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Abstract

Aptamers are oligonucleic acid or peptide molecules that bind to specific target molecules. As a novel and powerful class of
ligands, aptamers are thought to have excellent potential for applications in the fields of biosensing, diagnostics and
therapeutics. In this study, a new method for predicting aptamer-target interacting pairs was proposed by integrating
features derived from both aptamers and their targets. Features of nucleotide composition and traditional amino acid
composition as well as pseudo amino acid were utilized to represent aptamers and targets, respectively. The predictor was
constructed based on Random Forest and the optimal features were selected by using the maximum relevance minimum
redundancy (mRMR) method and the incremental feature selection (IFS) method. As a result, 81.34% accuracy and 0.4612
MCC were obtained for the training dataset, and 77.41% accuracy and 0.3717 MCC were achieved for the testing dataset. An
optimal feature set of 220 features were selected, which were considered as the ones that contributed significantly to the
interacting aptamer-target pair predictions. Analysis of the optimal feature set indicated several important factors in
determining aptamer-target interactions. It is anticipated that our prediction method may become a useful tool for
identifying aptamer-target pairs and the features selected and analyzed in this study may provide useful insights into the
mechanism of interactions between aptamers and targets.
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Introduction

Aptamers, first identified by three laboratories independently in

1990 [1,2,3], are synthetic single-stranded nucleic acids or

peptides. These artificial molecules folding into specific spatial

conformations can bind to certain targets with extremely high

specificity. They mimic properties of antibodies, but possess

several advantages compared with antibodies. Firstly, aptamers

can probably target any molecules across the range from small

inorganic ions to intact cells, since they are synthesized and

selected in vitro based on affinities for recognizing their objective

targets. Secondly, after selected, aptamers can be easily amplified

through polymerase chain reactions to obtain large quantities of

high-purity molecules. Finally, aptamers with simple chemical

structures can be easily amended by adding some functional

groups making the molecules more stable than antibodies in harsh

conditions. Thus aptamers, as a novel and powerful class of

ligands, are thought to have excellent potential for applications in

the fields of diagnostics, therapeutics and biosensing [4,5].

Typical approach of selecting aptamers is systematic evolution

of ligands by exponential enrichment (SELEX) [1,2] initiating with

a stochastic library containing single-stranded DNA or RNA

sequences. This conventional method for generating aptamers

in vitro or in vivo [6,7,8,9,10] from random combinatorial libraries

is often labor-intensive and time-consuming, taking weeks to

months to finish. Although a plenty of efforts have been put

forward to improve the aptamer selection, it is still desirable to

develop a computational method for designing effective aptamers

binding to certain interested targets, saving much time and labor.

In this study, a new method for predicting aptamer-target

interacting pairs was proposed by integrating information from

both aptamers and their targets. Each aptamer was represented

with 20 features by nucleotide composition. And each target

protein was encoded with another 270 features, by using amino

acid composition and pseudo-amino acid composition containing

electrostatic charge, codon diversity, molecular volume, polarity,

and secondary structure. Subsequently, the Maximum Relevance

Minimum Redundancy method (mRMR) and the Incremental

Feature Selection (IFS) method were adopted to select the optimal
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features for the prediction. Result might provide strong implica-

tions in developments and improvements to broaden the

applications of aptamers in biochemical and medicinal fields.

Materials and Methods

Dataset
Apatmer Base (http://aptamer.freebase.com/) is a collaborative

knowledge base about aptamers, containing their interactions and

detailed experimental conditions with citations to primary

scientific literature [11]. It contains a total number of 1638 entries

of interactions (accessed in Sep. 2012), 1381 of which are aptamers

of DNA or RNA interacting with 211 target proteins. Since only

protein names of target proteins are provided in Apatmer Base,

such as human interleukin 17A, prothrombin, Human toll-like

receptor 3 ectodomain, etc., we searched Swissprot for their

sequences according to the best name matches. Only 168 protein

sequences can be found with exact name matches. And we

removed 4 proteins since their lengths were less than 50 amino

acids. Finally, 164 proteins with sequences were obtained as

apatmer targets corresponding to 1554 interactions between

apatmers and proteins.

In the 1381 aptamers, only 725 interact with the 164 proteins.

Thus the 725 aptamer-target pairs are regarded as positive

samples. 2175 negative samples were generated by randomly

pairing the aptamers and the protein targets, with no overlap with

the positive samples. The dataset was randomly split into two

parts, one for training containing 580 positive and 1740 negative

samples and the other for testing containing 145 positive and 435

negative samples. The dataset was given in Additional File S1.

Feature Construction
In this study, nucleotide composition was employed to encode

the aptamer sequences. And amino acid composition and pseudo-

amino acid composition were adopted to encode the target protein

sequences.

