of

statistically significant correlations between gene pairs can reveal
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putative interactions, dependencies or coordinated activities of

genes in a given biological state. In particular, networks based on

gene expression pairwise correlations can represent direct gene

regulations and also include genes that are indirectly connected

through regulatory pathways [16]. Furthermore, since transcrip-

tion is the result of a complex multi-level process, an inferred

correlation network takes into account not only transcription

factor-DNA interactions but also the factors that biochemically

regulate the systems. Hence, it is possible to guess that

modifications of interactions between genes under different

experimental conditions will reflect on diverse correlation pattern

outputs. In this picture, recent approaches focused on the

identification of the changes in gene co-expression structures

(quantified by pairwise correlations) between healthy and diseased

tissues to the aim of providing better insights of altered regulation

mechanisms and of indicating critical disorder driver genes [7]. In

particular, differential co-expression network analyses have been

widely applied and have shown important evidences for the

investigation of cancer gene networks [17–19] and the identifica-

tion of mutated but not differentially expressed genes [20].

The idea underlying the present study is that modifications of

gene connectivity in biological networks are associated to

significant phenotypic changes. An encouraging evidence is

reported in [15] where the authors found that the connectivity

of gene regulation in Saccharomyces cerevisiae undergoes dramatic

alterations during cellular processes. Indeed, they showed that

many transcription factors present only a small number of

interactions retained across the different conditions, while the

remaining connections are active only in specific conditions of the

system.

In the present study, we show that the network connectivity can

sensibly change in neoplastic tissues. As a connectivity measure of

a gene we used the degree because it is a fundamental observable

in graph theory and has a clear biological interpretation [15]. In

particular, we studied the gene interaction changes that emerge in

cancer tissues with respect to healthy controls by comparing the

specific inferred co-expression networks. To this aim, we

investigated on the single nodes that presented a connection

structure strongly modified between two biological phenotypes.

Non-parametric random permutation tests were adopted in order

to highlight those gene having degree variations associated to

pathology and not due to chance.

We found that a loss of connectivity in cancer networks with

respect to normal ones is a common trait among the different kinds

of cancer. Next, we found that a study of differential connectivity

can indicate tumor-related genes not revealed by differential

expression analyses. Finally, we showed how the integration of

differential expression with differential connectivity can improve

the classic enrichment analysis revealing pathways associated to

cancer hallmarks and providing insights on novel putative

biomarker systems.

Results

We analyzed expression levels of human 339 mRNAomes

including normal and neoplastic tissue samples related to five gene

expression datasets of distinct neoplasias from GEO and

ArrayExpress: colorectal, lung, gastric, pancreatic and cervical.

All samples were profiled with Affymetrix technologies and

preprocessed with Affymetrix Expression Console software (see

Material and Methods).

Loss of connectivity in cancer networks
We investigated the topological properties of co-expression

networks in the healthy and diseased conditions in terms of gene

connectivity or degree (see Material and Methods). We inferred

the normal and cancer co-expression networks based on Spear-

man correlation coefficients: two genes were connected by an edge

if the correlation coefficient between their expression profiles was

not-null at the 5% significance level with a Benjamini–Hochberg

[21] false discovery rate (FDR) below 20% (see Figure 1 and

Material and Methods).

As expected, the topology of the inferred gene networks turned

out to be deviated from a random model (see Figures 2A-E and

Material and Methods) since their degree distributions resulted

different from the ones of the corresponding random graphs with

the same average degree and the same number of nodes

(Pv10{100, Kolmogorov-Smirnov test). Furthermore, cancer

and normal networks were characterized by nodes with highly

variable degrees, from genes with a few connections to ‘hubs’ with

thousands of links (Figure 2A-F).

On the other side, the comparison between normal and cancer

networks brought out a remarkable trait common to the diverse

tumor types: co-expression gene networks of neoplastic tissues

present a reduced connectivity with respect to the healthy

condition (see Figure 2F). Indeed, a Kolmogorov-Smirnov test

showed that all cancer networks are characterized by a gene

degree which is stochastically decreased with respect to the

corresponding normal graphs (Pv10{100).

Gene differential connectivity and its interplay with the
differential expression

The significant changes of network connectivity in cancer

indicate that genes with strongly altered connections can have a

role in the cancer biology and motivate a study on a connectivity-

based scoring measure for the identification of putative cancer

drivers. To this aim, for each gene, we evaluated the differential

connectivity (DC) as difference of gene degrees in the two

phenotypic conditions and we assessed its statistical significance

with a p-value and a false discovery rate. Moreover, we studied the

performance of this measure and its relative merit with respect to

the differential expression (DE) in terms of p-value and FDR (see

Material and Methods).

