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Abstract

Improvements in experimental techniques increasingly provide structural data relating to protein-protein interactions.
Classification of structural details of protein-protein interactions can provide valuable insights for modeling and abstracting
design principles. Here, we aim to cluster protein-protein interactions by their interface structures, and to exploit these
clusters to obtain and study shared and distinct protein binding sites. We find that there are 22604 unique interface
structures in the PDB. These unique interfaces, which provide a rich resource of structural data of protein-protein
interactions, can be used for template-based docking. We test the specificity of these non-redundant unique interface
structures by finding protein pairs which have multiple binding sites. We suggest that residues with more than 40% relative
accessible surface area should be considered as surface residues in template-based docking studies. This comprehensive
study of protein interface structures can serve as a resource for the community. The dataset can be accessed at http://prism.
ccbb.ku.edu.tr/piface.
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Introduction

Proteins physically interact with each other through their

binding sites. Some proteins interact with their partners simulta-

neously using different interaction sites, some interact with their

partners via the same interaction site at different times, and some

appear to interact with only one protein [1]. How can many

different proteins use the same binding interface, and how can a

single protein bind many different proteins at the same time, are

key questions that emerge in structurally-enriched protein-protein

interaction networks and regulation. Within the framework of the

general factors that bear on these intriguing questions is the

landscape of residue conformations, particularly of key residues,

making multiple and simultaneous interactions possible [2–7].

While a vast number of protein-protein interactions can take

place, there is a limited number of specific binding site

conformations through which proteins can bind [8–10]. Studies

of interfaces can be illuminating: they can address questions such

as whether preferences of specific amino acids in certain positions

can help binding site prediction, and on a different level, how

some proteins can bind many different proteins using the same

binding site conformations. Since binding and folding are similar

events, they may also help understand hierarchical protein folding

[11]. Obtaining a set of unique interface structures can be

particularly useful in template-based docking [12,13]. We previ-

ously showed that template based docking can be fast and accurate

if there exists a good set of template interfaces [14,15]. Kundrotas

et al. posited that unique interface structures can serve as

templates to model nearly all complexes of structurally character-

ized proteins, and that the existing interfaces already can achieve

this aim [13]. Kundrotas and Vakser showed that structural

similarities of the interfaces have the greatest influence in

template-based docking [16].

The main step to achieve a unique interface set is to flag similar

interfaces. Comparisons of two protein interfaces can detect

similarities in amino acid sequences of protein interfaces (sequence

alignment) or similarities in 3D coordinates of amino acid positions

in the proteins (non-sequential structural alignment). Protein

interface clustering can be done in three different ways: using only

sequential or only structural alignment scores of all protein

interfaces, or a hybrid strategy which includes both sequential and

structural alignment scores of protein interfaces. The PFAM [17]

and SCOP [18] databases are commonly used for classification by

sequence and structural alignments, respectively. Previous studies

aiming to investigate binding properties showed that protein

interfaces can be classified by their sequence similarities [8,19] or,

in other words, proteins with similar sequences often interact in

similar ways [20,21]. However, it has also been suggested that

interactions can only be reliably inferred for close homologs

[20,22]. To decrease the computational cost, studies have also

used a hybrid strategy of both sequence and structural compar-
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Figure 1. Network of Interfaces. (a) Community structure. (b) Node and edge representation in protein interface network. (c) The nodes in the left
network which have similarity values higher than 0.80 are grouped as a single node in the right network. The new node and the neighbors’ similarity
values are chosen as the maximum similarity value of the edges between the two nodes which were grouped and the neighbor nodes (e.g. Node G
and node H).
doi:10.1371/journal.pone.0086738.g001

Figure 2. Flowchart of the methodology.
doi:10.1371/journal.pone.0086738.g002
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ison, and to increase the reliability of the classification, others used

structural alignment of protein interfaces [23–27]. Bordner and

Gorin clustered biologically relevant interfaces with a hybrid

strategy to provide a reliable catalog of evolutionary conserved

protein-protein interfaces with a diverse set of properties [28].

