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Abstract

The cuticles of the arthropods Collembola (springtails) are known to be superhydrophobic, displaying such properties as
water-repellence and plastron formation; overhanging surface structures have been suggested as the source of these
properties. Superhydrophobicity is closely related to surface structuring and other surfaces with overhanging structures
have been shown to possess robust superhydrophobic properties. In effort to correlate the wetting performance and
surface structuring of the cuticles, from both a technical and evolutionary point of view, we investigated a selection of
Collembola species including species from several families and covering habitats ranging from aquatic to very dry. The
observed contact angles of wetting was in general larger than those predicted by the conventional models. Not all the
studied Collembola were found to have superhydrophobic properties, indicating that superhydrophobicity is common, but
not a universal trait in Collembola. Overhanging structures were found in some, but not all Collembola species with
superhydrophobic cuticles; which leads to the conclusion that there is no direct link between overhanging surface
structures and superhydrophobicity in Collembola.
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Introduction

Superhydrophobic surfaces, showing functional properties like

self-cleaning, air-retention and drag reduction, have enjoyed

increasing interest in recent years [1–4]. Evolution has led to a

wide selection of different surfaces in nature, fitted for species in

different environments. Some of these surfaces, such as the lotus

leaf, the pitcher plant, and the cuticle and hairs of aquatic insects

[5–11], have been the inspiration for biomimetic, superhydro-

phobic surfaces. Although excellent water shedding properties

have been achieved the methods are often vulnerable to small

imperfections or contamination, yield surfaces of low durability or

are vulnerable to weathering [1,12–14]. The investigation of

natural surfaces that have yet to receive attention may provide

inspiration for novel solutions to these challenges. The cuticles of

Collembola (springtails) have long been known to be highly water-

repellent [15–17]. Surface topography is know to be of vital

importance to the wetting behavior of a surface, several studies

have concluded that significant surface roughness is a prerequisite

for superhydrophobic behavior [1,2,4,8,9]. Two recent studies

have highlighted the cuticles of Collembola from a biomimetics

point of view [18,19]. One of these emphasized the importance of

comparing species relatedness and habitat types in order to better

understand the evolutionary aspects of the surface structure

modifications [18]. The other study documented robust water

shedding and air retention properties with water, as well as several

organic liquids, on Collembola cuticles. Microscopic structures

with overhang were suggested as a possible explanation for the

superhydrophobic and omniphobic properties [19].

Superhydrophobicity is an effect that causes water to roll off a

surface with very little resistance. This can result in a self-cleaning

effect when contaminations adhere to the water droplets and roll

off with the droplets. Upon submersion such surfaces can retain a

thin layer of air on the surface; this greatly reduces flow resistance

in water and is also the basis for the plastron respiration of

arthropods [1,8,20,21]. Generally a combination of a hydrophobic

surface (displaying inherent contact angles (h0) of 900 or more) and

surface structuring is required to achieve superhydrophobic effects.

Arthropod cuticles achieve this by combining cuticular structuring

with a cover of tiny hairs and hydrophobic cuticular waxes [22].

Collembola are small six-legged arthropods that represent one

of the oldest and most abundant (in numbers of individuals)

terrestrial animal groups on earth. Thus they have a long and

diversified evolutionary history (nearly 400 million years) of

adaptation to life on land. The cuticles of Collembola show

complex surface structures, including both respiring surfaces and

thicker parts that block gas exchange [15]. Figure 1 shows several

Collembola and an SEM image of its cuticle. The cuticles are

known to have strong anti-wetting properties, with the ability of

plastron formation around submerged animals [17]. The varia-

tions in the patterns of surface structures, in relation to habitat

conditions and species relatednes, is of both evolutionary and

biomimetics interest. Collembola live on or below the ground and

are thus highly affected by soil water conditions. Respiring

through the body surface they also run the risk of dessication. In

dryer habitats adaptation appears mainly to involve a reduction in

the respiring surface and thereby an improved protection against
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water loss. Under wet conditions hydrophobic properties and

improved plastron formation facilitating gas exchange may be

more important [17]. Self-cleaning is also an important aspect of

the superhydrophobic cuticle, as soil dwelling animals may come

in intimate contact with harmful substances and pathogens. The

appearance of the Collembola cuticles is often very clean, with no

visible contamination even when studied in scanning electron

microscopes (SEM).

The arthropod cuticle in general consists of a chitin-protein

complex with a cover of epicuticular wax [22]. In Collembola, we

find that thinner sections, without wax, and thicker parts covered

by wax form recognizable geometric patterns. These thicker parts,

or protuberances, are commonly referred to as granules. The basic

pattern appears to consist of triangular granules connected by

ridges in hexagonal rings [23]. The size of these basal units may

vary, but are usually in the order of a few hundred nanometers.

These granules have been shown to have overhanging structures in

some species, where parts of the granule extend beyond the base of

the granule, like the eaves of a roof. Helbig et al. suggested that

this overhang was an important, but neglected, characteristic of

non wetting Collembola cuticles[19]. Several triangular granules

may fuse to quadrangular granules arranged in rectangular

patterns. These structures, including both hexagonal and rectan-

gular configurations, represent general patterns found in most

Collembola at different parts of the body, and in all major

taxonomic groups.