An analysis of FDR as a function of p-values for both differential

measures showed that for p-values less than 0.01, there was a

proportion of false discoveries below 22% for DC and 10% for DE

(Figures 3A-E). This means that, for both measures, the number of

the resulting differential features is significantly higher than would

Figure 1. Schematic picture of connections in co-expression
graphs. Healthy condition on the left and disease-affected tissue on
the right. Green links remain unchanged in the two phenotypes. Red
connections are loss from healthy to cancer network. Blu edges are
novel connections in the cancer tissue.
doi:10.1371/journal.pone.0087075.g001

Loss of Connectivity in Cancer Networks
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be expected by chance, although the FDR of DC is greater than

the FDR of DE for each p-values.

As a further investigation, we analyzed the interplay between

the connectivity loss and the differential expression and differential

connection p-values. We found that the smaller is the p-value of

DC the greater is the number of lost connections for all datasets

(Pv10{100, Spearman correlation, see Figures 4A-E). This result

confirms the hypothesis that a significant differential connection

corresponds more likely to a loss of links from normal to cancer

tissues. Analogously, we found a positive correlation between the

gain of degree and the differential expression p-value in every

disease with the exception of colon cancer for which there is a

negative correlation (Figure 4F). This indicates that differentially

expressed genes are more likely characterized by a reduced degree

in cancer, except in the colon case for which the differentially

expressed genes tend to acquire connections in the tumor tissue

(Figures 4A-F).

Differential connectivity highlights known cancer genes
In order to investigate whether the differential connectivity can

finger toward tumor-specific genes and outperforms the differen-

tial expression analysis, we collected known cancer gene lists from

literature and curated databases to be tested for enrichment.

Hence, the choice of a given significance threshold for DC and DE

p-values turned out to be necessary. Consequently, for each cancer

data set, we built two lists collecting genes having significant

differential expression and connectivity at the same level of 0.05,

respectively (see Table S1).

Figure 2. Cancer tissues are characterized by loss of connectivity. (A-E) Cumulative distribution functions of the gene degree. (F) Boxplots of
the gene degrees for the five tissues in the two conditions. Red color refers to the cancer phenotype. Blue color refers to the normal phenotype. The
median degree in cancer is lower than in normal conditions.
doi:10.1371/journal.pone.0087075.g002

Figure 3. Benjamini–Hochberg False Discovery Rate (FDR) as a function of the p-value. Red color represents the differentially expressed
genes (DE). Blue color represents the differentially connected genes (DC).
doi:10.1371/journal.pone.0087075.g003
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The study on the colorectal cancer data set resulted in 1870

differentially connected genes and 6792 differentially expressed

genes on a number of 17400 assayed genes. The populations

turned out to be distinct with P~10{47 (Figure 4G). The DC

gene list is enriched in tumor-suppressor genes and oncogenes

commonly associated with colorectal cancer as reported in the

work of [22] (K~13, k~4, P~0:043) where K is the size of the

list of known cancer genes, k is the number of DC genes in the list

and P is the Fisher’s exact test p-value. Adopting a more stringent

level of 0.005, the DC genes are also enriched in known cancer

genes from Cancer Gene Census [23] (k~4, P~0:0067, Fisher’s

exact test), in KEGG Disease H00020 Colorectal cancer gene list

[24] (k~2, P~0:063) and in the genes mutated in colorectal

cancers as reported in the work of Wood et al. [25] (k~8,

P~0:058). On the contrary, the differentially expressed genes

resulted not enriched in the aforementioned known colorectal

cancer gene lists: in [22] (k~7, P~0:207), Cancer Gene Census

[23] (k~4, P~0:763), in KEGG Disease H00020 Colorectal

cancer gene list [24] (k~5, P~0:113) and in [25] (k~25,

P~0:703).

For the lung cancer data set, the lists of genes that are

differentially connected and expressed between normal and cancer

lung tissues included 2749 and 7125 genes, respectively (on a

number of 12157 assayed genes). Although we found a positive

correlation (P~1) between the p-values of differential expression

and the p-values of differential connectivity (Figure 4G), some

remarkable exceptions, i.e differentially connected but not

expressed genes, resulted critically associated to the pathology.

For instance, the EGFR gene, resulted to be DC (P~0:021) but

not DE (P~0:076), is an important frequently mutated oncogene

and a drug target for lung adenocarcinoma [26,27]. Moreover, the

DC gene list is enriched in genes harboring abnormalities

(mutations, amplifications and/or fusions) involved in the devel-

opment of non-small-cell lung cancer as reported in the work of

[28] (K~10, k~5, P~0:048). The list of these cancer genes

turned out to be not over-represented in the list of the differentially

expressed genes (k~4, P~0:919).