Detecting evolutionarily related proteins via structural similar-

ities is more reliable than via sequence similarities since structure is

more conserved. Sequence based methods are easy to derive and

computationally cheap, so sequence based methods are generally

the starting point of the studies; however, this has two limitations

[29]. First, proteins generally use interfacial areas in order to form

their interactions which do not necessarily contain short local

sequence motifs. Secondly, if the sequence similarity of two

proteins falls below 40% it is hard to make any inference about

their functions. Schroder and his colleagues show that even if

structural comparison is computationally costlier than other

methods it gives more reliable results [23]. In order to find

structural similarity between two protein interfaces, the 3D

coordinates of the atoms must be known. The number of

deposited structures increases exponentially with improvements

in experimental techniques. Thus, it should be possible to identify

novel binding strategies (if any) by examining recent deposited

structures. Our previous works showed that the number of distinct

interface structures grows with the increasing number of PDB

structures [2,30,31].

To classify protein interface structures by either sequence, or

structural alignments, or both, some kind of clustering methods

should be used. In most structural clustering studies, a hierarchical

clustering algorithm is used. Ghoorah et al. compare structural

alignment of interfaces by extracting dimensionless interface

vectors using the center of mass of core and rim Ca coordinates

[24]. Interface vectors are clustered using hierarchical clustering.

Aloy and his colleagues classify domain based interactions using

3D structures of proteins and perform complete linkage hierar-

chical clustering to find global interfaces [32]. Tseng and Li

generate Protein Surface Classification (PSC) library using

pairwise local RMSD measures of protein surfaces [33]. They

present 1974 surface types that include 25857 functional surfaces

identified from 24170 bound structures. Also, Teyra et al. perform

pairwise structural alignments of protein binding regions and

classify them with agglomerative hierarchical clustering using the

complete linkage method [34]. They also note that complete

linkage is sensitive to zero similarity and expands the differences

between the clusters.

There are methods other than hierarchical clustering, such as

centroid models (k-means clustering), distribution models (multi-

variate normal distributions), density models, subspace models

(biclustering), and graph based models. Graph theory has also

started to become popular in the last decade for analyzing the

relationship between events. Barabasi and his colleagues presented

various properties of networks by tracking the internet routes [35].

They discovered the power law distribution of the networks and

the importance of the most highly connected nodes in lethality and

centrality [36]. Other researchers focus on topological properties

of networks. Girvan and Newman highlighted the betweenness

property (first proposed by Freeman [37]) of the nodes and edges

of the network, and emphasized the community structure of the

network [38]. Edge (node) betweenness is defined as the number of

shortest paths passing through this edge (node) between all pairs of

other nodes. It is a measure of the influence of edge (node) on the

flow of information between other edges (nodes). If a network has

communities, few edges which have higher betweenness connect

these communities. Removing the edges with highest betweenness

value from the network means separating the communities from

Figure 3. Silhouette value distribution of interfaces in different clustering conditions. For example 60_5_max means that clustering
coefficient for stopping criteria is 0.6, similarity increment for grouping is 5 and maximum similarity value is used for edges from the combined node
to their neighbor nodes.
doi:10.1371/journal.pone.0086738.g003
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one another [38]. Girvan and Newman presented this method to

sidestep the shortcomings of the hierarchical clustering.

In light of previous structural classification studies and the

exponentially increasing number of Protein Data Bank (PDB) [39]

structures, we present a protein-protein interface clustering

method which combines the structural alignments of the protein

interfaces and graph theory properties in order to extract protein

interface representatives in the PDB. We used the Girvan and

Newman method to cluster similar interfaces.

The novelty in this work is in generating structurally non-

redundant protein-protein interfaces which are sensitive to small

perturbations in protein binding sites that have a significant

impact in template-based docking. Template-based docking

strategies are based on non-redundant structures of protein

interfaces which are compared with target monomer surfaces

aiming to match similar interface partners [12]. Here we

constructed a set of unique interfaces from the PDB, and carried

out a comprehensive analysis of this set with respect to three

properties. The first property is the reliability of the new clusters.

We generated different clustering criteria for finding the best

clusters then compared our dataset with the previous dataset

which was generated by using a hierarchical clustering method.