However, there are also some systematic differences between

these groups, such as the tendency to form secondary granules

(involving several primary granules) in several families of the

superfamily (section) Poduromorpha. Figure 1 shows both larger,

secondary granules and smaller, primary granules connected by

ridges. In the superfamily Entomobryomorpha some genera of the

family Isotomidae tend to modify their cuticle mainly by changing

the connecting ridges and thus individual areas of thin cuticle

between the granules, while in other genera the size of the

individual granules may change greatly without affecting the size

of the thin cuticle units. Lastly, other families of the Entomo-

bryomorpha show little cuticle modification at all, possessing a

more or less uniform cover of the hexagonal configuration,

possibly with wax cover also on the thinner parts [16,24]. Thus, in

the latter group, it is possible that gas exchange occurs through the

pores of the granules [16], rather than across the thinner parts of

the cuticle, as argued for other Collembola groups [15,25]. Figure

2 shows one species (X. maritima) with a typical hexagonal

configuration and one species (A. laricis) with enlarged granules.

Such systematic characteristics represent differences in the

structural patterns on which evolution will act, and may lead to

very different solutions to the same environmental challenges; i.e.

between unrelated species living in the same habitat. This

emphasizes that in order to improve our understanding of

cuticular wetting properties from an evolutionary perspective,

one should compare related species from different habitats as well

as species from different families living in similar habitats.

In the present work we investigated the cuticles of twelves

species of Collembola from four different Collembola families in

an effort to explain the wetting properties of Collembola cuticles

based on wetting principles and evolution. The selected species

represent a wide range of habitats from high mountains to the

coast, including both extreme drought as well as littoral and

aquatic climes. Analyses of the structural arrangement of thinner

and thicker parts of the cuticle, including the presence of

overhang, were performed to quantify basic parameters in models

of wetting behavior (e.g. roughness and solid surface fraction). The

resulting, theoretical estimates of contact angles were compared

with experimental contact angle measurements of water droplets

on cuticles.

Results

The advancing and receding contact angles of water droplets on

the cuticles of a selection of Collembola was measured with the

sessile drop technique, the contact angle hysteresis was calculated

as the difference of the advancing and receding angles. The

measured contact angles are presented in table 1; the uncertainty

in the presented values correspond to one standard deviation as

calculated from the population of measured values for each

species.

When the numbers in table 1 were compared to the standard

criteria for superhydrophobicity (hA and hR exceeding 1500 and

Dh under 100 [3]) ten out of twelve tested species were found to be

superhydrophobic. This includes species from all the tested

families (Hypogasturidae, Onychiuridae, Isotomidae and Entomo-

brydiae) and a variety of habitats (intertidal zone, terrestrial, litter

layer, watter-logged soil, forest floor, grassland and marsh)

displaying the full range of moisture (very dry to aquatic) and

flood danger (no danger to intertidal zone) [26]. Only species 8

and 12 (C. clavatus and X. maritima) were not superhydrophobic;

water droplets were also observed to stick to these two species,

where on all other tested species they would slide off. These two

Figure 1. Live Collembola and their cuticle structure. (a) Several specimens of Onychiurus sp., the scale bar is 1 mm. (b) SEM image showing
the cuticle structure of Onychiurus sp.. A pattern of large, secondary granules (solid arrow) are shown and in between these a pattern of small, primary
granules (dashed arrow), the primary granules are connected by ridges.
doi:10.1371/journal.pone.0086783.g001
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species represent two very different habitats; C. clavatus is active

submerged in rock pools, and as such is always wet, while X.

maritima lives on the crusts of lichens on boulders and standing tree

trunks, which may become very dry for long periods [26].

Structural parameters were measured with scanning electron

micrographs (SEM). The results are presented in table 2 where

values for species marked with a * are based on secondary granules

while the rest are based on primary granules. Figure 2 presents

micrographs of two example species (species 10, A. laricis and

species 12, X. maritima). Height data and the presence of overhang

was determined from cross-sections created with focused ion beam

(FIB) milling and subsequent SEM imaging. The FIB cross

sections of A. laricis and X. maritima are shown in figure 3, note the

presence of overhang on X. maritima. SEM images of the other

species are included as supporting information, figures S1, S2, S3,

and S4.

Figure 4 illustrates how the different values were measured from

cuticle micrographs. Based on these measurements (table 2) we

estimated some important parameters (roughness factor (r), solid

area fraction (f ), differential solid area fraction in the receding

direction (fr), estimated contact angle from the Wenzel equation

(hW ) [27], estimated contact angle from the Cassie-Baxter

equation (hCB) [29], estimated contact angle hysteresis from

Dufour’s method (DhD) [30] and the estimated receding contact

angle from Choi’s method (h�r,Choi) [30]) as presented in table 3.

Neither the Wenzel equation, Dufour’s method nor Choi’s method

predicted superhydrophobic behavior for any of the species. The

Cassie-Baxter equation only predicted superhydrophobic behavior

for species 1 and 7, and then only when the secondary granules

were considered. The following assumptions were made: fa~0, i.e.

that the differential area fraction in the advancing direction is zero,

which means that the advancing edge of a droplet is not in contact

with the substrate. This assumption is reasonable for a system

where the droplet is resting on the top of discrete asperities, since

any incremental advancement of the contact line from a set of

asperities will be into the empty space between asperities, where

the solid area fraction is zero [30]. rf ~1, i.e. that the tops of the

granules are assumed to be smooth. The inherent contact angle for

the cuticle substrate was assumed to be h0~1050. The predicted

values are compared to the measured values in figure 5 for contact

angles and in figure 6 for contact angle hysteresis; the figures are

based on data from tables 1 and 3.