Our analysis on the gastric cancer data set resulted in 3016 DC

and 11108 DE genes (on a number of 19520 assayed genes) with

the two lists significantly distinct (P~0:047, see Figure 4G). We

found as differentially connected the receptor-regulated Smads (R-

Smads) for TGF-beta (SMAD2 and SMAD3) and for BMP

signaling pathway (SMAD1 and SMAD5) and the common-

mediator Smad (SMAD4). These genes, with the only exception

of SMAD5, are not differentially expressed (see Table S1).

Moreover, we found that the lists of genes with PDC~0 are

enriched in genes that share a TCF3-binding site motif (E47_01,

k~106, P~0:01) and in genes that share a SMAD4-binding site

motif (SMAD4_Q6, k~218, P~0:01) [29]. We note that it is

known that TGF-b-activated Smads inhibit expression of Id

proteins, which in turn inhibit DNA binding of bHLH transcrip-

tion factors such as E12 and E47 [30,31]. Consequently, the

differential connectivity analysis suggests alterations of the

aforementioned signaling activities in gastric cancer tissues.

The study on the pancreatic cancer data set resulted in 12434

differentially connected genes and 14726 differentially expressed

genes over a total of 19520 genes on the chip. Due to the large

overlapping between the two groups (Figure 4G), it is not

Figure 4. Comparison between differential expression and differential connectivity. (A-E) (Upper panel) Gene differential connectivity p-
value PDC as a function of degree ratio log2 (dc=dn). (Lower panel) Gene differential expression p-value PDE as a function of degree ratio
log2 (dc=dn). Each point represents a gene and the trend line is the least-square line. (F) Correlations between the differential expression p-value and
the gain of connections. P-values on the bars refer to right-tail tests for the positive correlations, and left-tail tests for the negative correlations. (G)
Correlations between differential expression p-values and differential connection p-values.
doi:10.1371/journal.pone.0087075.g004
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surprising that both groups are enriched for the commonly

differentially expressed genes in pancreatic ductal adenocarcinoma

resulting from the meta-analysis study performed on four different

data sets in [32]. Moreover, the three genes (KRAS, TP53, STK11)

associated to pancreatic cancer Omim Entry 260350 [33] were

found both differentially connected and differentially expressed

with the same Pv10{3. However, with a more conservative

significance level of 0.005, the cancer gene list from Cancer Gene

Census [23] was found to be significantly enriched in DC genes

(K~12, k~10, P~0:027) but not in DE genes (k~8, P~0:505).

Finally, the analysis on cervical cancer dataset revealed 2302

DC and 6186 DE genes (on a number of 12507 assayed genes)

with the two populations being significantly distinct with P~10{5

(Figure 4G). An enrichment analysis of DC and DE genes was

performed on the list provided by the work of [34] made of genes

commonly alterated together with those found mutated by their

whole-exome sequencing study in endometrial and ovarian

cancers. This study was motivated by the idea of exploiting

DNA data collected from Papanicolau tests in order to reveal

somatic mutations that involve the cervical tissue after being shed

from endometrial or ovarian cancers. This panel of genes resulted

enriched of 6 DC genes over a total of 15 (P~0:0426, Fisher’s

exact test) while included 8 DE genes (P~0:483, Fisher’s exact

test) yielding a significant overlapping only in the former case.

We outline one important remark. Although, we found that p-

values for differential connection negatively correlate with ones for

differential expression only for colon, gastric and cervix data sets,

the overall significance of the 5 independent tests suggested that

DC and DE p-values are related through a significant negative

correlation (Pmetav10{47, see Figure 4G). In conclusion, the DC

and DE genes can behave as distinct populations and our

bioinformatics analysis supports the idea that genes involved in

cancer that do not change their expression can be highlighted by

an analysis of differential connectivity. Consequently, one can

guess that the DC genes are genes harbouring mutations that alter

interactions among gene products without affecting their expres-

sion levels.

Differential connectivity suggests novel network-based
cancer biomarkers

Our study can also enlighten genes whose cancer-specific roles

may be guessed from literature or are still matter of debate and

further may motivate functional experiments about the involve-

ment of these genes in the pathogenesis of the disease. From our

analysis of the gastric cancer data set, the inhibitor of Bruton’s

tyrosine kinase (IBTK) resulted as the gene with the largest loss in

connectivity (Pv10{3) (see Table S3). As a matter of fact, the

protein encoded by IBTK downregulates kinase activity of BTK

which is in turn a negative regulator of Wnt-beta-catenin signaling

[35]. On the other hand, the IBTK protein negatively regulates the

activation of nuclear factor-kappa-B-driven (NF-kB) transcription.