The new clusters outperformed previous clusters. Secondly, we

searched for the best method to extract surface residues of protein

monomers for template-based docking using the new structurally

non-redundant interface clusters. Third, we looked up proteins

which interact with multiple partners in order to test the specificity

of the non-redundant interface clusters. We also compared the

protein interface clusters throughout the years.

22604 unique interface types are defined in our study. These

can be exploited for template based docking, for studies of binding

specificity, function-domain evolution, and drug design.

Method

An interface is described as contact region between two

interacting proteins. Previous works show that there are different

approaches to find contact residues in a complex. Distance based

approaches use atomic distances between two proteins to extract

interacting residues [2,30,40–49], surface area based approaches

use accessible surface area (ASA) values [50–53]. Some of the

interfaces are derived by using Voronoi diagrams [54].

Two residues are defined as contacting if the distance between

any two atoms of the two residues from different chains is less than

the sum of their corresponding van der Waals radii plus 0.5 Å

[2,30]. We further define nearby residues if the distance between

alpha carbon atoms of noninteracting residues and interacting

residues in the same chain is smaller than 6 Å. Previous studies

showed that nearby residues are important to represent a more

complete architecture of interfaces, such that interface residues are

not isolated [2,9,10,30,55].

An interface is labeled with the PDB ID plus the chain IDs. For

instance, if the PDB ID of a protein structure is 1GQP and there is

an interface between chains A and B, then this interface is named

1GQPAB as in our previous studies [2,30,31].

In order to generate a protein-protein interface dataset, we

extract all possible binary interactions of the protein structures and

check regardless of whether they interact. All PDB entries are used

to generate the interface set. As of January 14th 2012, there were

78477 PDB entries and 45491 of them were complex structures

which resulted in 622321 possible binary interactions, assuming all

protein chains interact with each other. However, not all chains in

a protein complex interact physically with each other, necessitating

chain pair detection. Extracting interface residues in complexes by

distance thresholds needs excessive time. Hence, the accessible

surface area (ASA) of the possible interface pairs are first

calculated by using NACCESS [56] in order to eliminate interface

candidates whose interface ASA values of the complex structure

are smaller than 1 Å2. NACCESS calculates the monomer and

complex ASA values of the proteins and the interaction surface is

calculated simply subtracting complex ASA value from the

monomer ASA values of two proteins. When small interfaces

were eliminated, 184342 interface candidates remained. (For

NMR structures the first model is used. RNA and DNA chains are

Figure 4. Similar interfaces with similar and dissimilar global protein folds. Complexes are shown in cartoon representation and interface
residues are shown in ball representation. (a) Bence-Jones Kappa I Protein Bre complex (1BRECF) and Immunoglobulin Light and Heavy chain
complex (43C9AC) have 79% interface similarity. (b) Asportakinase complex (3AB2CG) and Thioredoxin complex (3O6TCD) which have different
global fold have 77% interface similarity.
doi:10.1371/journal.pone.0086738.g004
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eliminated. Chains which have residues different than usual 20

amino acids are eliminated (e.g. selenomethionin)). The remaining

interface candidates were processed according to our interface

definition. As a result, there were 130209 interfaces where each

binding site had at least five residues.

Structural Comparison
MultiProt [57] was used to compare these 130209 protein

interfaces. MultiProt, which performs structural alignment regard-

less of the order of the residues on proteins, is an appropriate tool

to use for comparison of interface structures which are generally

composed of discontinuous segments of protein chains. No

sequence alignment was performed. MultiProt uses PDB structures

as input to calculate the binary similarities of each protein in the

dataset. In each comparison step, two interface files which have

contact and nearby residues in PDB format are given as an input

to MultiProt in order to perform structural alignment.

Interface Similarity
Interface similarity is calculated based on the structurally

matched residues of the two interfaces. The similarity formula is:

InterfaceLength 1~numberOfInterfaceResiduesOfInterface 1

InterfaceLength 2~numberOfInterfaceResiduesOfInterface 2

numberOfStructurally Residues are found by using MultiProt

[57]. MultiProt aligns the interfaces structures using the geometric

hashing algorithm. We used 3 Angstroms as the rmsd threshold in

the structural comparisons.