Wenzel’s roughness parameter r is the ratio between the

nominal contact area and the actual contact area assuming

complete wetting (i.e. Wenzel state); the different cuticular

structures were approximated to repeating geometric patterns in

order to estimate a value for r. The solid fraction of the surface, f ,

is used in the Cassie-Baxter relation, it can be estimated as f ~
As

A
,

from the nominal area of the section of the cuticle containing a

single granule (A) and the nominal surface area of the top of a

granule (As). fr is the differential area fraction, as used by Choi et

al. [30], found as f ~
2b

2bzp
where the parameters b and p were

measured from SEM images as illustrated in figure 4. r, f , and fr

can, when combined with parameters from table 2 be used to

calculate the contact angle for the surface as predicted by Wenzel’s

equation ( cos hW ~ cos h0r) [27], the Cassie-Baxter equation

( cos hCB~ cos h0f ) [28], Dufour’s model for contact angle

hysteresis (DhD) [29] and the receding contact angle according

to Choi’s model (h�r,Choi~ arccos½fr(rf cos h0z1){1�) [30].

Figure 2. Scanning Electron Microscopy (SEM) images of species 10 and 12. Left: species 10 A. laricis Right: species 12 X. maritima. The
images, at 10 000X magnification, show structures typical for the dorsal metasoma. Species 12 has a typical structure of triangular granules,
connected by ridges, organized in a hexagonal pattern. Species 10 has markedly enlarged granules, in a variation of forms, organized in a varied
pattern closer to square than hexagonal.
doi:10.1371/journal.pone.0086783.g002

Table 1. Contact Angle Measurement.

# Species hA hR Dh SG

1 Hypogastura viatica 167:9+1:50 163:2+1:60 4:7+2:20 yes

2 Isotomurus prasis 168:2+3:30 164:1+3:70 4:1+4:90 no

3 Onychiurus sp. 170:2+2:40 166:2+2:90 4:0+3:80 yes

4 Folsomia
quadrioculata

170:5+2:60 166:5+2:00 4:5+2:60 no

5 Anurophorus
septentrionalis

168:3+2:30 164:8+2:40 3:5+3:40 no

6 Desoria olivacea 164:4+3:70 162:5+2:10 1:9+4:80 no

7 Archisotoma besselsi 169:6+2:20 164:5+3:10 5:0+3:80 yes*

8 Cryptopygus clavatus 140:6+3:10 118:4+10:90 22:3+11:40 no

9 Orchesella flavescens 150:2+6:00 152:9+4:40 {2:7+7:50 no

10 Anurophorus laricis 157:4+2:50 161:2+8:30 {3:8+8:70 no

11 Isotoma anglicana 154:3+4:00 158:6+1:90 {4:3+4:50 no

12 Xenylla maritima 156:5+9:80 132:4+11:90 24:1+15:40 no

Results of the contact angle measurement for each of twelve species of
Collembola. The measured advancing (hA) and receding (hR) contact angles,
whith standard deviation, the calculated contact angle hysteresis (Dh) and the
absence or presence of secondary granules (SG). * The secondary granules of A.
besselsi are enlarged primary granules.
doi:10.1371/journal.pone.0086783.t001
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The structural parameters of the granules can also be estimated

with nanoindenter atomic force microscopy (NI-AFM). This

method proved more challenging than using SEM and FIB cross

sections on Collembola cuticles and the primary granules of all

species could not be imaged. Corresponding values based on NI-

AFM are available for most of the species as supporting

information, figures S5 and S6, tables S1 and S2.

Discussion

The results presented in table 1 indicate that superhydropho-

bicity is a quite general characteristic of the Collembola cuticle,

independent of habitat and phylogeny (relatedness). However, the

two species Xenylla maritima and Cryptopygus clavatus showed some

clear exceptions to this general trend.

As contact angles approach 1800 they get increasingly difficult to

measure accurately [31]. The small size of the Collembola

compared to the droplets used also makes accurate measurement

challenging. The negative contact angle hystereses measured for

several species are therefore likely the result of experimental error

for samples with very small, but positive, contact angle hystereses.

The qualitative observation of droplets sticking to two of the

species (Xenylla maritima and Cryptopygus clavatus), however indicates

significant contact angle hysteresis for these two species. Interest-

ingly these two species occupy habitats at the two extreme ends of

the humidity range. C. clavatus is active on the bottom of small rock

pools [32]. A wettable cuticle seems to be a presupposition for the

species to walk freely in a submerged state, as can be seen under

stereo-microscope when they easily penetrate the water surface

and become completely wetted (personal observation). X. maritima,

in contrast, lives in drought exposed lichen crusts on rocks and tree

trunks[26], where the risk of submersion is minimal. X. maritima

shares this habitat with A. laricis which has a very different cuticle

structure with distinct superhydrophobic properties. A possible

explanation for these fundamentally different traits of two lichen

living species is that they appear to have very different strategies to

survive in their habitat. A. laricis is heavily protected against water

loss by a heavy armor of large, wax-covered granules. While X.

maritima is very tolerant to water loss (personal observations). X.

maritima is quite inactive when dehydrated, and in order to utilize

the improved conditions when humidity increases, it must recover

the water balance quickly. A wettable cuticle may facilitate such

recovery.