Nucleotide Composition
Since U in RNA is similar to T in DNA. Therefore, we encoded

them in the same way. Then the compositions of A, T/U, C, G,

AA, AC, AT/AU, AG, CA, CC, CT/CU, CG, TA/UA, TC/UC,

TT/UU, TG/UG, GA, GC, GT/GU and GG were computed to

encode each aptamer. Thus each aptamer was encoded into a

20-dimensional numerical vector.

Amino Acid Composition
Amino acid composition is a type of basic feature of protein

sequence, which is closely related to many protein attributes, such

as subcellular location [12,13,14], domain [15], folding type [16]

and secondary structure [17]. Amino acid composition includes 20

discrete numbers, each of which represents occurrence frequency

of each of the 20 native amino acid in a protein sequence,

respectively. In this study, each protein was encoded into a

20-dimensional numerical vector by using the amino acid

composition.

Pseudo-Amino Acid Composition
The concept of pseudo-amino acid composition (PseAAC) was

first proposed by Chou for predicting protein cellular attributes

[18]. Based on the conventional amino acid composition, Chou

proposed a set of discrete numbers to consider possible sequence

order patterns. PseAAC has been proved to be a type of effective

features in many biological problems [19,20,21]. The concept of

PseAAC can be described as follows.

Suppose a protein sequence of L amino acid residues:

R1R2R3
:::RL{2RL{1RL ð1Þ

The sequence order effect of the protein can be represented by a

set of discrete correlation factors, which are calculated as follows:

h1~
1

L{1

XL{1

i~1

H(Ri,Riz1)

h2~
1

L{2

XL{2

i~1

H(Ri,Riz2)

h3~
1

L{3

XL{3

i~1

H(Ri,Riz3)

:::

hl~
1

L{l

XL{l

i~1

H(Ri,Rizl) (lvL)

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð2Þ

where h1, h2, h3, hl are the first-tier, second-tier, third-tier, l-th

tier correlation factors, respectively. And the correlation function is

H(Ri,Rj)~½F (Rj){F (Ri)�2 ð3Þ

where F (Ri) is the feature (e.g. electrostatic charge) value of the

amino acid Ri. The value is converted from the original feature

value of the amino acid according to the following equation:

F (Ri)~

Fo(Ri){
X20

i~1

Fo(Ri)

20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i~1

Fo(Ri){
X20

i~1

Fo(Ri)

20

" #2

20

vuuuut
ð4Þ

where Fo(Ri) is the original feature value of the amino acid Ri.

Then the PseAAC of a protein can be represented by a (20+l)-D

vector as follows:

V~ v1,v2, � � � ,v20,v21, � � � ,v20zl½ �T ð5Þ

where the superscript T is the transpose operator

vx~

fxP20

i~1

fizv
Pl
j~1

hj

, (1ƒxƒ20)

vhx{20P20

i~1

fizv
Pl
j~1

hj

, (21ƒxƒ20zl)

8>>>>>>>><
>>>>>>>>:

ð6Þ

where fx(x~1,2,:::,20) represents the occurrence frequencies of

the 20 amino acids in the protein sequence, hj represents the j-th

tier sequence correlation factor calculated according to Eq. (2),

and v represents the weight for the sequence order effect. Based

on the above description, it is known that the first 20 components

in Eq. (5) represent the effect of the conventional amino acid

composition, while the remaining l components are the correla-

tion factors representing the effect of sequence order. A set of such

Prediction of Aptamer-Target Interacting Pairs
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20+l numbers is named PseAAC. In this study, we set v~0:15,

l~50.

In this study, polarity, codon diversity, electrostatic charge,

molecular volume and secondary structure are used to describe the

physicochemical and biochemical properties of amino acids. And

the 5 features were retrieved from [22,23], which can be found in

Additional File S2.

Feature Space
In this study, the nucleotide composition (20-D) was used to

encode aptamers. The conventional amino acid composition (20-D)

and the sequence order effect described by the components from 21

to 20+l in the Eq. (5) (50-D) were adopted to encode targets.

Therefore, the feature space is (20z20z50|5~290)-D. In other

words, one aptamer-target pair can be encoded into a 290-D

dimensional vector by the nucleotide composition, amino acid

composition and pseudo-amino acid composition containing the

codon diversity, electrostatic charge, molecular volume, polarity

and secondary structure of amino acids (see Additional file S3).