Since it is well established that NF-kB and Wnt/b{catenin

signalling pathways are activated in most of gastric cancers

[36,37], it is possible to guess an involvement of IBTK in the

evolution of tumor.

In the case of colon cancer, the second top-ranked gene for loss

of connectivity with Pv10{3 (see Table S3) is the aryl

hydrocarbon receptor (AhR) that in the study of [38] turned out

to have a crucial role in suppression of intestinal carcinogenesis by

proteasomal degradation of b-catenin, which interacts with the

canonical APC-dependent pathway. Moreover, the sixth top-

ranked genè̀ deleted in polyposis 1’’ (DIP1) has been found to have

a role of tumor suppressor in colon carcinogenesis [39].

A further example comes from the lung cancer data set where

the gene TNFSF11 showed the highest loss of connectivity (see

Table S3). Previous studies suggested that this protein may

regulate cell apoptosis activating anti-apoptotic kinase AKT/PKB

through a signaling complex which involves SRC kinase and

tumor necrosis factor receptor-associated factor (TRAF) 6 (see

EntrezGene Summary: [40]. Moreover, the SRC and TRAF6

proteins are known to be involved in multiple aspects of

tumorigenesis in human lung [41,42]. The work of [8] confirms

the involvement of TNFSF11 in the migration of human lung

tumor cells. Indeed, the gene TNFSF11 contributes to tumor

metastasis acting through MEK/ERK, which in turn activates

NFKB, resulting in the activation of ICAM1.

As a final remark, our analysis of the lung tumor data set

highlighted as the second top-ranked gene for loss of connectivity

O-glycosylation initiator enzyme N-acetylgalactosaminyltransfer-

ase-14 (GALNT14). [50] showed that GALNT14 may be a

predictive biomarker for dulanermin-based therapy in NSCLC

because they found that sensitivity to dulanermin (a protein that

induces apoptosis in tumor cells) was strongly correlated with the

overexpression of GALNT14. They also found a functional link

between death receptor O-glycosylation and apoptotic signaling

showing that the both pharmacologic inhibition of glycosylation

and enzyme knockdown through small interfering RNAs targeting

GALNT14 reduced dulanermin-induced apoptosis [45].

These findings indicate that a differential connectivity analysis is

able to detect known cancer genes and also to suggest new

biomarker candidates (some potentially druggable) providing novel

hypotheses for specific functional experiments.

Differential connectivity is complementary to differential
expression to reveal cancer related pathways

Motivated by the evidences emerging in the previous sections,

one can guess that a pathway analysis on predefined gene sets that

considers both changes in gene expression and alterations in

connectivity can improve the molecular characterization of disease

mechanisms. For this reason, we first focused on the classic

enrichment study performing a Random-Set-based pathway

analysis (see Material and Methods) for the identification of

pathways of functionally related genes enriched for differential

expression [46]. Consequently, we investigated the pathways that

resulted deregulated from a combined analysis of enrichment of

genes that were either differentially expressed or differentially

connected (DEC) (see Eq. 5 in Material and Methods). Our

analysis tested gene lists a priori belonging to the canonical pathway

(C2-CP) collections of Molecular Signature Database (MSigDB)

[5] which collects 1452 pathways from the Reactome, KEGG,

Biocarta and other databases. The behaviour of the FDR as a

function of the enrichment p-value was separately studied in DE

and DEC cases (see Figures 5A-E). For all cancers (except for

pancreatic case), the comparison of FDRs in the two metrics

showed that DE values were always greater than the correspond-

ing DEC ones and the latter resulted less than 15% at a

significance level less than 0.01. Furthermore, for colon and lung

data sets, the curves of FDR resulted well separated, e.g. taking

into account the differential connectivity measure yielded a 91%

reduction of FDR value for a p-value of 0.003. As a consequence,

we speculated that the pathways involved in tumor biology are

deregulated in gene expression and characterized by altered gene

interactions not necessarily affecting the expression patterns. A

biological validation of this assumption required the assessment of

the relative efficiency of the DEC measure in the identification of

pathways underlying the general mechanisms and the tissue-

specific traits of neoplasias.

Loss of Connectivity in Cancer Networks

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e87075



In the framework of general cancer phenotype, as a specific

example, we validated the two metrics in the identification of

Reactome Immune System, which is related to one of the most

important cancer hallmarks [46]. We performed a meta-analysis of

DE and DEC enrichment combining the p-values associated to the

different tissues (Fisher’s combined probability test). Interestingly,

the DEC meta-analysis p-value associated to Immune System

(Pmetav10{9) turned out to be much smaller than the

corresponding DE value (Pmeta~0:02) which is above the

significance level of 0.01 (Figure 5F). We point out that if one

considers the tissue-specific enrichment analysis, the DEC

enrichment p-values always result smaller than the corresponding

DE values. Moreover, the classic pathway analysis is not able to

indicate, for any organ, the Reactome Immune System as

significant at level of 0.05 either (see inset in Figure 5F).