The contact angle experiments were only performed on the

dorsal metasoma of the Collembola. This was because the droplets

that could be produced in the experimental setup was relatively

large compared to the size of the Collembola, such that placing a

droplet on and examining the contact angle on smaller parts of the

animal(e.g. antennas, limbs or head) was challenging and would

not yield accurate or reproducible results. In short, the dorsal

metasoma was the only area large enough and uniform enough to

accommodate the measurement of contact angles. Only SEM and

AFM images from the dorsal metasoma were used in the

numerical analyses, as such the results of the contact angle

measurements and the results of the mathematical predictions

should be commensurable as they are both based solely on data

from the dorsal metasoma.

There are normally three criteria that should be fulfilled for a

surface to achieve a stable superhydrophobic effect: The intrinsic

contact angle of the surface should be 900 or more (i.e.

hydrophobic), surface structuring should create considerable

roughness and the system should assume a Cassie-Baxter wetting

state. Not all of the three criteria need necessarily be met, but each

contribute to the stability of a superhydrophobic state [1,8]. The

epicuticular waxes of Collembola and other arthropods are known

to be inherently hydrophobic, such that any wax-covered surface

would contribute to water repellency [15,16,22]. Further, recent

research into the effect of overhanging structures on wetting

suggests that these structures may stabilize the Cassie-Baxter

wetting state by providing a formidable energy barrier against

wetting state transition [33–36]. The cuticles of several species of

Table 2. Surface Structure Characteristics.

# Species P [nm] d0 [nm] H [nm] L [nm] A [mm2] As [mm2] Overhang

1 H. viatica 6 370 210 970 0.134 0.068 yes

1* H. viatica 3 1950 1150 2790 3.66 0.54 yes

2 I. prasis 5 970 155 1570 0.77 0.15 no

3 Onychiurus sp. 6 380 175 750 0.108 0.041 yes

3* Onychiurus sp. 3 1000 846 3180 2.55 0.77 yes

4 F. quadrioculata 4 860 290 2670 1.37 0.51 no

5 A. septentrionalis 3 570 332 4430 2.31 1.40 yes

6 D. olivacea 6 430 100 910 0.181 0.054 yes

7 A. besselsi 6 320 110 560 0.059 0.022 yes

7* A. besselsi 4 620 355 1150 0.509 0.070 yes

8 C. clavatus 4 420 120 2240 0.655 0.39 no

9 O. flavescens 6 520 233 1230 0.278 0.098 no

10 A. laricis 4 490 165 5370 2.85 1.98 no

11 I. anglicana 4 630 193 1825 0.635 0.22 yes

12 X. maritima 6 1040 440 2350 1.06 0.35 yes

Surface structure characteristics, as measured on scanning electron micrographs. P: number of edges in the closest equivalent polygon; d0 : longest regular distance
between primary granules; H : height of granules; L: length of the three-phase contact line for the wetting system of one granule; A: nominal area of a section of cuticle
containing a single granule; As nominal surface area of a granule; the final column denotes the presence of overhanging structures. Rows marked * present values
based on secondary granules.
doi:10.1371/journal.pone.0086783.t002
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Collembola display overhang, which has been proposed as an

explanation for the commonly observed excellent water repellency

of Collembola cuticles by Helbig et al [19]. We must therefore

consider the different surface structures, including overhang, of the

studied Collembola to determine what creates the differences in

wetting behavior.

In this study, we primarily emphasize the differences between

the two non-superhydrophobic species (X. maritima and C. clavatus)

and all other tested species. Though all tested species were

hydrophobic (hw900) a considerable contact angle hysteresis was

observed for these two species. A contact angle hysteresis in this

range will hinder droplet movement on the cuticle surface, the

result is that water droplets can stick to X. maritima and C. clavatus,

albeit with a large contact angle, while they simply slide off the

other tested species as the curvature of the cuticle itself is larger

than the sliding angle of a droplet resting on the cuticle. This

constitutes a clear, qualitative difference in the wetting behavior of

these two species compared to the other tested species.

It is difficult to see any clear trends when we compare the

structural parameters (table 2) between superhydrophobic and

non-superhydrophobic species. X. maritima posesses the largest

intergranular distance (d0) for primary granules, but this is not

much larger than those of e.g. I. prasis and F. quadrioculata. C.

clavatus has a rather small d0. Another important parameter is the

height of the granules (H ). X. maritima had the highest primary

granules of all investigated species, which should help to stabilize

the Cassie-Baxter wetting state and enhance hydrophobic

properties [37]. C. clavatus had the second smallest primary

granule height. Thus, neither separate nor in combination did the

two parameters discriminate between the species that did and did

not show superhydrophobic properties. E.g. two of the super-

hydrophobic species I. prasis and D. olivacea had about the same d0

and smaller H than X. maritima and C. clavatus respectively. Also,

the contact line length (L) as well as the two area parameters (A

and As) of both X. maritima and C. clavatus are midrange, neither

exceptionally large nor small.

