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Abstract

Due to impressive achievements in genomic research, the number of genome sequences has risen quickly, followed by an
increasing number of genes with unknown or hypothetical function. This strongly calls for development of high-throughput
methods in the fields of transcriptomics, proteomics and metabolomics. Of these platforms, metabolic profiling has the
strongest correlation with the phenotype. We previously published a high-throughput metabolic profiling method for C.
glutamicum as well as the automatic GC/MS processing software MetaboliteDetector. Here, we added a high-throughput
transposon insertion determination for our C. glutamicum mutant library. The combination of these methods allows the
parallel analysis of genotype/phenotype correlations for a large number of mutants. In a pilot project we analyzed the
insertion points of 722 transposon mutants and found that 36% of the affected genes have unknown functions. This
underlines the need for further information gathered by high-throughput techniques. We therefore measured the metabolic
profiles of 258 randomly chosen mutants. The MetaboliteDetector software processed this large amount of GC/MS data
within a few hours with a low relative error of 11.5% for technical replicates. Pairwise correlation analysis of metabolites over
all genotypes showed dependencies of known and unknown metabolites. For a first insight into this large data set, a
screening for interesting mutants was done by a pattern search, focusing on mutants with changes in specific pathways. We
show that our transposon mutant library is not biased with respect to insertion points. A comparison of the results for
specific mutants with previously published metabolic results on a deletion mutant of the same gene confirmed the concept
of high-throughput metabolic profiling. Altogether the described method could be applied to whole mutant libraries and
thereby help to gain comprehensive information about genes with unknown, hypothetical and known functions.
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Introduction

The technological progress in genomic research led to a

dramatic increase of knowledge of whole genome sequences,

opening the demand of understanding the complex and dynamic

processes of gene expression, proteomics and metabolic pathways.

While a rapid development in multiparallel analytical methods for

transcriptomics and proteomics has already taken place [1] the

field of metabolomics still lacks appropriate techniques. Only in

recent years first metabolic high-throughput methods were

published [2–5].

Compared to the other Omics-platforms, metabolomics closely

reflects cell activity at the functional level and therefore is often

directly correlated with the cellular phenotype. Observed changes

in transcriptome and proteome level do not always correspond to

phenotypic alterations [6]. Even the interpretation of metabolic

data is often not straightforward. Due to the convoluted state of

cell metabolism, where many metabolites are involved in different

pathways, it is difficult and sometimes even impossible to establish

a direct link between genes and metabolites [6].

The Gram-positive soil bacterium Corynebacterium glutamicum is

widely used in the industrial production of amino acids such as L-

glutamate and L-lysine [7]. Two independent groups published

the genome of C. glutamicum, containing approximately 3000 genes

[8,9]. Applying homology studies, functions could be assigned to

around 83% of the protein-coding genes, many of them putative

or even highly speculative [8].

Nowadays large transposon mutant libraries are available for

defined organisms, applying random transposon mutation [10–

12]. For example, C. glutamicum was used to generate over 10,000

[13] or even 18,000 [14] mutants. Moreover, Suzuki et al. [14]

added a high-throughput transposon insertion location method,

working with a thermal asymmetric interlaced PCR (TAIL-PCR)

[15] to amplify transposon border regions. Using the sequenced

TAIL-PCR products with BLAST, 18,000 mutants were identi-

fied. Such a library of identified mutants offers a valuable source

for research in systems biology.

We [3] developed a high-throughput method for the analysis of

metabolic profiles of C. glutamicum mutants and showed, that it is

possible to measure 72 samples per day, assuring high sensitivity as

well as good reproducibility of the analysis. Nevertheless, our

method revealed two small bottlenecks in throughput: insertion

site determination and data processing. While the measurement of

hundreds of mutants could be carried out within days, processing

of the corresponding GC/MS data took weeks because of the
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absence of appropriate software. Secondly, the determination of

the insertion sites was missing a high-throughput method and

therefore only single mutants were identified.

In recent years, several automatic GC/MS processing software

packages have been developed amongst others: TagFinder [16],

MetaboliteDetector [17], MetAlign [18], Mzmine 2 [19], which all

reduce the processing time significantly. In our study we used a

further developed version of our in-house developed software

MetaboliteDetector to process 861 samples automatically, com-

prising 774 mutant, 45 wild type and 42 quality standard samples

within a few hours. Together with the here-described adapted

high-throughput insertion point determination for the C. glutami-

cum transposon mutant library, we were able to study changes in

the metabolic phenotype and combine these with data of the

genomic background for every single mutant of this random

transposon mutant library.

Results

High-throughput Insertion Point Determination
An insertion point determination was established using the

TAIL-PCR method [20] for our in-house C. glutamicum transposon

mutant library. This transposon mutant library was created by the

aid of the vector pAT6100 [13] and the restriction deficient wild

type derivative C. glutamicum Res167. As the success-rate of the

TAIL-PCR is dependent on the binding of the degenerated primer

close to the transposon resulting from the pAT6100 vector in the

genome, different degenerated primer pairs were used in parallel

to increase efficiency. The adapted procedure was used for the

screening of 1152 mutants. Only mutants that resulted in an

adequate amplification regarding quality and length of the PCR

product were used for sequencing. For 87% of the submitted DNA

fragments the length of the sequence was sufficient to successfully

identify the mutant via a BLAST search, leading to the accurate

insertion point determination of 722 mutants in total.