On the other side, the ability of detecting organ-specific cancer

traits was tested on appropriate `̀core sets’’ that collect known

tumor-specific hallmark systems (see Material and Methods). In

particular, we investigated whether DEC enrichment analysis

outperforms the classic DE approach in prioritizing the pathways

in the core set.

We studied separately the performances of DE and DEC

measures to identify as significant the cancer core set pathways. In

particular, for each measure, we assessed the significance of the

number k of core-set pathways having a Pv0:01 (Figure 5G) by

using Fisher’s exact tests. We therefore note that the exploitation

Figure 5. Comparison between pathway enrichment studies for differential expression and differential connectivity. (A-E)
Benjamini–Hochberg False Discovery Rate (FDR) as a function of the p-value. Red color refers to the pathways enriched of differentially expressed
genes (DE). Blu color refers to the pathways enriched of differentially expressed genes or differentially connected ones (DEC). (F) Reactome pathways
of Immune System. Enrichment meta-analysis p-values across the tissues for`̀Reactome Immune System’’, its first and second sub-pathways. The
histogram in the inset shows the tissue-specific enrichment p-values of̀̀ Reactome Immune System’’. (G-H) Core set pathway enrichment analysis. The
numbers of core set pathways found as significant at 0.01 level (G) and in the top-ranked positions (H) are displayed on the bars. In the inset it is
reported the p-value associated to the relative merit of DEC measure with respect to DE obtained by a permutation test.
doi:10.1371/journal.pone.0087075.g005
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of DEC genes allows to better reveal known cancer pathways.

Indeed, the DEC enrichment outperforms the DE analysis both in

terms of number of significant pathways and p-values for colon,

lung and cervix. The difference between DEC and DE perfor-

mances was assessed by a random permutation test. In particular,

we compared the weighted numbers of significant core set

pathways resulting from the two analyses (see Materials and

Methods). Although there is a strong evidence of the relative merit

of DEC analysis only in colon and lung (Pv10{5) together with a

slight indication for cervix (P~0:08), we see that considering

DEC genes in pathway enrichment analysis globally unveils more

signals associated to the pathology, since the overall significance is

Pmetav10{7 (see inset in Figure 5G).

Furthermore, we quantified how much the pathway rankings

obtained with the two metrics differ from a random ordering in the

identification of cancer pathways (Figure 5H). To this end, for

each measure, we ranked the pathways in terms of enrichment p-

values and counted the number k of core-set pathways present in

the first top-ranked positions in the lists (see Table S2). For

instance, in colorectal cancer, in the first 104 positions we found

11 core-set pathways enriched of DE genes (P~0:002) versus 18

pathways enriched of DEC genes (P~10{8). Interestingly, we

note that DEC enrichment analysis always outperforms the DE

measure with the exception of gastric and pancreas cases, for

which the two metrics are equally efficient in the identification of

the core set pathways. Indeed, the DEC approach globally ranked

in higher positions cancer-related pathways than the classical DE

enrichment analysis as confirmed by Fisher’s combined probability

test p-values show (DE Pmeta~10{8; DEC Pmetav10{50).

Finally, we point out that for pancreas case, the cancer core set

is unexpectedly under-represented among both DE and DEC

pathways (Figure 5G-H). As a matter of fact, rather than the

pathways commonly associated to pancreatic cancer, DEC

analysis found more altered those pathways (see Table S2)

involving the neuroactive ligand-receptor interaction and the

olfactory transduction together with their superfamily of rhodop-

sin-like G protein-coupled receptors (GPCRs). The links between

olfactory transduction and pancreatic cancer are still not clear but

previous sequencing analysis of human pancreatic tumors reported

many somatic mutations on the olfactory receptor genes [47]. The

GPCRs are cell-surface molecules involved in signal transmission

that are known to have crucial roles in tumor growth and

metastasis [48]. GPCRs represent a gate through which outside

signals, such as insulin, glucose, or carcinogens, may be

transmitted into a cell and induce a cascade of responses related

to carcinogenesis [47]. This last example demonstrates that our

integrated approach that combines measures at gene-level (DE)

with measures at systems-level (DEC) may enlighten novel cancer

driver processes shifting the focus on mechanisms of carcinogenesis

and tumor progression not still properly investigated.