The roughness (r) and solid area fraction (f ) were calculated in

order to evaluate the surfaces according to the theories of Wenzel,

Cassie and Baxter [27,28]. The results, shown in table 3 and

compared with the measured values in figure 5, clearly underes-

timate the real contact angle of all studied species. The Collembola

cuticles considered in this work are certainly more complex than

Figure 3. SEM images of FIB cross sections of species 10 and 12. Left: species 10 A. laricis magnification 8 000X, Right: species 12 X. maritima
15 000X magnification. The images show sections of the cuticle where a prism shaped part has been removed by FIB milling, while the structuring
around it was protected by a layer of platinum, to reveal cross sections of the granules. A single granule is highlighted by a white circle in each image.
In species 10 there is no evidence of overhang, in species 12 overhang is present.
doi:10.1371/journal.pone.0086783.g003
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the regular, geometric patterns considered by Wenzel, Cassie and

Baxter. When describing such complex, natural surfaces with a

single value for roughness r or area fraction f , care was taken to

make conservative translations. The values for r were calculated

based on surface features smaller than those studied by Wenzel,

while the values for f were calculated based on only the tops of the

granules, thus neglecting the ridges; both of these considerations

should lead to higher predicted contact angles for these models.

The contact angle hysteresis was estimated based on Dufour’s

formula [29], but this overestimated the contact angle hystereses as

compared to the measured values for all studied species, as shown

in figure 6. Finally Choi’s model [30] was used to estimate the

receding contact angle, this underestimated the receding contact

angle for all the superhydrophobic species, but interestingly

overestimated it for X. maritima and C. clavatus.

Some key assumptions were made in the use of these models,

namely that the intrinsic contact angle for the cuticle surface was

h0~1050, the tops of the asperities were smooth (rf ~1) and the

differential area fraction in the advancing direction was fa~0. The

intrinsic contact angle of waxes consisting mainly of hydrocarbon

chains are expected to be in the range of 900 to 1100, while the

intrinsic contact angles of flat samples of the waxes of insects, as

well as that of chitin are approximately 1050 [22,38]. If the

intrinsic contact angles were larger than the assumed values, the

predicted values of the Wenzel, Cassie-Baxter and Choi models

would increase. Though even if the value was assumed to be as

high as h0~1200 (a value typical for smooth polytetrafluoroeth-

ylene/Teflon) these models would only predict superhydrophobic

behaviour for half of the investigated species. The models are still

unable to differentiate between the superhydrophobic and non-

superhydrophobic species, even with this unreasonably high

estimated intrinsic contact angle. Smooth asperity tops is a less

than likely assumption in that the granules display a slight

curvature instead of completely flat plateaus, the assumption was

made to simplify the Choi equation. The actual roughness

parameter rf is likely between 1 and 2, as rf ~2 corresponds to

hemispherical granule tops. In order to predict contact angles

above 1500 a roughness parameter of over 3 is needed, which is

clearly higher than what the SEM images indicate. The Choi

model is not able to differentiate between the superhydrophobic

and non-superhydrophobic species regardless of what value is

assumed for rf . Finally, the assumption that the differential area

Figure 4. Measurement of structural parameters. The schematic shows how the structural parameters A, As , b, d0 , L and p were measured from
SEM images.
doi:10.1371/journal.pone.0086783.g004
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fraction in the advancing direction fa~0 is a result of the Cassie-

Baxter (i.e. suspended) wetting state, which is the state modelled by

the Choi model. Assuming a non-zero fraction will reduce the

predicted advancing contact angles from perfect non-wetting,

resulting in two values for the model (h�a,Choi and h�r,Choi), but will

not affect the values of h�r,Choi which are the results discussed in this

paper. We conclude that the established models can not be used to

estimate the wetting properties of Collembola cuticles as the

calculated values diverge too much from the measured values.

This discrepancy between measured and estimated contact angles

might indicate that either the models need to be modified, or that

important parameters are not taken into account.

Overhang (reentrant granule geometries) has been suggested as

such a parameter [19]. Overhang is not readily included in the

classical models as only surface features are taken into account,

what is going on beneath the surface in contact with the droplet is

not considered at all by the Cassie-Baxter model for example. The

presence of overhang would lead to a slightly larger roughness

coefficient (r) in the Wenzel model, but the increase would be

largely insignificant compared to the discrepancy between the

predictions of the Wenzel model and the measured contact angles.

The role of overhang is largely that of increasing the energy

barrier between the Cassie-Baxter state and the Wenzel state, such

that it prevents drops from spreading down between the granules

on the cuticle surface [34,35]. This means overhang can readily

explain why a drop would stay in the Cassie-Baxter state instead of

the Wenzel state, but it cannot explain why the measured contact

angles are larger than those predicted by the Cassie-Baxter or

Choi models.

Table 3. Calculated Parameters.

# Species r f fr hW hCB DhD h�r,choi

1 H. viatica 2:49 0:34 0:29 115:60 136:30 12:20 139:70

1* H. viatica 2:74 0:13 0:24 118:40 153:40 10:80 143:10

2 I prasis 1:32 0:16 0:24 103:30 150:00 10:30 143:00

3 Onychiurus sp. 2:02 0:28 0:27 110:60 140:50 12:40 141:30

3* Onychiurus sp. 2:89 0:23 0:33 120:10 143:90 14:90 136:50

4 F. quadrioculata 1:39 0:27 0:35 104:00 140:90 15:20 135:60

5 A. septentrionalis 1:66 0:38 0:40 106:70 133:60 12:70 132:10

6 D. olivacea 1:44 0:23 0:27 104:50 144:20 9:80 141:10

7 A. besselsi 1:87 0:27 0:25 108:90 140:90 11:50 142:20

7* A. besselsi 1:99 0:12 0:22 110:20 154:30 9:90 144:60

8 C. clavatus 1:32 0:37 0:39 103:30 133:90 12:30 132:90

9 O. flavescens 1:86 0:26 0:28 108:90 141:60 6:80 140:10

10 A. laricis 1:26 0:41 0:41 102:60 131:30 8:10 131:50

11 I. anglicana 1:48 0:28 0:29 104:90 140:50 7:80 139:40

12 X. maritima 1:73 0:25 0:26 107:40 142:50 7:40 141:40

Calculated parameters, r: roughness factor, f : solid area fraction, fr : differential solid area fraction in the receding direction, hW : estimated contact angle from the
Wenzel equation, hCB : estimated contact angle from the Cassie-Baxter equation, DhD : estimated contact angle hysteresis based on Dufour’s method and h�r,choi :

estimated receding contact angle based on Choi’s method. Rows marked * present values based on secondary granules.
doi:10.1371/journal.pone.0086783.t003