Modeling
We first ranked the 290 features by using the Maximum

Relevance, Minimum Redundancy (mRMR) method. Based on

the ranked feature list, the Incremental Feature Selection (IFS)

method was employed to select the optimal feature subset. The

prediction model was constructed based on Random Forest and

was evaluated by 10-fold cross validation.

mRMR Method
In this study, the Maximum Relevance Minimum Redundancy

[24] (mRMR) method was employed to rank the importance of the

290 features in descending order. The main ideas of the method

are that the to-be-selected feature should have the maximum

correlation to the target class and should have minimum

redundancy to the already selected features. Features are selected

from the 290-D features one by one and ranked into a MaxRel

feature list according to the Maximum Relevance criterion, and

also into an mRMR feature list according to both maximum

correlation and minimum redundancy criteria. Both the relevance

and redundancy are quantified by mutual information (MI) which

is defined by

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð7Þ

where p(x,y) is the joint probabilistic density for feature x and

feature y, p(x) and p(y) are the marginal probabilistic densities for

feature x and feature y, respectively.

Suppose the whole feature set was denoted by V, the already

selected feature set having m features was represented by Vs and

the feature set with n features was denoted by Vt, the relevance D

between the feature f in Vt and the class c is calculated by

D~I(f ,c) ð8Þ

And the redundancy R of f with all features in Vs is calculated by

R~
1

m

X
fi[Vs

I(f ,fi) ð9Þ

To select the feature fi in Vt with maximum relevance to the

class and minimum redundancy to the already selected features in

Vs, Eq. (8) and Eq. (9) are combined together:

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj,fi)

2
4

3
5(j~1,2,:::,n) ð10Þ

Then the feature fi will be removed from Vt and be added into Vs.

This process will be repeated until all features are removed from

Vt and added into Vs. The better the feature is, the earlier it is

selected.

Random Forest
The Random forest (RF) approach is a popular machine-

learning algorithm that has been recently successfully used in

dealing with various biological prediction problems

[25,26,27,28,29]. Developed by Loe Breiman [30], RF is an

ensemble predictor consisting of multiple decision trees. A queried

sample with an input vector will be given a classification by each

decision tree in the forest. The forest will choose the class as the

final classification that most decision trees in the forest voted. Each

tree is constructed according to the following procedure:

(1) Suppose the number of training cases is N, sample N cases at

random, but with replacement, from the original data, which

will be the training set for growing the tree.

(2) If there are M input variables, at each node, m variables are

selected randomly out of the M input variables, where m is

much less than M. The most optimized split on these m

variables is employed to split the node. The value of m does

not change during the growth of the forest.

(3) Each tree is fully grown and not pruned.

In this study, we employed Random Forest implemented in

Weka 3.6.4 [31] with default parameters.

Ten-fold Cross-Validation Method
Ten-fold cross-validation was often used to evaluate the

performance of a classifier [32]. During the procedure, the dataset

is randomly and evenly split into ten folds, out of which nine folds

are used for training and the remaining one for testing. This

procedure is repeated ten times and each sample is tested exactly

once. To evaluate the performance of the predictor, the prediction

accuracy, specificity, sensitivity and MCC (Matthews correlation

coefficient) were calculated as below:

accuracy~
TPzTN

TPzTNzFPzFN

sensitivity~
TP

TPzFN

specificity~
TN

TNzFP

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ

where TP, TN, FP, FN denote true positive, true negative, false

positive and false negative, respectively.

Incremental Feature Selection
From the ranked features by mRMR, we used the Incremental

Feature Selection (IFS) method [26,33,34,35] to determine the

Prediction of Aptamer-Target Interacting Pairs
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optimal feature set. During the IFS procedure, features in the

ranked feature list are added one by one from higher to lower

rank. A new feature set is constructed when one new feature is

added. Totally 290 feature sets are generated since the total

number of features is 290. The i-th feature set is:

Si~ff1,f2,:::,fig(1ƒiƒ290) ð12Þ

For each feature set, a random forest is constructed and tested by

using ten-fold cross-validation. We obtained totally 290 feature sets

and correspondingly built 290 random forest predictors. The

prediction performances of the 290 predictors were reported in an

IFS table, containing the prediction accuracies, sensitivities, specificities

and MCCs of the predictors. Finally the optimal feature set

(Soptimal) was obtained from the table when the corresponding

predictor yielded the best performance.

Results and Discussion

The mRMR Result
After running the mRMR software, we obtained two tables (see

Additional File S4): one was called MaxRel feature table that

ranked the features according to their relevance to the class of

samples; the other was called mRMR feature table that ranked the

features according to the maximum relevance and minimum

redundancy criteria. In the mRMR feature table, a feature with a

smaller index implies that it is more important for the prediction of

aptamer-target pairs. Such a list of ranked features was to be used

in the following IFS procedure for the optimal feature set selection.

IFS Result
By adding the ranked features one by one, we built 290

individual predictors based on the 290 feature subsets for

predicting aptamer-target pairs. We then tested the prediction

performance of the 290 predictors and obtained the IFS results

(see Additional File S5). Shown in Fig. 1 is the IFS curve plotted

based on the data of Additional File S5. As we can see from the

figure, the MCC reached the maximum value of 0.4612 when the

first 220 features were used. Therefore, we regarded the 220

features as the optimal feature set for the prediction problem.