The Interface similarity is defined as

InterfaceSimilarity ~

numberOfStructurallyMatchedResidues

min (InterfaceLength 1,InterfaceLength 2)

ð1Þ

Pairwise comparison of all interfaces is a time consuming

process. Comparing a small interface with a big interface is

Figure 5. Comparison of the silhouette values. The silhouette value distribution over the protein interfaces generated by hierarchical clustering
and community finding algorithm is presented. The new clusters are better clustered according to the silhouette values.
doi:10.1371/journal.pone.0086738.g005

Figure 6. Comparison of the average relative accessible surface areas. The average relative accessible surface area of the representative
interfaces and their nearby residues are showed. We suggested using 40% RASA value which corresponded to 99% of the average interface RASA
values in order to extract interface residues using RASA values of the residues.
doi:10.1371/journal.pone.0086738.g006
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unnecessary. Gao and Skolnick’s [58] work on the structural space

of protein interfaces shows that native interfaces find a match with

a significant score among random interfaces and their mean

interface residues coverage is 86% with a standard deviation 10%,

and their mean contact residues coverage is 52% with a standard

deviation 9%. Thus, to decrease the number of interface

comparisons, we eliminated interface comparisons where the

number of contacting residues in one interface is larger by 25%

than that of the small interface and the number of contacting and

nearby residues is larger by 50% as compared to the smaller

interface. As a result, nearly 2 billion protein interface compar-

isons are done by MultiProt which used approximately 2500 cpu

days to finish the comparisons.

Clustering Algorithm
Girvan and Newman [38] used graphs in order to find

communities in a network. A community is defined by dense

inter-connectivity (Fig. 1a). Communities are clusters in a network

which have similar properties. Communities are extracted using

the betweenness property of the edges. An edge between

communities has the highest betweenness value in the graph.

The method of Girvan and Newman starts with removing the edge

Figure 7. Multi-interface binding strategy for the same protein pairs. (a) Histogram of protein-protein interactions which have different
binding structures at the same shared site or different binding sites. 7962 protein-protein pairwise interactions use more than one interface
conformation in order to interact with the same partner. Complex with one interface structure is pair of Phenylethanolamine N-methyltransferase
with Phenylethanolamine N-methyltransferase, with two interface structures are pairs of probable two-component response regulator with probable
two-component response regulator, with three interface structures are pairs of Hypothetical oxidoreductase yiaK with Hypothetical oxidoreductase
yiaK, with four interface structures are pairs of Neurotoxin BoNT/A with Neurotoxin BoNT/A, with five different interface structures are pairs of
Cytochrome P450 3A4 with Cytochrome P450 3A4 and eighteen interface structures are pairs of Calmodulin 2 with Calmodulin 2. (b) Multiple
interaction sites of Histone deacetylase 8 (red-1VKGA). Six different interface architectures of interaction between Histone deacetylase 8 and Histone
deacetylase 8 are shown. One of the binding sites is shared by three partners. The others are different. Gray-1VKGB, orange-3RQDB, green-1W22B are
at binding site A, yellow-3F0RC is at binding site B, blue-3F07B is at binding site C, purple-1T64B is at binding site D. The balls represent the carbon
alpha atoms of the interface residues of the complexes. Carbon alpha atoms are labeled according to interaction partners of the 1VKGA. (c) Histone
deacetylase 8 (red monomer) uses the same binding site to bind different partners. Small conformational changes in the interface residues assist
binding the partners. On the left hand-side, protein complexes are shown and in the center, interface structures are shown in ball and stick. Blue and
yellow balls are the interface residues of histone deacetylase 8 (red), and yellow balls also showed the hotspot residues of the interface. Pink and
purple balls are the interface residues of the partner monomer shown in gray, orange and green, and pink balls also show the hotspot residues of the
interface. In the right side, hotspot residues of the interfaces are given.
doi:10.1371/journal.pone.0086738.g007
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with the highest betweenness value and then, recalculates all the