Figure 5. Measured contact angles compared to predicted contact angles. Measured advancing (hA) and receding (hR) contact angles with
one standard deviation error bars as compared to the values predicted by the Wenzel (hW ), Cassie-Baxter (hCB) and the Choi (hr,Choi) equations. The
minimum limit for contact angles considered superhydrophobic is denoted by a dotted line at 1500. Rows marked with an asterisk (*) denote
predicted values based on secondary granules.
doi:10.1371/journal.pone.0086783.g005
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Overhang is present on some, but not all of the studied

Collembola. Of the two non-superhydrophobic species, X. maritima

has overhang on the granules, while C. clavatus does not. Of the

superhydrophobic group several species have overhang (e.g. A.

septentrionalis and D. oliviaca) while several others lack overhang (e.g.

F. quadrioculata and A. laricis). Thus, in contrast to the suggestion of

Helbig et al. [19], our results do not indicate a direct link between

the presence of overhanging structures and superhydrophobicity.

In fact, there is no single parameter that explains why X. maritima

and C. clavatus do not display the same superhydrophobic effect as

all the other tested species.

The secondary granules present on some Collembola are

significantly larger than the primary granules. This results in larger

values for the intergranular distance (d0) and granule height (H )

when secondary granules are considered. The effect of secondary

granules seem uncertain. In a purely Cassie-Baxter wetting state

the presence of secondary granules would completely mask the

effect of primary granules as any water would be suspended on the

tops of the larger, secondary granules. This results in a significantly

lower solid area fraction (f ) when the secondary granules are

considered, and consequently higher estimated contact angles

(hCB). In a Wenzel wetting state the secondary granules would

slightly increase the roughness (r) and thus the estimated contact

angle (hW ). However both models still severely underestimate the

contact angle. The presence of secondary granules did not

influence the estimated or measured values for the contact angles

significantly. Examples of closely related Collembola species from

very different humidity conditions showing almost identical

secondary granule configurations are included as supporting

information, figure S7. The lack of variation in the secondary

granules for a wide variation in humidity indicate that the

secondary granules are not a key part in the adaptation to

humidity conditions.

Collembola normally possess a cover of microscopic hairs. The

number of hairs and their arrangement are usually sufficiently

conservative to be used as a taxonomic tool [26], but the length of

the hairs may vary greatly even between closely related species.

Wetting properties are also affected by the number and length of

the hairs covering the body surface. [22,39] If the hair-cover,

rather than the cuticle structure, is quantified and used with

existing wetting models different values for the contact angles

would be predicted. A cover of curved hairs may act in much the

same way as structures with overhang and provide robust

superhydrophobicity [40]. However, for Collembola the hairs

are of microns to tens of microns in scale while the granules are on

a scale of hundreds of nanometers, models that incorporate the

contact line energy will therefore differ between the two and would

be more likely to predict high contact angles for the granules.

Superhydrophobic cuticles were observed for a variety of

Collembola species from different families and several different

habitats. This was not a universal trait however as two of the tested

species did not display the superhydrophobic effect, including a

Collembola adapted to extreme drought (X. maritima) and one

adapted to aquatic habitats (C. clavatus). No single structural

parameter was observed that could explain the lack of super-

hydrophobicity in only two of the species. No direct link was found

between structural overhang and superhydrophobicity as both

structural overhang, and the lack thereof, was observed on both

superhydrophobic and non-superhydrophobic cuticles. The most

widely used equations underestimated the contact angles of the

cuticles. This indicates that more sophisticated models are needed

to explain the observed wetting behavior of Collembola cuticles.

Closer study of the reasons behind this underestimation may yield

interesting results from a biomimetics point of view, as a novel

solution for achieving robust superhydrophobicity.

Materials and Methods

For droplets in contact with a substrate the contact angle h is

defined as the angle between the droplet, and the substrate at the

contact line (i.e. at the droplet circumference). The receding

contact angle hR is the contact angle for a droplet with a receding

contact line, e.g. for a shrinking droplet, while the advanncing

contact angle hA is the contact angle for an advancing contact line,

e.g. a growing droplet. The difference between the advancing and

receding contact angles is deemed contact angle hysteresis Dh. The

quantities h, hA, hR and Dh are illustrated in figure 7.

Contact angles were measured with the sessile drop method,

using a KSV CAM 200 contact angle goniometer and KSV CAM

Optical Contact Angle and Pendant Drop Surface Tension

Software v.4.04. The test liquid, de-ionized micropore water,

was deposided with a syringe on the dorsal metasoma of

Collembola that were fixed to microscope slides with double-sided

adhesive tape. Advancing and receding contact angles were

attained by leaving the syringe tip in the droplet and adding or

siphoning liquid. An example of a droplet in contact with a

Collembola is shown in the inset of figure 7. Uncertainties were

estimated based on the sample standard deviation of the data set.