Discussion

Differential gene expression analysis is a standard technique that

has been widely and successfully applied for the identification of

disease biomarkers. However, it is well established that in complex

pathologies like cancer, alterations in the coding regions of genes

can influence their functional activities without affecting their own

expression levels. In this framework, we hypothesized that co-

expression network approaches based on the study of connectivity

could reveal those driver genes that change their interactions

without a sensible difference in expression.

For instance, consider a transcription factor (TF) A which is co-

expressed with a collection B of genes in the healthy tissue. Then,

suppose that in cancer tissue the TF A coding gene turns out to be

not differentially expressed while the mutual co-expression with B

is significantly changed (e.g. some connections are removed).

Although TF A retains its normal expression level in the diseased

tissue, its activity has been significantly altered and consequently

its regulatory effects acting on B have been modified (i.e. the

expression levels of genes whose promoter regions this transcrip-

tion factor binds are mutated). In other words, the ‘‘rewiring’’ of A

can be driven by alterations that affect the co-expression with B,

keeping unchanged the expression level of A. Alterations of this

kind are widely known in literature [49,50] and can occur

according one of the following mechanisms: (1) Mutations in the

coding region of A that lead to non-functional protein, i.e. a

protein unable to bind the promoter of B; (2) Alterations in the

mechanisms underlying post-translational modifications of TF A

that inhibit its activity (i.e. ligand interactions, phosphorylation,

acetylation, oxidation, glycosylation, etc.). Consequently, we

would be not able to reveal a possible role of A in the disease

simply considering its expression levels, while from a differential

connectivity point of view we could uncover its activity modifi-

cations due to the aforementioned mutations.

Motivated by these arguments, we introduced the differential

connectivity on gene co-expression networks as a measure to

identify candidate genes that could have a key role in cancer but

that could not be highlighted by a differential gene expression

analysis. In particular, we used pairwise correlations as co-

expression measure to assess direct and indirect interactions

between genes represented in the form of gene networks. It is

important to point out that the adopted co-expression measure is

able to highlight co-regulation between genes when it is mediated

both by protein-coding elements present on the microarray and by

non-coding elements not explicitly assayed in the network.

Our study shows that loss of connectivity in co-expression gene

networks is a common trait of cancer tissues and that connectivity-

based approaches can highlight novel putative cancer genes. The

over-representation of known cancer genes in our findings gives a

reasonable prospect that the list of top ranked genes harbours

some novel tumor biomarkers not yet recognized. Importantly, in

the study of gene biosystems, our connectivity-based method

complements and extends the informative content provided by

differential expression approaches. Indeed, we found that known

pathways involved in tumor biology are enriched of genes

characterized by significant alterations either in expression profiles

or in their co-expression patterns (DEC).

Motivated by these findings, we suggest our integrated pathway

analysis as a valid hypothesis generator for the discovery of novel

cancer-related biosystems. As a matter of fact, an investigation of

pathways significantly enriched of DEC genes at level of 0.05 for

all cancer datasets provides a picture of the mechanisms that are

commonly altered in cancer regardless the tissue type. These

pathways include – among others – gene lists related to the

adaptive response and the cytokine signaling in immune system

(see Table S2). These are expected to be altered since evasion of

cancer cells from destruction by immune cells, and tumor-

promoting consequences of inflammatory responses are known

hallmarks of cancer [46]. In detail, we point out that our study

focuses the attention on the genes involved in MHC class II

antigen presentation and on those genes that are responsible for

the antiviral mechanism mediated by IFN-stimulated genes. Our

findings confirm the requirement of a deeper understanding of the

functions of these molecules in order to identify additional targets

for new immunotherapeutic strategies that will aim to interfere

with undesidered immune responses [51,52].
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In summary, the findings of the present study show a

correspondence between known cancer biomarkers and differen-

tially connected genes. Hence they yield the encouraging evidence

that the biological meaning of co-expression changes can be

interpreted in terms of modifications of cancer genome landscape.

Consequently, a natural outlook of this work would be a rigorous

biological validation that confirms the hypothesis that loss of

connectivity fingers toward genes harbouring alterations (e.g.

mutations, losses and deletions, promoter DNA methylation) or

affected by post-translational modifications (e.g. phosphorylation,

acylation, methylation, etc.) in tumours. In the future, this

validation process should be possible as matched multi-dimen-

sional data with a high number of samples for each kind of

mutations will be available thanks to the research efforts in cancer

systems biology.