As described before by Tauch et al. (2002) [21], the vector

pAT6100 with its transposable element IS6100 is randomly

integrating into the genome of C. glutamicum and has no site-

preference. To prove this, we plotted all 722 determined insertion

points onto the genome of C. glutamicum ATCC 13032 (figure 1). As

expected, the distribution of the transposon insertion sites over the

whole genome was random. Table 1 shows a summary of the

identified gene loci. Over 85% of the transposons hit a gene,

strikingly close to the coding density of 87% in C. glutamicum, which

therefore indicates a representative distribution of mutations in the

genome. For 36% of the here described mutated genes no or only

a hypothetical function was found. This is more, than the 17%

reported by Kalinowski et al. (2003) [8]. All 611 affected genes

were further analyzed by an alignment generated with our in-

house developed software tool EnzymeDetector [22]. EnzymeDe-

tector automatically compares and evaluates assigned enzyme

functions from the main annotation databases and supplements

them with its own function prediction. With the aid of

EnzymeDetector another 20 hypothetical genes were identified,

e.g. the gene NCgl0528 encoding the pyruvate water dikinase (EC

2.7.9.2), which is annotated as hypothetical protein in the NCBI

database. Similarly, we found additional information for many

other genes. In total, only 67 of the mutated genes were already

investigated in C. glutamicum and discussed in publications. This

underlines the need for high-throughput techniques to analyze not

only the function of single genes, but the functions of large sets of

genes.

High-throughput Metabolic Profiling
In a pilot project, comprising the metabolome analysis of 258

randomly chosen mutants (table S1) of the C. glutamicum transposon

mutant library, we used our previously published method for

metabolic profiling [3]. An overview of the relative growth of all

investigated mutants on minimal medium compared to the wild

type is shown in figure 2. The mutants can be divided into four

groups. A first group including 22 mutants showed no or only

minimal growth. While these mutants were able to grow on

complex medium so that the insertion point of the transposon

could be determined, the analysis of the metabolic profile on

minimal medium was impossible because of low biomass yields.

Still, these mutants are interesting, since the mutation damages

essential parts for growth on minimal medium with glucose as the

sole carbon source. Therefore it is not surprising to find mutations

in genes encoding for enzymes involved in glycolysis (NCgl1526

encoding the glyceraldehyde-3-phosphate dehydrogenase, EC

1.2.1.12), the pentose phosphate pathway (NCgl1536 encoding

the ribulose-phosphate 3-epimerase, EC 5.1.3.1) or the valine,

leucine and isoleucine pathway (NCgl1219 encoding the dihy-

droxy-acid dehydratase, EC 4.2.1.9 and NCgl0245 encoding the 2-

isopropylmalate synthase, EC 2.3.3.13). Also an intergenic

mutation (mutant P21E12), that did not hit a gene directly was

found within this group. A closer look revealed that this mutation

is located 18 bases upstream of the gene NCgl0935, encoding the

phosphopyruvate hydratase (EC 4.2.1.11). This might lead to a

damage of the promoter region causing a decrease in gene

expression of NCgl0935. It is noteworthy, that within this small

group five of the affected genes have already been investigated

before including some of the already mentioned enzymes ([23],

[24], [25], [26], [27]). Another 29 mutants form the second group

that showed reduced growth (40–80%) compared to the wild type.

This group comprises the most interesting targets for metabolic

profiling, since the mutations affect growth noticeably, but the

growth is still sufficient for metabolome analysis. By far the largest

group, with 204 mutants, contains the mutants with growth similar

to the wild type (80–120%). These mutants comprise a mixture of

silent mutations and mutations with measurable influence on the

organism, still allowing comparable growth to the wild type on

minimal medium. The smallest group of mutants includes five

mutants that showed enhanced growth compared to the wild type

(.120%).

For the analysis of the GC/MS samples, we used our in-house

software MetaboliteDetector [17] in the version 2.0.7. Metaboli-

teDetector is a device-independent GC/MS data processing

software, that automatically detects, identifies and quantifies

metabolites in either a targeted or non-targeted approach.

Metabolite identification was performed with a combined library,

achieved by a merge of our in-house library with the Golm

Metabolome Database [28]. This combined library comprises

more than 2500 substances, that can be divided into 1522

metabolite derivatives and 1053 unidentified substances. In a non-

targeted mode, MetaboliteDetector detected up to 292 substances

with biological response in the C. glutamicum samples. In total, we

found 186 distinct substances in all experiments including

unidentified substances. The overall relative error, determined

by taking the mean of the relative error of all identified metabolites

in the quality standards, resulted in a value of 11.5%, which

underlines the good reproducibility and stability of the method. A

list of all reproducibly quantified metabolites in the wild type is

shown in the supplemental material (table S2).

Mutant Screening with Genomic and Metabolic Tools
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Pairwise Correlation Analysis
In contrast to mRNA and proteins, metabolites are not newly

synthesized but are formed by transformation of precursor

metabolites [29]. Because of this close connection to other

metabolites and pathways they are highly dependent upon each

other, which can be determined by correlation analysis, principal

component analysis or hierarchical cluster analysis. Steuer et al.

[30] analyzed pairwise correlations of metabolites within biological

replicates of potato plants and found that even changes within the

metabolites of biological replicates with identical genotype and

grown under the same conditions were sufficient to draw specific

patterns in the pairwise correlation of the metabolites. This pattern

can be seen as a unique fingerprint.

Unlike Steuer et al., we analyzed the pairwise correlation of

metabolites not within one genotype, but over many different

genotypes. Due to the high number of genetic perturbations, the

dependencies of metabolites in the metabolic response of C.

glutamicum should become visible. Before correlating the ratios the

values were log2 transformed. Thereby a robust image of the

dependencies of the metabolites should be generated. As can be

seen in figure 3 the metabolites show correlations in the range of

20.53…0.84. Since the pairwise correlation was done with a high

number of different genotypes, which also provide unspecific

changes in their metabolic profile, the correlations are quite low.