The samples were classified as superhydrophobic or not super-

hydrophobic based on the following criteria: both the advancing

and receding contact angles (hA and hR) should exceed 1500 and

the contact angle hysteresis (Dh) should not exceed 100.

There are two general models for the interaction between

liquids and rough surfaces. The liquid can be in complete contact

with the surfaces, filling any openings between asperities. This

model is referred to as the Wenzel state [27]. The second model

assumes the liquid will not penetrate between the asperities on a

Figure 6. Measured contact angles hysteresis compared to
contact angle hysteresis predicted by the Dufour method. The
maximum limit for contact angle hysteresis considered superhydro-
phobic is denoted by a dotted line at 100 . Rows marked with an asterisk
(*) denote predicted values based on secondary granules.
doi:10.1371/journal.pone.0086783.g006
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rough surface, keeping the liquid suspended in a composite contact

partially touching the tops of the asperities and partially hanging

suspended between the asperities. This is referred to as the Cassie-

Baxter or composite state [28]. Considerable research has been

conducted since the initial works of Cassie, Baxter and Wenzel.

Modern theories of wetting, such as those of Choi [30] and Dufour

[29], consider more complex partial wetting states and differential

approaches where simple area fractions are no longer used;

surfaces with submicron structures also makes it important to

consider the three-phase contact line [29,30,41,42].

The approach of Choi et al.[30] is a variation of the Cassie-

Baxter model; suspended wetting is assumed, but instead of using a

single value for the solid area fraction (f ) a differential approach is

used with different values for the solid area fraction in the

advancing and receding directions. Dufour’s model [29], is a

purely mechanical approach to describing contact angle hysteresis.

The deformation energy needed to ’’stretch’’ drops before they

detach from a surface is considered. For a system where the drop

rests on the top of asperities, such as the granules of Collembola,

the deformed volumes from each asperity corresponds to the solids

of revolution of catenary curves. These deformation volumes can

be estimated from the size and shape of the asperities. The contact

angle hysteresis (Dh) can then be estimated, either from an

assumed value for the apparent advancing contact angle, or a

posteriori from measured values of the apparent advancing contact

angle.

The sizes of the the thinner and thicker parts of the cuticle

structures were measured, as well as the height of and distances

between these structures. Theses sizes were measured from

Scanning Electron Microscopy (SEM) images taken with a Hitachi

Su-6600 or with a FEI Helios NanoLab DualBeam FIB (using the

electron beam). The samples were freeze dried and fixed to stubs

using silver glue or carbon tape. The samples were coated with a

thin layer of carbon and sputter coated with Pt.

Focused Ion Beam (FIB) milling was performed with a FEI

Helios NanoLab DualBeam FIB to obtain cross-sectional SEM

images of the surface structures. The samples were prepared as for

general SEM imaging. Subsequently a thick (mm scale) protective

layer of Pt was applied using the deposition mode of the

instrument. Then a cubic section of the cuticle was removed with

the ion beam, the region of removal was placed such that it

intersected one or more granules. Afterwards the sample was tilted

such that the cross-section of the granules could be imaged.

Collembola are non-regulated invertebrates which are not

subject to any special laws or regulations related to animal

experiments in Norway. The species studied are not endangered

or protected. The samples were identified according to the key of

Arne Fjellberg [32], species 3 was only identified to the family of

Onychiuridae and not to a specific species within this family.

Samples were collected in the field at various locations in southern

Norway, except species 3 which was from a lab stock of Azorean

origin (held by Leinaas). All field locations were in public areas

with no special restrictions on the gathering of invertebrates. The

samples were kept at high relative humidity on moist plaster of

paris and fed with bark covered in green algae. The samples were

killed with chloroform vapor immediately preceding the experi-

ments to ensure freshness.

Twelve species were selected for this investigation. The selection

was made to present the different surface structure modifications

in Collembola, as well as presenting species from different families

and from habitats ranging from extremely dry to very wet. The

species included of the order Poduromorpha: Hypogastura viatica

and Xenylla maritima from the family Hypogasturidae and an

unidentified species from the Onychiuridae family; and the order

Entomobryomorpha: Anurophorus laricis, Anurophorus septentrionalis,

Folsomia quadrioculata, Archisotoma besselsi, Cryptopygus clavatus, Desoria

olivacea, Isotomurus prasis and Isotoma anglicana from the family

Isotomidae and Orchesella flavescens from the family Entomobryidae.

The following information on the species is based on [26,32]

and own observations: H. viatica is a surface active species living at,

or near, the intertidal zone, it moves away from the water at high

tide. X. maritima, though of the same family as H. viatica, inhabits a

Figure 7. Contact Angles: The contact angle h is defined as the angle between the droplet, and the substrate at the contact line. The receding
contact angle hR is the contact angle for a droplet with a receding contact line, e.g. for a shrinking droplet, while the advancing contact angle hA is
the contact angle for an advancing contact line, e.g. a growing droplet. Surfaces that when in contact with water display a contact angle of less than
900 are hydrophilic, surfaces with contact angles of more than 900 are hydrophobic and surfaces with both advancing and receding contact angles of
more than 1500 as well as contact angle hysteresis less than 100 are superhydrophobic. The inset shows a sessile droplet in contact with a springtail.
doi:10.1371/journal.pone.0086783.g007
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very different habitat, it lives on the crusts of lichens on boulders

and standing tree trunks, which may beome very dry for prolonged

periods; the species is highly drought resistant. A. laricis is from the

same habitat as and often co-occurs with X. maritima. A.