Materials and Methods

Data collection
We collected five published gene expression datasets associated

to five different cancer tissues for a total of 339 mRNAomes: (E-

MTAB-829) 14 tumor and 14 matched normal samples of

colorectal cancer from Affymetrix GeneChip Human Exon 1.0

ST; (GSE10072) 49 tumor and 58 healthy controls of non small

cell lung cancer from Affymetrix GeneChip HG U133A;

(GSE13911) 31 tumor and 38 healthy controls of gastric cancer

from Affymetrix GeneChip HG U133Plus2; (GSE15471) 39

tumor and 39 healthy controls of pancreatic cancer from

Affymetrix GeneChip HG U133Plus2; (GSE9750) 33 tumor and

24 healthy controls of cervical cancer from Affymetrix GeneChip

HG U133A. Quantification of mRNAs was perfomed using

Affymetrix microarrays, and the data were preprocessed using

Affymetrix Expression Console Software: probe-level data in each

tissue were background-adjusted, base 2 log transformed and

normalized with the Robust Multi-array Analysis procedure.

Network inference
Given n labelled samples (i.e. patients) and m variables (i.e.

genes) associated to a given phenotype, let us consider the

expression profile data set represented by the n|m matrix

X~(X1,X2, . . . ,Xn)T where each Xi[Rm. The mathematical

representation of co-expressions between gene profiles can be

given by a graph or a network. A graph is defined as a pair of sets

G~(V ,E) where V is the set of nodes or vertices (i.e. genes) and E
is the set of edges (i.e. non-null correlations) that join the nodes.

The connection structure of the graph G can be represented in the

form of a m|m adjacency matrix A(G), where Aij~1 if node i

and node j are correlated and Aij~0 otherwise. Since the graph is

undirected (i.e. links in the network do not present any direction)

we set Aij~Aji, with the convention that self-loops are absent, i.e.

Aii~0.

In order to build the co-expression networks associated to the

two different phenotypes, we divided each data set in a pair of

subsets, called ‘normal’ and ‘cancer’, according to the correspond-

ing label of the samples. Then, in order to take into account non-

linear interactions between the variables, we considered the

Spearman correlation coefficients between each pair of genes,

which are equivalent to the linear Pearson correlation coefficients

between ranks. For each correlation value, we evaluated the p-

value for testing the hypothesis of no correlation against the

alternative that there is a non-zero correlation, in the large sample

approximation. The large sample approximation is based on the

asymptotic normality of Spearman rank coefficient rs, suitably

standardized, i.e. for a number of samples larger than 10, in the

null case the standardized version of rs, r�s ~rs

ffiffiffiffiffiffiffiffiffiffi
n{1
p

, follows an

asymptotic N(0,1) distribution [53]. In order to control the

expected proportion of incorrectly rejected null hypotheses, we

evaluated the Benjamini-Hochberg False Discovery Rate. Then,

we set a link between two genes when the p-value was less than

0.05 and the FDR below 20%. In this way, we obtained ‘normal’

and ‘cancer’ networks for each disease where nodes are genes and

links are significant not null Spearman correlation coefficients

between pairs of genes.

Gene differential connectivity in co-expression networks
The most elementary feature of a complex network is the degree

or connectivity di of the i{th node, that is defined as the number of

edges connected to that node. Hence, it can be considered a

measure of the number of vertices interacting with a certain node.

The degree of a node can be evaluated in terms of adjacency

matrix as

di~
Xm

j~1

(Aij) : ð1Þ

From a biological point of view, in a co-expression network the

degree of the i{th node quantifies the amount of genes ‘co-

expressed’ with the i{th gene. Given dn
i and dc

i the degree of the

i{th gene in normal and cancer tissues, respectively, one defines

Di~dc
i {dn

i : ð2Þ

Consequently, the i{th gene is said to be ‘‘differentially

connected’’ (DC) when Di is significantly different from zero. In

order to assess the statistical significance of Di, for each dataset, we

randomly assigned patients to one of the two phenotypic groups

and evaluated D�i for each permutation. We repeated the shuffles

s~1000 times to obtain the random distribution [54]. The p-

value, Pi, associated to i{th degree difference Di is evaluated as:

Pi~#fjD�i jwjDijg=s : ð3Þ

where jDj is the absolute value of D and #fSg is the cardinality

of set S. For the multiple hypothesis correction, we controlled the

Benjamini–Hochberg False Discovery Rate associated to each Pi

[21].

Gene differential expression
The gene differential expression p-values were evaluated by a

two-tailed Student’s t-test and the p-values were controlled for

multiple testing using the Benjamini–Hochberg procedure.

Random networks
From a mathematical point of view, the analysis of degree

distributions is fundamental for the classification of different

topologies of networks. In order to check that inferred networks

were significantly different from random graphs with the same

average degree and same number of nodes, the following

procedure was carried out. First, we built random graphs where

each pair of nodes was connected with the elementary probability

pr~SdT=N where N is the number of nodes and SdT is the

average degree of the real network (see dashed lines in Figure 2A-

E). Then, we assessed the difference between the degree
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distributions relative to true and random networks by using a

Kolmogorov–Smirnov test.