Nevertheless, tendencies in the correlation of metabolites can be

seen. The metabolites of the TCA cycle, especially fumarate,

Figure 1. 722 transposon insertion points plotted onto the genome of C. glutamicum ATCC 13032 (Genbank Acc. No. NC006958).
The plot was generated with DNAPLOTTER 1.4. The circles show (from outward to inward): (I) coding regions (forward: grey, reverse: black), (II)
overview of all determined insertion sites (red), (III) identified genes with hypothetical function (blue), (IV) insertion sites of mutants that were
analyzed within the high-throughput metabolic profiling (green), (V) GC content (black: above average, red: below average) and across circle (II) to
(IV) the deleted genes in the restriction deficient wild type modification Res167 (black: DcglIM, DcglIR and DcglIIR).
doi:10.1371/journal.pone.0086799.g001

Table 1. Overview of the insertion point determination.

Sum Coverage [%]

Located insertion points of transposons 722

Transposon hits a gene 611 851

Genes within an operon 334 552

Genes with unknown or
hypothetical function

222 362

Genes investigated in C.glutamicum 67 112

1data refer to overall located transposons;
2data refer to transposons that hit a gene.
doi:10.1371/journal.pone.0086799.t001
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malate and succinate show a high correlation. Also metabolites

associated with glutamate like glutamine and proline show high

correlations as well as the fatty acids octadecanoate, hexadecano-

ate and tetradecanoate. In addition, high negative correlations

were found for AMP and succinate to some fatty acids and for the

non identified metabolite unknown#sst-cgl-008 to serine and

glycine.

The matrix of correlation values in figure 3 provides detailed

information but for a better overview of the relationships between

the metabolites, the complexity has been reduced by a dendro-

gram shown in figure 4. This kind of presentation of the pairwise

metabolite correlation shows expected connections and reflects

already known structures in the metabolism. The metabolites of

the TCA cycle fumarate, malate, succinate and a-ketoglutarate,

with exception of citrate, form one group. Similarly, metabolites of

the glycolysis like phosphoenolpyruvate and glycerate-3-phosphate

are arranged in another group, while fructose-1,6-bisphosphate is

not associated with them. Metabolites associated with glutamate

like glutamine and proline form another group while glutamate

itself can be found in a group together with citrate. Very

interesting is the connection of so far non identified metabolites to

known metabolites. The metabolite NA_1705.4 shows a correla-

tion to the glutamate associated metabolites glutamine and

proline. Another non identified metabolite NA_1375.4 is associ-

ated with the fatty acids (figure 4).

Screening for Pattern in Specific Pathways
As shown in the pairwise correlation analysis, metabolites are

highly dependent on each other. Consequently, mutations often do

not affect only single metabolites but pairs or even whole sets of

closely related metabolites. We used information gathered by the

pairwise correlation of metabolites to search for patterns in the

metabolic profiles. The data set was screened for accumulation of

significant changes in specific pathways.

At first the TCA cycle was analyzed. Figure 5A shows a

heatmap representing the peak area ratios of TCA cycle

intermediates between 11 selected mutants and the wild type.

Mutants were selected for this plot when at least two metabolites of

the TCA cycle showed significant changes compared to the wild

type (p-value 0.01, adjusted by Bonferroni correction). As

expected, fumarate, malate, and succinate are co-regulated, while

the early TCA cycle metabolites citrate and a-ketoglutarate seem

to be regulated independently from the ones mentioned above.

Fumarate, malate and succinate also formed a group in the

pairwise correlation of metabolites over all mutants (figure 4).

While citrate was separated from the other metabolites of the TCA

cycle, a-ketoglutarate was associated with the group of fumarate,

malate and succinate in the pairwise correlation analysis.

A similar approach was applied to investigate selected

metabolites associated with the glutamate metabolism (figure 5B).

Unlike the results for the TCA cycle intermediates, the ratios of

the glutamate related metabolites did not show a homogeneous

picture. Interestingly, the two mutants P7E1 and P7A10 showed a

similar pattern regarding metabolite ratios. While the levels of

proline and glutamine were increased, the levels of glutamate, a-

ketoglutarate and N-acetyl-glutamate were slightly decreased. In

the mutant P7A10 the gene glnE (NCgl2147) is affected, which is

encoding for the glutamate-ammonia-ligase adenylyltransferase

(EC 2.7.7.42) that is involved in the regulation of ammonium

uptake. In the mutant P7E1 the insertion point of the transposon is

still unknown.

A list of the analyzed mutants included in the figures 5A and 5B

is shown in table 2. Five mutants showed significant changes in the

TCA cycle, as well as in glutamate associated metabolites, whereas

the others were either involved in the TCA cycle or the glutamate

metabolism. In the following section several mutants that showed

an interesting metabolic response compared to the wild type are

investigated in detail.

Analysis of Single Mutants Involved in Glutamate
Metabolism

The detailed analysis of the metabolome of 258 mutants would

go beyond the scope of this study. Therefore, we focused the

analysis on single mutants that were linked to the glutamate

Figure 2. Histogram displaying the relative optical density (% OD) compared to the C. glutamicum wild type. Measurements were
done after 7 hours incubation in glucose minimal medium (MM). Mutants can be divided into 4 groups: no or only minimal growth on MM (red),
reduced growth (yellow), equal growth (green) and enhanced growth (blue) compared to the wild type.
doi:10.1371/journal.pone.0086799.g002
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metabolism, either on the genomic or the metabolic level. The

mutant P7A10 takes a special position among the analyzed

mutants. Not only the function of the disrupted gene is known, but

also the metabolic profile of a deletion mutant of the same gene

has been already analyzed and published by Rehm et al. [31]. The

affected gene is glnE (NCgl2147), encoding an adenylyltransferase

(EC 2.7.7.42), which is part of the ammonium assimilation in C.

glutamicum and catalyzes the adenylation/deadenylation of the

glutamate-ammonia ligase (EC 6.3.1.2). The organism possesses

two ways to assimilate ammonium (figure 6A), the glutamate

dehydrogenase pathway (GDH) and the glutamine synthetase/

glutamate synthase pathway (GS/GOGAT). While the glutamate

dehydrogenase pathway is permanently active and has only a low

affinity to its substrates, the GS/GOGAT system is regulated by

the supply of nitrogen and shows a high affinity to ammonium. As

the GS/GOGAT pathway consumes one extra mole of ATP per

mole of fixed ammonium compared to the GDH pathway [32], it

is down-regulated when nitrogen is available in sufficient amounts.