betweenness values of the edges and removes the edge from the

graph that has the new highest betweenness value. Communities

in a network are found applying this process until the stopping

criteria are reached. Therefore, similar protein interfaces can be

clustered using community finding algorithm. In order to find the

clusters of similar interfaces, the network of interfaces should be

formed first.
Network of interfaces. A network is formed by nodes and

edges. The network of protein interfaces is constructed by using

interface structures as nodes. If two interfaces are similar (the

similarity is calculated as explained above, Equation 1), an edge is

drawn between the two corresponding nodes in the network

(Fig. 1b). This differs from our earlier strategy of constructing the

protein interface network [59] where protein monomers are

considered as nodes. There, an edge is drawn if the two monomers

form an interface. Here we represent each interface structure as a

node and similarity between interface structures as edges.
Finding communities. Dividing a network structure to

community structures starts with removing the edge which has

the highest betweenness value. If the network is separated into two

distinct networks, the edge removing process keeps going

recursively for each network until one of the stopping criteria is

reached. Stopping criteria are based on two network properties,

clustering coefficient and minimum cluster size. The clustering

coefficient is a measure of degree for nodes in a graph which tend

to cluster together. The clustering coefficient [38] is calculated by

C~
3 � numberOfTrianglesOnTheGraph

numberOfConnectedTriplesOfVertices
ð2Þ

As a stopping criterion, different clustering coefficient values are

used during clustering (1, 0.95, 0.90, 0.85 …, and 0.5) in order to

find the best possible clusters. If the network has a clustering

coefficient value higher than the criterion the network separation

process stops.

Minimum cluster size criterion, set at 5, is used because we do

not want network nodes to fall apart as a network of size 1. After a

network separation, if one of the clusters has less than 5 interfaces,

this cluster is no more divided into two clusters.

In order to increase the speed of network separation, the nodes

in the network are clustered in 5 steps according to the interface

similarity values (increasing similarity values with 5%, similarity

values higher than 0.80, 0.85, 0.90, 0.95 and 1.00 are processed

respectively). Nodes which have similarity values higher than 0.80

are grouped as a single node (starting with the nodes which have

the highest similarity) and their neighbors are linked to this new

node (Fig. 1c). The new node and the neighbors’ similarity values

are chosen as the maximum similarity value of the edges between

the two nodes which were grouped and the neighboring nodes.

Conversely, the new node and the neighbors’ similarity values are

chosen as the minimum similarity value of the edges between the

two nodes which were grouped and the neighbor nodes. The final

clustering results are better with the maximum value similarity

(shown by validation of the clusters with different criteria in the

Results section).

The new networks generated by the community finding

algorithm are processed again, combining nodes which have

similarity values higher than 0.85, 0.90, 0.95 and 1. After five

cycles, all generated networks are reprocessed by the community

finding algorithm without any node grouping to obtain the final

results. Communities extracted at the final stage are the interface

clusters.

This grouping of the nodes according to their similarity values

procedure is used to minimize the run time of the community

finding algorithm. Calculating edge betweenness centrality of a

network has O(n3) complexity. The largest connected component

of the network has 1638090 edges which restrict applying the

community finding algorithm because of the runtime. Edge

betweenness centrality values of the new network should be

calculated after each edge removing process, so this step is the

bottleneck of the community finding algorithm. Therefore, the

nodes are grouped according to their similarities, then the

separation step is applied which speeds up the removal of the

edges from the network, and simplifies finding the edge

betweenness values of the network in the last step. The main

steps of the methods are shown in Fig. 2.

Evaluating Communities
The clustering results are evaluated using the Silhouette index

[60]. The performance of the Silhouette index has been reviewed

in Handl et al. [61]. The silhouette index is calculated as:

S(i)~
b(i){a(i)

max (a(i),b(i))
ð3Þ

where

a(i) = the average dissimilarity between interface i and all other

interfaces in its cluster.

b(i) = the minimum of the average dissimilarities between

interface i and the interfaces in the other clusters.

Software
The clustering procedure was performed using an in-house

software. Codes are written in Python, and the betweenness and

clustering coefficient values are found by using the NetworkX

package [62].

Results and Discussion

Validation of the Clusters with Different Criteria
There are various clustering methods and they have different

pros and cons. In this work, we used two step approaches for a

reliable clustering result. First, grouping the nodes according to

their similarities iteratively is used to provide compactness (small

intra-cluster variation) of the clusters. Secondly, the edge

betweenness property of the protein interface network is used to

cluster similar interfaces, providing the connectedness of the

clusters.