Pathway enrichment analysis for differential expression
and differential connectivity

In order to test the enrichment of a gene-set for differential

expression, a restandardized p-value was computed using a

Random Set (RS) procedure. In details, the statistical significance

of the relationship of a given pathway with the phenotype is

assessed with respect to two null hypotheses: the first concerns the

lack of association between gene expression profiles and pheno-

type; the second concerns the invariance of the enrichment score

with respect to the identity of the genes involved in the gene set

[6]. The procedure is described in the following. Let si

(i~1, . . . ,m) be a score associated to each gene. This score is a

quantitative measure of differential expression which in our case is

based on a two-sample t-statistics ti, where the two samples are

different phenotypes or conditions. Specifically,

si~ W{1(F̂F (ti))
�� ��i~1,:::,m ð4Þ

where F̂F is the cumulative distribution function for a t distribution

having n{2 degrees of freedom, and W is the standard normal

cumulative distribution function. Given the gene set G with

g~card(G), the restandardized measure of its deregulation is

Z~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(m{1)

(m{g)

s
:

�XX{m

s
,

where �XX~
1

g

Xg

i~1
si , and m and s are the average and the

standard deviation estimated on the full set of gene scores,

respectively. Significantly large values of Z are expected if G is

deregulated in the experimental conditions analyzed. The p-values

are computed using a phenotypic permutation test [54]. In order

to test the first null hypothesis, RS method performs 1000

permutations of the sample labels and recomputes the statistic on

each permuted data set. The restandardized form of the statistics is

performed in order to take into account the second test.

To gain biological insights from the analysis of the differential

connected or expressed genes, we searched for the signaling

pathways impacted by the observed changes in terms of expression

or connection patterns at gene-level. The investigation of the

deregulated pathways resulting from a combined analysis involv-

ing both differentially connected and expressed genes was

performed as follows. For the i{th gene, p-values of differential

expression and connection were combined to form the test

statistics

Ti~{ log (PDE,i){ log (PDC,i): ð5Þ

Then, for each pathway, we computed an enrichment score for

the differential expression or connection (DEC) as the average of

Ti on the genes in the pathway and the score significance was

assessed by permutation tests with 1000 random drawns of gene

sets of the same size as the pathway [54].

For both enrichment pathway analyses, the multiple testing was

controlled by applying the Benjamini-Hochberg false discovery

rate (FDR) algorithm [21].

Construction of cancer pathway core sets
We built the cancer core sets using the following procedure. The

first step was the selection of the entries in the Human Disease

section of KEGG Pathway collection associated to the specific

cancer of interest, e.g. hsa05210 for colorectal cancer. For each

entry, we collected the KEGG related pathways (e.g. MAPK

signaling pathway, Cell cycle, etc.). Then, for each of them we

retrieved the related pathways from the remaining databases

according to specific queries on the MsigDB C2-CP collection.

Finally, the resulting pathways were manually filtered and

collected in a curated cancer-specific core set. The exceptions in

this procedure were represented by the gastric and cervical cancer

cases for which a specific KEGG pathway entry is not present.

Consequently, we used the same procedure with the condition that

the starting KEGG entry were ‘Pathways in Cancer’ (hsa05200)

that corresponds to the most generic cancer entry.

DEC measure validation by a permutation test
Given the p-values of the core set pathways for DE and DEC

measures, we evaluated the score as

tcore~{
X

Pv0:01

( log P) P[fcore set pathway pvaluesg

in order to obtain a weighted version of the counting of core set

pathways at the significance level of 0.01. Then, we tested whether

the difference tcore(DEC){tcore(DE) were significantly greater

than the one obtained on 10000 sets of pathways, with the same

size of the core set, randomly drawn from the entire collection.

Supporting Information

Table S1 Differential gene expression and connection. Separate

sheets are provided for each tissue. For each gene, the following

information is reported: gene symbol, p-value DE, FDR DE, t-test

statistics DE, p-value DC, FDR DC, loss of connections.

(XLSX)

Table S2 Pathway enrichment analysis for differential expres-

sion and connection. Separate sheets are provided for each tissue.

For each pathway in C2-CP collection of MSigDB, the following

information is reported: pathway name, p-value DE, FDR DE, p-

value DEC, FDR DEC. The yellow highlighted pathways refer to

the tissue-specific cancer core set.

(XLSX)

Table S3 Top ranked gene lists. List of genes having a

differential connection p-value equal to zero that are ranked

according the descending order of the absolute value of the degree

difference.

(XLSX)
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