One mechanism of regulation of the GS/GOGAT system is the

inactivation of the glutamate-ammonia ligase (EC 6.3.1.2,

formerly known as glutamine synthetase) by adenylation, caused

by adenylyltransferase. A mutation of the adenylyltransferase

therefore leads to an increased activity of glutamate-ammonia

ligase [33] and the pathway remains active, even under sufficient

nitrogen supply. Rehm et al. [31] reported that deletion of the

gene glnE (NCgl2147, encoding the adenylyltransferase) results in a

decreased glutamate (1.5 fold) and a highly increased glutamine

concentration (5 fold). The analysis of these metabolites was based

Figure 3. Heatmap of pairwise correlation values of 37 metabolites. The Pearson correlation coefficients were calculated for log2
transformed ratios of the median values of C. glutamicum mutant and wild type. For a better overview only metabolites with the highest
reproducibility (.95%) were displayed.
doi:10.1371/journal.pone.0086799.g003

Mutant Screening with Genomic and Metabolic Tools

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e86799



on determination of absolute metabolite concentrations using a

LC/MS setup and the tendencies could be reproduced by our

GC/MS analysis. In our analysis the glutamate-ammonia ligase

substrate glutamate was 0.69 fold lower while the product

glutamine was 3.1 fold higher concentrated in the mutant (a table

with all metabolite ratios for every mutant is shown in table S3).

Additionally, the substrate of the GS/GOGAT system, a-

ketoglutarate, showed a 0.69 fold decrease. Many other observa-

tions, made by Rehm et al. [31] concerning metabolites of the

central metabolism were confirmed proving the comparability of

our transposon mutant and the described deletion mutant. We

observed some differences, that were not mentioned by Rehm

et al. [31]. A scatter plot in figure 7 shows an overview over the

strongest changes of the metabolic profile of the mutant P7A10

compared to the wild type. In addition to the increased amount of

glutamine (3.1 fold) the mutant showed higher concentrations of

proline (2.3 fold), an unidentified metabolite NA_1705.4 (2.9 fold)

and 2,6-diaminopimelate (2.5 fold). Furthermore, decreased levels

were determined for aspartate (0.34 fold) and the unidentified

metabolite NA_1733.4 (0.6 fold).

Similar to the mechanism of ammonium assimilation, C.

glutamicum possesses two ways for the biosynthesis of 2,6-

diaminopimelate [34] (figure6 B). One pathway involves the

diaminopimelate dehydrogenase (Ddh, EC 1.4.1.16), which shows

only a low affinity for ammonium, but is permanently active. The

second pathway involves a tetrahydrodipicolinate succinylase

(DapD, EC 2.3.1.117), which has a high affinity for its substrate

and is regulated by AmtR [35], the master regulator of nitrogen

control in C. glutamicum. The increased level of 2,6-diaminopime-

late in the mutant together with the decreased aspartate level

indicate a connection between the regulation of the GS/GOGAT

system and the regulation of the 2,6-diaminopimelate synthesis. It

seems that an inactivation of the glutamate-ammonia ligase

adenylyltransferase results in an increased synthesis of 2,6-

diaminopimelate, which might originate from an increased flux

through the nitrogen dependent pathway involving the tetrahy-

drodipicolinate succinylase.

The increased amount of glutamine in the mutant P7A10 could

be traced back to the GS/GOGAT system. Together with the

increased glutamine concentration the mutant showed an

increased level of proline. A similar, but even stronger response

for these metabolites has been detected for the mutant P7E1

(figure 5B). For this mutant glutamine showed an 8 fold and

proline a 12 fold increased level compared to the wild type. A

connection between these two metabolites was shown during the

response to osmotic stress. Wolf et al. [36] showed that proline and

glutamine are the preferred compatible solutes in C. glutamicum

formed under sufficient nitrogen supply. While glutamine is

produced as a fast reaction to osmotic stress, proline is the slightly

delayed main reaction of the organism and its concentration in the

cell increases about eightfold upon growth at high osmolarity.

Since an osmotic shock during cultivation of our strains can be

excluded, the accumulation of glutamine and proline in the

mutants must be explained by the mutations caused by the

insertion of the transposon. For the mutant P7E1, the insertion

point of the transposon could not be identified which makes an

interpretation impossible. But for P7A10 the increased proline

level might be induced by the high activity of the glutamate-

ammonia ligase caused by the mutation in glnE (NCgl2147)

encoding the corresponding adenylyltransferase (EC 2.7.7.42).