Table 1. Six different interfaces for interaction of histone
deacetylase 8 with another histone deacetylase 8 show that
both at the same and different locations, the interface size
varies across binding sites.

Interface
Name Interface ASA (Å2)

# of interface
residue Binding Site

1VKGAB 1152.59 25 A

3RQDAB 907.84 20 A

1W22AB 1089.86 24 A

3F0RAC 753.88 19 B

3F07CB 1076.17 21 C

1T64AB 423.46 10 D

doi:10.1371/journal.pone.0086738.t001
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Figure 8. Protein interfaces and interface clusters based on years. (a) Protein interface and interface clusters evaluation during years. (b)
Distribution of protein interface cluster sizes throughout years. While the number of protein interface clusters is increasing, the cluster sizes are
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Choosing the clustering method is the starting point of the data

analysis but the important part is finding appropriate criteria for

generating the best results. Different clusters are obtained by using

different parameters and all results from different clusters are

evaluated to select the best cluster set. The parameters for

generating different clusters are the clustering coefficient for the

stopping criteria, the similarity value adjustments (increasing

similarity values by 5% or 1% for grouping similar interfaces as a

single node), and choosing the maximum or minimum similarity

values for the new node and the neighboring nodes during node

formation.

For the evaluation of a clustering method, there are two main

measurements; external and internal [61]. For external evaluation,

we need a gold standard protein interface clusters dataset from the

PDB, but unfortunately there are no standard clusters for protein

interfaces. For internal measurement, we used Silhouette index

[60] for comparing different clusters generated by different

thresholds such as various clustering coefficient values for stopping

criteria (1, 0.95, 0.90, …, 0.50) and different similarity values for

grouping the nodes (1% or 5% increment of similarity value for

grouping the similar interfaces). As a result, the silhouette index

shows that using 1 as a clustering coefficient, 5% increment of

similarity value for grouping similar interfaces, and choosing the

maximum similarity value between the combined nodes and

neighbor node gives the best protein-protein interface clustering

results. In Fig. 3, the silhouette index for 100_5_max bar

(clustering coefficient of 1, 5% increment of similarity value for

grouping similar interfaces are chosen, and the maximum

similarity value between the combined nodes and neighbor node

is selected) gives the best silhouette values. This corresponds to

22604 clusters and 11088 of these clusters are single-membered.

We used these 22604 clusters for further analysis which included

both single and multi-membered clusters.

Investigation of the interface clusters reveals that as expected,

protein interactions can occur between homo- or heterodimeric

chains. Further, when members of a single interface cluster are

investigated, different types of interfaces are observed. We

previously labeled three interface types: Type 1: Similar interfaces,

similar global protein folds. In most cases, if the interfaces are similar,

the overall protein folds are also similar. Such similar interface,

similar fold clusters contain a single family. Here, we observe that

(as also expected), protein interface structures can be similar when

the global folds of the complexes are similar. An example is shown

in Fig. 4a. Bence-Jones Kappa I Protein Bre complex (1BRECF)

and Immunoglobulin Light and Heavy chain complex (43C9AC)

have 79% interface similarity as shown in the figure. Type 2:

Similar interfaces, dissimilar global protein folds. Even if the global folds

of proteins are different, these proteins can interact by similar

interface structures as shown in Fig. 4b. Asportakinase complex

(3AB2CG) and Thioredoxin complex (3O6TCD) which have

different global folds have 77% interface similarity as shown in the

figure.

Comparison with Previous Dataset
In order to show the performance of the current dataset, we

compared it with our previously derived non-redundant protein

interface dataset [31]. Our previous dataset is derived by using

hierarchical clustering method and the important innovation of

the current dataset is replacing the hierarchical clustering

algorithm with a community finding algorithm based on graph

theory. Further, the previous clustering operated with the

requirement that the maximum interface size difference between

cluster members should be maximum fifty residues; the current

clustering method uses a percentage-based approach. There will

be similarity between the interfaces if the bigger interface size does

not exceed the 1.25 times of the smaller interface size. This

strategy also outperformed with smaller interfaces. Hence, the new

method extracted different interface structures than the previous

published method. 45176 interface structures are clustered in our

previous dataset and 7240 unique interface structures were found.