septentrionalis occurs in moderately dry forest floor, it is closely

related to A. laricis. F. quadrioculata is a species typical for the lower

litter layer, a habitat that is rarely flooded but may sometimes

become quite wet, it is not surface active and is sensitive to

dessication. A. besselsi is an intertidal species, which unlike H. viatica

may become submerged during high tide. C. clavatus is found in

association with rock pools and other small bodies of water near

the shore. It is active under water, where it feeds on algea while

submerged without showing signs of plastron formation. D. olivacea

is a surface dwelling speces from wet habitats with water logged

soil. I. prasis is a big, surface dwelling species found in wet and

humid habitats, though usually not in the same habitats as D.

olivacea. I. anglicana is a big surface dwelling species found in

moderately humid habitats both on the forest floor and on open

land. O. flavescens is another big, surface dwelling speceis that may

be found together with I. anglicana as well as in wet, marshy

habitats.

Supporting Information

Figure S1 SEM images of species 1 through 6. Top left:

species 1 H. viatica 10 000X magnification, Top right: species 2 I.

prasis 10 000X magnification, Mid left: species 3 Onychiurus sp. 20

000X magnification, Mid right: species 4 F. quadrioculata 10 000X

magnification, Bottom left: species 5 A. septentrionalis 10 000X

magnification, Bottom right: species 6 D. olivacea 10 000X

magnification. The structures shown are typical for the dorsal

metasoma.

(TIF)

Figure S2 SEM images of species 7 through 12. Top left:

species 7 A. besselsi 20 000X magnification, Top right: species 8 C.

clavatus 15 000X magnification, Mid left: species 9 O. flavescens 10

000X magnification, Mid right: species 10 A. laricis 10 000X

magnification, Bottom left: species 11 I. anglicana 10 000X

magnification, Bottom right: species 12 X. maritima 10 000X

magnification. The structures shown are typical for the dorsal

metasoma.

(TIF)

Figure S3 Cross section SEM image of species 1 through
6. Top left: species 1 H. viatica 20 004X magnification, overhang is

present, Top right: species 2 I. prasis 20 000X magnification, no

overhang, Mid left: species 3 Onychiurus sp. 50 000X magnification,

overhang is present Mid right: species 4 F. quadrioculata 25 000X

magnification, no overhang, Bottom left: species 5 A. septentrionalis

20 004X magnification, overhang is present, Bottom right: species

6 D. olivacea 50 000X magnification, overhang is present. The

structures shown are typical for the dorsal metasoma.

(TIF)

Figure S4 Cross section SEM image of species 7 through
12. Top left: species 7 A. besselsi 50 000X magnification, overhang

is present, Top right: species 8 C. clavatus 20 000X magnification,

no overhang, Mid left: species 9 O. flavescens 35 005X

magnification, no overhang, Mid right: species 10 A. laricis 8

000X magnification, no overhang, Bottom left: species 11 I.

anglicana 120 000X magnification, overhang is present, Bottom

right: species 12 X. maritima 15 000X magnification, overhang is

present. The structures shown are typical for the dorsal metasoma.

(TIF)

Figure S5 Nanoindenter AFM (Ni-AFM) image of species
1 through 6. Top left: species 1 H. viatica Top right: species 2 I.

prasis Mid left: species 3 Onychiurus sp. Mid right: species 4 F.

quadrioculata Bottom left: species 5 A. septentrionalis Bottom right:

species 6 D. olivacea. The magnifications are indicated by the scale

bars. The structures shown are typical for the dorsal metasoma.

(TIF)

Figure S6 Nanoindenter AFM (Ni-AFM) image of species
7 through 12. Top left: species 7 A. besselsi Top right: species 8 C.

clavatus Mid left: species 9 O. flavescens Mid right: species 11 I.

anglicana Bottom left: species 12 X. maritima. The structures shown

are typical for the dorsal metasoma, with the exception of species 9

where the structure of the head is shown, due to challenges in

imaging the metasoma.

(TIF)

Figure S7 Scanning Electron Microscope (SEM) images
showing closely related species with secondary gran-
ules. Top left: H. tullbergi, Top right: H. viatica, Bottom: C.

longispina. The images have 5000X magnification and show both

secondary and primary cuticle granules.

(TIF)

Table S1 Surface Structure Characteristics Based on
NI-AFM. Surface structure characteristics, as measured on

nanoindenter atomic force micrographs. P: number of edges in

the closest equivalent polygon; d0: longest regular distance

between primary granules; H: height of granules; L: length of

the three-phase contact line for the wetting system of one granule;

A: nominal area of a section of cuticle containing a single granule;

As nominal surface area of a granule. Rows marked * present

values based on secondary granules.

(PDF)

Table S2 Calculated Parameters Based on NI-AFM.

Calculated parameters, based on nanoindenter atomic force

micrographs; r: roughness factor, f : solid area fraction, fr:

differential solid area fraction, receding direction, hW : Estimated

contact angle from the Wenzel equation, hCB: Estimated contact

angle from the Cassie-Baxter equation, DhD: estimated contact

angle hysteresis based on Dufour’s method and h�r,choi: estimated

receding contact angle based on Choi’s method. Rows marked *

present values based on secondary granules.

(PDF)
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