Another mutant which showed an increased proline level is

P8F12. The function of the disrupted gene NCgl1051 is still

unknown. As shown in figure 5B, this mutant had a highly

increased proline level (10 fold), but only a slightly increased level

of glutamine (1.4 fold). The level of glutamate in P8F12 was

increased 1.5 fold compared to the wild type, while the N-acetyl-

glutamate level was strongly reduced in the mutant (0.07 fold). In

addition to the glutamate associated metabolites, the TCA cycle

was also strongly affected in this mutant (figure 5A). While citrate

was slightly increased (1.3 fold), the later TCA cycle metabolites

showed decreased concentrations in the mutant. The decrease of

metabolite levels becomes stronger from a-ketoglutarate (0.61 fold)

and succinate (0.60 fold) over fumarate (0.36 fold) up to malate

(0.33 fold). These strong changes also affect the growth of P8F12,

which is reduced to 55% compared to wild type after growth on

glucose minimal medium for 7 hours. For the highly decreased

concentration of N-acetyl-glutamate detected in this mutant, two

reasons are possible: One reason would be an indirect effect of the

highly increased proline concentration. As Lee et al. [37] reported,

proline reduces the binding of the transcriptional regulator ArgR

upstream of argB (coding for the acetylglutamate kinase, EC

2.7.2.8). This results in an increased activity of the acetylglutamate

kinase and, in consequence, its substrate N-acetyl-glutamate is

decreased. A second possible reason for the highly decreased N-

acetyl-glutamate concentration is a function of the affected gene

NCgl1051 in the arginine biosynthesis. Although the function of

this gene is still unknown, Silberbach et al. [38] showed that under

ammonium limitation the transcription of this gene is reduced by

0.5 compared to normal growth conditions. Besides other genes,

all genes coding for the arginine biosynthesis (argBCDFGHJRS)

showed reduced transcription under ammonium limitation in this

Figure 4. Dendrogram based on the correlation values in
figure 3. For the calculation of the distance the euclidean distance was
used.
doi:10.1371/journal.pone.0086799.g004
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study. The described reduced transcription under ammonium

limitation together with the highly reduced N-acetyl-glutamate

concentration in the transposon mutant might indicate a function

of the gene in the arginine biosynthesis. Unfortunately, the

concentration of arginine and ornithine were under the detection

limit and could not be measured in our study, so that a proof of

this hypothesis is currently missing.

Another gene that showed a transciptional response to

ammonium limitation in the study of Silberbach et al. [38] is gltB

(NCgl0181), which is affected in the mutant P21G11. On opposite

to the gene NCgl1051 (P8F12), the transcription of gltB is enhanced

Figure 5. Heatmap showing log2 transformed ratios (mutant/wild type) of metabolites in selected pathways. Only C. glutamicum
mutants with significant changes (p,0.01 Bonferroni corrected) in at least 2 of the selected metabolites were analyzed. A Ratios of metabolites in the
TCA cycle. B Ratios of metabolites associated with glutamate.
doi:10.1371/journal.pone.0086799.g005

Table 2. List of C. glutamicum mutants with changes in the TCA cycle or in glutamate associated metabolites (GLU), or in both
(bold).

ID Position Locus Gene description Operon EC Pearson % OD TCA GLU

P7A10 2361816 NCgl2147 Glutamate-ammonia-ligase adenylyltransferase – 2.7.7.42 0.97 67 +

P7C5 2238004 NCgl2038 Hypothetical protein – – 0.96 107 +

P7C6 Not identified 0.92 50 + +

P7E1 Not identified 0.92 91 +

P7F11 179131 NCgl0163 Major facilitator superfamily permease + – 0.97 83 + +

P8A2 368514 NCgl0340 Nucleoside-diphosphate sugar epimerase + – 0.96 89 +

P8D4 Not identified 0.93 42 +

P8F4 1042752 NCgl0944 Major facilitator superfamily permease – – 0.97 75 +

P8F10 2380663 NCgl2167 Pyruvate dehydrogenase subunit E1 – 1.2.4.1 0.96 48 + +

P8F12 1142652 NCgl1051 Hypothetical protein + – 0.95 55 + +

P8G3 1690962 NCgl1533 GTP cyclohydrolase II + 3.5.4.25 0.94 40 + +

P21D2 3119587 intergenic – – 0.98 81 +

P21E9 1525622 NCgl1392 Hypothetical protein + – 0.98 99 +

P21G4 2867647 NCgl2603 Cell division protein – – 0.98 87 +

P21G11 199693 NCgl0181 Glutamate synthase large subunit + 1.4.1.13 0.98 119 +

doi:10.1371/journal.pone.0086799.t002

Mutant Screening with Genomic and Metabolic Tools
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by a factor of 10 compared to normal growth conditions. The gene

gltB (NCgl0181) is coding for the glutamine 2-oxoglutarate

aminotransferase large subunit (EC 1.4.1.13). Together with the

small subunit GltD, the two proteins form the GOGAT part of the

GS/GOGAT system in C. glutamicum and catalyze the synthesis of

glutamate from a-ketoglutarate and glutamine (figure 6A). Besides

the mutant P7A10 (NCgl2147), this is the second mutant with a

mutation in the GS/GOGAT system. As explained before, the

GOGAT part is not essential for C. glutamicum under high nitrogen

supply. Beckers et al. [39] showed that the expression of the

operon formed by gltB (NCgl0181) and gltD (NCgl0182) is under

control of the repressor protein AmtR. In consequence, a mutation

should have no effect under sufficient nitrogen supply. Indeed the

transposon mutant showed no changes in the glutamate associated

Figure 6. Schematic overview of the GS/GOGAT pathway (A) and the diaminopimelate biosynthesis (B). GDH: glutamate
dehydrogenase; GS: glutamate-ammonia ligase; GOGAT: glutamate synthase; Atase: glutamate-ammonia ligase adenylyltransferase; DapD:
tetrahydrodipicolinate succinylase; Ddh: diaminopimelate dehydrogenase. Dashed arrows represent more than one reaction.
doi:10.1371/journal.pone.0086799.g006

Figure 7. Metabolic profile of the C. glutamicum mutant P7A10. Scatter plot of normalized peak areas of the mutant P7A10 against the wild
type Res167. Axes are logarithmically plotted. Only metabolites with changes .2 are labeled.
doi:10.1371/journal.pone.0086799.g007
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metabolites and did not appear in the screening (figure 5B). Still

the mutant showed minor changes in the concentration of the

TCA cycle intermediates (figure 5A) and increased levels for serine

(2.3 fold) and glycine (2.2 fold), which indicates that the mutation

is not silent.