The new clustering algorithm is applied to these 45176 interface

structures and 8648 unique interface structures are obtained.

When their silhouette values are examined, the previous clusters

overall silhouette value is 0.52 and the new clusters overall

silhouette value is 0.70. The distribution of silhouette values over

the number of interfaces explicitly showed that the community

finding algorithm based on graph theory outperformed the

hierarchical clustering (Fig. 5).

We also tried to compare our new dataset with the work of Kim

W.K. et al. [23]. The benchmark data used in their work is

generated by using domain information of the complexes. In our

case, we investigated interactions between protein monomers.

Therefore, in our protein-protein interactions there are multi-

domain interactions at the same time. For example, in the

benchmark set, the interface between the chain A and B of PDB

ID ‘‘1A22’’ exists in two different clusters because chain B has two

SCOP domains. The SCOP domain in Chain A interacts with two

different SCOP domains in Chain B. However, in our dataset, we

labeled these three domain interactions as one interface structure.

Multiple domain entries always cause problems in comparison.

Another problem is the difference between the minimum number

of residue interactions in order to form an interface structure. An

interface should have at least 5 interacting residues in each

monomer according to our definition, however, in the benchmark,

some domain-domain interactions have less than 5 interacting

residues in the monomer. Therefore, we could not compare our

results with the benchmark dataset of Kim et al.

Surface Extraction of Monomers for Template Based
Docking

Structurally non-redundant interface architectures are obtained

by extracting representatives of all clusters. These representative

interfaces are a valuable resource for template based docking

studies. The main purpose of template based docking is matching

monomer surface to a template interface structure; thus surface

extraction of the monomers is an important step. In order to

obtain reliable docking results, the same method should be used to

extract the surface of monomers with the templates. Jones and

Thornton [63] used relative accessible area (RASA) of the residues

to define the interior and exterior residues. They defined exterior

residues as having RASA value .5%, and interior residues as

those with RASA value , = 5%. However, when we analyze the

distribution of the RASA values over the interface and its nearby

residues, we found that the mean of the average RASA values of

each representative interface residues was 52.58 with a standard

deviation of 7.84. The mean of the average RASA values of each

getting denser. The largest cluster in 1999 had 238 members that increased to 1361 in 2011. The minimum cluster size criterion is used to stop the
algorithm in order to prevent the network nodes as network size of 1. During separation of the networks, for example, if one of the networks divided
into two networks which have 4 and 6 nodes respectively, the algorithm only tries to divide the network which is above 5 (if it is possible) because
the other network reached its final state according to our stopping criterion.
doi:10.1371/journal.pone.0086738.g008
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representative nearby residues was 29.72 with a standard deviation

of 9.12. Hence, we suggested using 40% RASA value which

corresponded to 99% of the average interface RASA values in

order to extract interface residues using RASA values of the

residues. Both interface and nearby residue distributions of

representative interfaces are shown in Fig. 6.

Sensitivity of the Templates: Multi-interface Binding
Strategy for the same Protein Pairs

A protein can interact with its partners using the same or

different interfaces. Finding possible interaction sites is challenging

and it is critical to predict possible interaction modes. Docking,

homology modeling, and template based docking can be used for

this purpose. When all PDB entries are investigated, some proteins

with multiple partners are observed to exploit multiple interaction

sites with their partners. These experimentally found structures

can be extracted using distinct interface structures of the

complexes (representative interface structures) present in PDB.

To find proteins with multiple interfaces, firstly, pairwise

sequence alignments of all the monomers in the PDB are

downloaded from PDB FTP Services (22 November 2012) and

labeled with a cluster ID. All monomers which have the same

cluster ID have 100% sequence identity. This leads to 48669

different cluster IDs. Then, two monomers which have an

interface are labeled as first monomer cluster ID underscore

second monomer cluster ID (e.g. 423_1002). According to their

monomer sequence identities, 26825 distinct interface pairs are

extracted. These pairs are compared with the structural clusters

extracted from interface similarity. 7962 protein pairwise interac-

tions out of 26825 have more than one interface in the PDB. A

general view of the database is shown in Fig. 7a.