Discussion

As shown by Choorapoikayil et al. [40], the analysis of

metabolite levels permits to clarify predicted gene functions. To

analyze not only single, but many mutants in parallel, we

established a method for the high-throughput analysis of a

transposon mutant library of C. glutamicum. We divided the

method into two parts: first, investigation of the genomic

background and, second, the analysis of the metabolic profiles of

the mutants.

We were able to identify the accurate position of the transposon

in 722 mutants within a short time. Beside the identification of

disrupted genes in mutants, we were interested in the distribution

of the insertion sites in the genome. We could confirm the random

integration of the vector pAT6100 into the genome of C.

glutamicum, without any site preference (figure 1). A review of the

insertion points revealed that for more than a third of the genes of

the identified mutants no or only a hypothetical function could be

assigned by bioinformatic methods.

Analysis of the growth distribution of 258 randomly chosen

mutants showed, that the analyzed mutants can be divided into

four groups, from no growth (,40%) over reduced growth (40–

80%) up to similar (80–120%) and even enhanced growth

(.120%) compared to the wild type on glucose minimal medium.

The majority of the mutants (80%) showed a comparable growth

to the wild type. The growth behavior of the mutants together with

the identified insertion points provide important information

suitable for the detailed understanding of C. glutamicum. Only 22 of

the 258 investigated mutants were not able to grow on minimal

medium, whereas five mutants showed an increased growth

compared to the wild type. For a detailed discussion of the growth

of single mutants further experiments need to be done. Neverthe-

less, our current findings demonstrate the possibilities, which a

transposon mutant library with identified mutations presents.

We applied our in-house developed software MetaboliteDetec-

tor to process the huge amount of GC/MS data. With the aid of

this tool we obtained a very low overall relative error of 11.5% for

the metabolome samples of the quality standard. In total, almost

300 substances with biological response were detected, which is a

very good coverage for the detailed analysis of the metabolism.

A pairwise correlation of the metabolites of all analyzed mutants

was performed to get a cross section of the dependencies of the

metabolites in C. glutamicum (figure 3). These correlations reflect

many known dependencies like the correlation of the metabolites

of the TCA cycle, the correlation of the fatty acids or the

correlation of the amino acids glycine and serine. The reduction of

the complexity in a dendrogram (figure 4) showed interesting

clusters of the metabolites. Besides already known dependencies of

metabolites, this view enabled the allocation of so far non

identified metabolites to groups of known metabolites. This

provides the opportunity to gather further information about the

identity of these metabolites. Since a metabolite interacts with

many other metabolites, the complexity of the metabolism is very

high. Additionally, only parts of the metabolic pathways can be

investigated with the present analytical methods as the metabolite

classes are chemically too diverse to be detected by one method.

But still, for limited parts of the metabolism like the TCA cycle,

dependencies are well represented by the pairwise correlations.

To get a first inside into the large amount of data we filtered the

data for interesting mutants by searching for specific patterns of

closely related metabolites, as shown in figure 5. For the TCA

cycle, changes in the metabolite level reflect the position of the

metabolites in the pathway relatively well. While citrate and a-

ketoglutarate seem to be regulated independently of the other

intermediates, succinate, fumarate and malate are mostly co-

regulated. Further, fumarate and malate often share the same fold

change which underlines the close connection of the two

metabolites.

Compared to the TCA cycle, the picture drawn by the ratios of

glutamate associated metabolites in figure 5B is more complex.

Because the metabolites are not part of a linear pathway, changes

do not necessarily affect the other metabolites. But still, there are

visible patterns and connections between mutants, as for P7E1 and

P7A10, both showing an increased concentration of glutamine and

proline.

The mutant P7A10 which is mutated in the gene glnE

(NCgl2147) encoding the glutamate-ammonia-ligase adenylyltrans-

ferase (EC 2.7.7.42) offers a good opportunity to prove the high-

throughput metabolic profiling method, as well as the phenotype

of the mutant, as Rehm et al. [31] already analyzed a glnE deletion

mutant in detail. A comparison of our results with the published

results showed a high degree of accordance in the measured

metabolite levels, which confirms the stability of the transposon

and proves the comparable phenotypes resulting from a transpo-

son mutant and a deletion mutant of the same gene.

Additionally, increased levels of 2,6-diaminopimelate and

decreased levels of aspartate in the glnE mutant indicate a

connection of the 2,6-diaminopimelate synthesis to the regulation

of the GS/GOGAT system. As the 2,6-diaminopimelate produc-

tion involving tetrahydrodipicolinate succinylase (DapD, EC

2.3.1.117) is regulated dependent on the nitrogen supply

(figure 6B), it seems that the inactivation of the glutamate-

ammonia ligase adenylyltransferase or the resulting increased

activity of the glutamate-ammonia ligase are inducing an increased

flux through the tetrahydrodipicolinate succinylase involving

synthesis of 2,6-diaminopimelate in C. glutamicum.

The increased level of proline and glutamine in the mutant

P7A10 were found with an even stronger response in the so far not

identified mutant P7E1 (figure 5B). Glutamine and proline are

relatively closely related in the metabolism and together they are

part of the response to osmotic stress in C. glutamicum [36]. Since

the regulation of the proline synthesis via proA, proB, proC is still

unknown [41] we suspect that in the mutant P7A10 the

inactivation of the glutamate-ammonia ligase adenylyltransferase

or the resulting increased activity of the glutamate-ammonia ligase

induces the synthesis of proline.

Altogether, the observations made for the mutant P7A10

indicate a central role of the glutamate-ammonia ligase adenylyl-

transferase in several nitrogen dependent reactions in C.

glutamicum, which is supported by the speculations made by Rehm

et al. [31] that this enzyme possesses a moonlighting function.

Raamsdonk et al. [42] have shown that it is possible to reveal

gene functions by comparing metabolic responses of mutations in

unknown genes with the response of mutations in genes with

known function. The mutants P7A10 and P7E1 showed a high

degree of accordance in their metabolic profiles, which indicates a

possible gene function for the mutant P7E1 in the GS/GOGAT

system as well. As the insertion point in this mutant could not be

determined so far, any gene function prediction at this point is

impossible and further analysis have to be done.

Another mutant, which showed an increased amount of proline

(10 fold), is P8F12 (NCgl1051). For this mutant, a strongly
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decreased N-acetyl-glutamate pool (0.07 fold) was detected. For

these extreme values two explanations are possible. At first,

according to Lee et al. [37] proline reduces the binding of the

ArgR regulator upstream of argB, which is encoding for the N-

acetylglutamate kinase (EC 2.7.2.8). In consequence, the tran-

scription of this enzyme is enhanced, which leads to a reduced

intracellular concentration of its substrate N-acetyl-glutamate. The

second explanation implies that the affected gene is involved in

arginine biosynthesis. This hypothesis is supported by the reduced

transcription of the gene NCgl1051 under nitrogen limitation,

which was found by Silberbach et al. [38] and correlates with the

reduced transcription of the genes responsible for arginine

biosynthesis. Contrary to the first explanation, a similar high

concentration of proline in the mutant P7E1 showed only a slightly

decreased N-acetyl-glutamate concentration (0.72 fold).

The mutation of the gene gltB (NCgl0181), encoding for the

glutamine 2-oxoglutarate aminotransferase large subunit (EC

1.4.1.13) in the mutant P21G11 affirms the subordinated role of

the GOGAT part of the GS/GOGAT system during sufficient

nitrogen supply. The mutant showed no significant changes in the

glutamate associated metabolites. Furthermore the mutant showed

good growth (119%) and a high correlation coefficient to the wild

type (0.98). Although this indicates only a minor influence of the

mutation, for a small number of metabolites significant changes

were observed. These changes affect the TCA cycle intermediates

succinate (1.4 fold), malate (1.7 fold) and fumarate (1.4 fold), as

well as serine (2.4 fold) and glycine (2.0 fold), which all showed

increased concentration compared to the wild type. The increased

growth together with the increased concentration of the TCA

cycle intermediates indicate an increased energy metabolism in the

mutant. Based on the findings made by Beckers et al. [43] the gene

gltB (NCgl0181) was expected to be repressed by AmtR during

sufficient nitrogen supply. Therefore, the origin of the observed

changes in the metabolism as a response to the introduced

transposon in this gene remains to be elucidated.

Conclusion

Taken together the described combination of high-throughput

transposon insertion site determination and metabolome analysis

allows to investigate many gene functions at once. The here

described first analysis of selected mutants shows the confirmation

of already known gene functions and indicates potential functions

for genes with unknown function. In many cases metabolic

profiling alone is not able to prove a gene function and therefore,

additional information has to be gathered. The integration of

systems biology data from different levels would greatly comple-

ment the collected data and together this would build up a highly

promising source of knowledge about microorganisms.

Materials and Methods

Strains, Media and Cultivation
The restriction-deficient wild type derivative strain Res167 of

Corynebacterium glutamicum ATCC 13032 was used for the creation

of the transposon mutant library. It was also used in metabolic

measurements as the wild type reference. Transposon mutants of

C. glutamicum were generated with the IS6100-based pAT6100

artificial transposon vector similar to the published method of

Mormann et al. [13]. The construction of the vector was described

by Tauch et al. [21]. Media composition and cultivation

procedure were already explained in detail by Börner et al. [3].

According to that, cultivation for metabolome analysis were done

in minimal medium (MM1): One liter of MM1 contained 5 g

(NH4)2SO4, 5 g urea, 2 g K2HPO4*3H2O, 2 g KH2PO4, 0.25 g

MgSO4*7H2O, 0.01 g CaCl2, 0.2 mg biotin, 20 g glucose, 28.5 mg

FeSO4*7H2O, 16.5 mg MnSO4*H2O, 6.4 mg ZnSO4*7H2O,

0.764 mg CuSO4*5H2O, 0.128 mg CoCl2*6H2O, 0.044 mg

NiCl2*6H2O, 0.064 mg Na2MO4*2H2O, 0.048 mg H3BO3, 0.05

mg SrCl2, 0.05 mg BaCl2, 0.028 mg KAl(SO4)2*12H2O.