Proteins prefer different conformations to bind other proteins.

Analysis of those 7962 monomer pairs illustrates that these

proteins interact with their partners using slightly different

conformations to bind their partners at the same shared site or

at different binding sites. 3500 out of the 7962 use the same shared

site to bind their partners and the rest employ different binding

sites. For example, in Fig. 7b, the red labeled monomer, which is a

histone deacetylase 8, is shown with multiple interaction partners

at four different binding sites (a shared site and three different

binding sites). Histone deacetylase 8 (gray, orange, green, yellow,

blue, and purple) can interact with other histone deacetylase 8. It

can pair up with another histone deacetylase 8 at four different

binding sites, dependent on cellular conditions, phosphorylation

states and mutations. Interestingly, these histone deacetylase 8

pairs (taken from the protein interface clusters with their properties

listed in Table 1) exist in six different interface architectures.

Analysis of Fig. 7b illustrates that the binding site of histone

deacetylase 8 is used multiple times; however, as can be seen in

Fig. 7c these have different interface architectures (these interfaces

are in different interface clusters because their interface similarities

are lower than 75% similarity. The rmsd scores of the pairwise

structural alignments of the complexes (over 672 aligned residues)

generated by PDBeFOLD [64] are as follows: 1W22AB-

1VKGAB:1.126 Å, 1W22AB-3RQDAB:2.305 Å and 1VKGAB-

3RQDAB:1.756 Å (RMSD values are calculated for alpha

carbons)). Thus, despite the similarity of monomers and binding

sites, small conformational changes in the binding sites provide

different interface architectures (like interologs [65]) and different

relative energy distributions among the residues (Fig. 7c) [10]. The

energy distributions of the residues are extracted using the

HotRegion server [66]. HotRegion gives information about

hotspot residues which contribute more to binding energy [67–

69]. Hence, generating templates using sequence similarity is not a

good choice for docking. On the other hand, templates prepared

with interface structure similarities are sensitive leading to more

reliable docking.

Protein Interfaces and Interface Clusters based on Years
The numbers of both available protein interfaces and their

interface clusters increased exponentially in recent years. Howev-

er, interface clusters have smaller increment than protein

interfaces as shown in Fig. 8a. In addition to the increase in the

number of clusters during the years, there is also an increase in the

clusters size. The distribution of protein interface cluster sizes are

presented in Fig. 8b. The largest cluster in 1999 had 238 members

that increased to 1361 in 2011. Moreover, in 2011, there were 8

clusters with more than 500 members which were not present

before 2004.

Conclusions

Here we generate an updated non-redundant dataset of protein-

protein interfaces, containing 22604 unique interface structures.

The new dataset has not been used for prediction as yet; however,

our older datasets have been extensively used for predictions of

protein-protein interactions [14,15,70,71]. In those works, we used

subsets of our datasets, selected based on our aims, which were not

as comprehensive as the full dataset. Protein-protein interactions

reflect functional and structural information. This interface dataset

can be analyzed with respect to all of these. The dataset is

functionally unique in three ways: first, it provides a rich resource

of structural data of protein-protein interactions, allowing using

these for knowledge-based protein-protein interaction predictions,

for constructing structural pathways, for studies of drug side

effects, where drugs may bind to ‘unintended’ similar interfaces,

for alternative pathways in drug resistance, and broadly for protein

function. Second, analysis of these interfaces illustrates that 7962

of them are shared multi-partnered binding sites. Since the

interfaces are derived from the PDB, it suggests that over one third

of the protein-protein complexes have proteins bound to different

partners. Some may be subunits; others may be signaling hub

proteins. This allows dissecting protein-protein interactions to

address questions such as how similar (or, different) are interfaces

of partners binding to the same shared regions, on a large scale.

We observe that interface size may vary substantially among

partners, as do the hot spot residues in the interaction. Such

shared binding site cases may help in addressing questions of

binding specificity. And third, the analysis is performed with

respect to interface residues. Extraction of the surface of

monomers can be easily done by using RASA values of interface

residues. Surface residues identified by the RASA values will work

well with the current template set in template-based docking.

This dataset can be accessed at http://prism.ccbb.ku.edu.tr/

piface.
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