Determination of the Transposon Insertion Sites
The genomic DNA of transposon mutants was extracted with

the Nucleospin96-Kit by Macherey-Nagel (Macherey-Nagel

GmbH, Düren, Germany) following the manufactures instruc-

tions. DNA concentration and purity were measured with the

Tecan InfiniteM200-Photometer (Tecan Group Ltd., Männedorf,

Switzerland) combined with a NanoQuant Plate. The thermal

asymmetric interlaced PCR (TAIL) was done as described by Liu

et al. [15]. Three transposon-specific primers for each border (first

border: LR01: AGTGATCTGCACCAATCTCGACTAT;

LR02: GGAAAGCTCAAGATACTGATCAAGC; LR03:

GTGGAGAGAGCTTTTGGCATTG; second border: LR04:

GTTTTGTCGCGTATGTCCTAAGTTGT; LR05:

CTGATCGGATAGCGACAATACCAG; LR06: CATGCT-

CAAGCTTCACGATTTTTG) and two degenerated primers

(AD2: TGWGNAGSANCASAGA and AD5:

NTCGASTWTSGWGTT) were designed. TAIL PCR was

carried out twice for a border, once with each degenerated

primer. The amplification products of the third reaction were

analyzed by gel electrophoresis. Adequate amplification products

were selected for purification and sequencing done by GATC

Biotech (GATC Biotech AG, Konstanz, Germany). For sequenc-

ing the third TAIL-primer (LR03/LR06) was used. The accurate

insertion point of the transposon was determined by using the

resulting sequences in a BLAST search against the C. glutamicum

genome (NCBI).

Sample Preparation and Measurement
The sample preparation for metabolome analysis was described

by Börner et al. [3]. Only minor changes have been made: the

Ethanol-Ribitol solution was substituted with a Methanol-Ribitol

solution. Determination of the optical density was performed in

triplicates. A quality standard was generated by pooling 200 wild

type extracts, portioning and drying them afterwards. These

samples were stored at 280uC. Six quality standard samples were

distributed over each experiment. For derivatization and mea-

surement the Leco Pegasus 4D GCxGC TOFMS (Leco

Instrumente, Mönchengladbach, Germany) combined with an

Agilent 7890A (Agilent Technologies, Böblingen, Germany) gas

chromatograph and a Gerstel MPS 2 XL Twister (Gerstel,

Mühlheim a. d. Ruhr, Germany) autosampler was used. For on-

line derivatization the dried samples were redissolved and

derivatized with 40 ml pyridine, containing 20 mg ? ml21

methoxyamine hydrochloride, at 30uC for 90 min under shaking.

After adding 60 ml MSTFA (N-methyl-N-trimethylsilyltrifluoroa-

cetamide), samples were incubated at 37uC for 30 min under

shaking, followed by incubation at room temperature for 90 min.

A retention index marker (n-alcanes ranging from C10…C36 in

cyclohexane) was used to convert retention times to retention

indices. GC/MS analysis was performed on a Leco Pegasus 4D

GCxGC TOF mass spectrometer in the one dimensional mode. In

summary, 1 ml was injected into a PTV (Gerstel, Mühlheim a. d.

Ruhr, Germany) splitless at 70uC. After initial time of 0.2 min the

injector was ramped at 14uC s21 to a final temperature of 280uC
and held for 5 min. The Agilent 7890A gas chromatograph was

equipped with a VF-5MS column (30 m60.25 mm I.D.) (Varian

Deutschland, Darmstadt, Germany). The GC was operated at
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constant flow of 1 ml ? min21 helium. The temperature program

started at 70uC held for 1 min, followed by temperature ramping

of 10uC min21 to a final temperature of 350uC, which was held

constant for 6 min. The transfer line temperature was set to

300uC. Ion source temperature was adjusted to 250uC. Full-scan

mass spectra of m/z 45…600 were collected at an acquisition rate

of 8 scans sec21. Solvent delay time was 5 min. For data

acquisition ChromaTOF, version 4.24 (Leco Corporation) was

used.

High-throughput Data Processing and Compound
Identification by MetaboliteDetector

For the processing of GC/MS data we used the version 2.0.7 of

our in-house developed software MetaboliteDetector [17]. The

peak identification was performed in a non-targeted mode with a

combined compound library. This library was achieved by a

merge of our in-house library with the Golm metabolome

database [28] and comprises about 2500 compounds. After

processing, non biological and artificial peaks were eliminated by

the aid of blanks. Peak areas were normalized by optical density of

the sample and the internal standard (ribitol). Peak areas of

derivatives were summarized to metabolites. Metabolites with a

reproducibility of under 80% within an experiment were discarded

for further analysis. For compatibility of peak areas from the single

experiments, metabolites were first normalized by a metabolite

specific, then by a sample specific median.

Statistical Analysis
For the reference, consisting of 45 wild type samples, as well as

for every mutant, consisting of three biological samples, and the

quality standards, consisting of six samples per experiment, the

mean, median and the relative standard error of each metabolite

was determined. Furthermore, for each metabolite a ratio of the

peak area of the mutant to the peak area of the wild type reference

was computed by using mean values. The Pearson correlation

coefficient of the logarithmized peak areas was calculated.

Significance of changes in metabolite level were computed by a

Student’s T-Test with Bonferroni corrected p-value for multiple

testing based on a p-value of 0.01. For the pairwise correlation

analysis of metabolites, the ratios between the median peak area of

every mutant and the median peak area of the wild type were

calculated and afterwards log2 transformed. Only highly repro-

ducibly quantified metabolites (.95% over all samples) were used,

to perform a pairwise correlation after Pearson of all metabolites

over all mutants.

Supporting Information

Table S1 List of all identified insertion points of C.
glutamicum transposon mutants that have been inves-
tigated by metabolic profiling. The table shows the

determined position of the transposon as well as the corresponding

gene locus and gene description. Additionally, for each mutant,

the correlation to the wild type and the relative growth compared

to the wild type are shown.

(XLS)

Table S2 List of all reproducibly quantified metabolites
in the wild type showing the relative standard error and
the signal to noise ratio for each metabolite.

(XLS)

Table S3 Table of mutant to wild type ratios of the
mean peak areas for every metabolite and all mutants.

(XLS)
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42. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, et al. (2001)
A functional genomics strategy that uses metabolome data to reveal the

phenotype of silent mutations. Nat Biotechnol 19: 45–50. doi:10.1038/83496.
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