Based on these 220 features, the prediction sensitivity, specificity and

accuracy were 0.4879, 0.9218 and 0.8134, respectively (Table 1). Sn

is the rate of aptamer-target pairs that are correctly predicted,

while Sp is the rate for correctly predicted non-aptamer-target. For

training dataset, Sn and Sp of our method is 0.4879 and 0.9218

respectively, due to the ratio between positives and negatives is 1:3.

However, for the random prediction, Sn and Sp should be 0.2500

and 0.7500, respectively. Therefore, our method increased the Sn

and Sp by 0.2379 ( = 0.4879–0.2500) and 0.1718 ( = 0.9218–

0.7500) respectively, which shows the effectiveness of our model.

For these 220 features, please referred to the top 220 features listed

in the Table mRMR in Additional file S4.

Prediction Performance on Independent Dataset
To assess the performance of our predictor, we applied our

method on an independent dataset and achieved a sensitivity of

0.4828, specificity of 0. 8713, accuracy of 0. 7741 and MCC of 0. 3717

Figure 1. IFS curves showing the values of MCC against different number of features used based on the data in Additional File S5.
When the first 220 features in the ranked feature list were used, MCC reached the maximum of 0.4612. These 220 features were considered as
composing the optimal feature set for our prediction problem.
doi:10.1371/journal.pone.0086729.g001

Table 1. Prediction performance on training dataset and
testing dataset.

Dataset Sn Sp Ac MCC

Training dataset 0.4879 0.9218 0.8134 0.4612

Testing dataset 0.4828 0.8713 0.7741 0.3717

Sn: sensitivity.
Sp: specificity.
Ac: accuracy.
MCC: Matthews correlation coefficient.
doi:10.1371/journal.pone.0086729.t001

Prediction of Aptamer-Target Interacting Pairs
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(Table 1). For independent testing dataset, Sn and Sp of our

method is 0.4828 and 0.8713, respectively, also due to the ratio

between positives and negatives is 1:3. Our method increased the

Sn and Sp by 0.2328 ( = 0. 4828-0.2500) and 0.1213 ( = 0.8713-

0.7500) respectively, when compared with the random prediction

on the dataset with the same composition.

An Example of Correctly Predicted Aptamer-target Pair
Take the aptamer 21402046-AlkB-12 and its target AlkB as an

example. The feature extraction procedure is illustrated in Fig. 2.

The sequence of the aptamer 21402046-AlkB-12 contains 79 bases.

The single nucleotide composition of A, T, C, G are 0.2658, 0.2405,

0.2152, 0.2785, respectively, which composed a 4-dimentional

vector. Similarly, the dual nucleotide composition, i.e., the

composition of AT, TT, TG, GG, etc., was computed respectively

and they composed another 16-dimentional vector. In the sequence

of the target AlkB, a 20-dimensional vector was computed from the

20 amino acid composition. The pseudo-amino acid composition of

the target was also computed, composing another 250-dimensional

vector, according to Ref [18]. Finally, the 21402046-AlkB-12:AlkB

pair was represented as a 290 ( = 4+16+20+250) dimensions vector.

The 290-dimensional vector was then optimized by the

incremental feature selection. Finally, a 220-dimensional vector

was selected, in which the corresponding features were called the

optimal features. The classifier constructed by the random forest

with the optimal feature subset in the training set take the

Figure 2. The feature extraction procedure of aptamer-target pair 21402046-AlkB-12: AlkB. Sequences of the aptamer and the target
were shown, from which 290 features were extracted. Finally, 220 features were selected as the final optimal feature set from the 290 features by the
IFS procedure, composing a 220-dimentional vector as input of the model.
doi:10.1371/journal.pone.0086729.g002

Figure 3. Histograms showing the distributions of the 220 optimal features.
doi:10.1371/journal.pone.0086729.g003

Prediction of Aptamer-Target Interacting Pairs
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220-dimensional feature of the 21402046-AlkB-12:AlkB pair as

input and determined whether they interact or not as output.

Induced during an adaptive response, AlkB protein plays a role

in the direct reversal of alkylation damage involved in DNA

repairing. AlkB protein is recently detected by highly sensitive and

selective aptamers selected in-house using CE-SELEX. Up to now,

a few aptamers have been selected and were located differently on

the AlkB protein [36], but had variability of affinity (dissociation

constant, Kd). According Lock and Key Theory, the 3-

dimensional structure of the aptamer such as size and shape of

molecules explains the binding of an aptamer for the protein.

Therefore, the structure of an aptamer’s target is one of factors

considered by researchers. Ji Sun Choi et al. [37] explored the

aptamers with a low nanomolar range binding affinity to

demonstrated the binding sites of the aptamers for its targets

appeared to be determined by the secondary structures. They

predicted the secondary structures of the aptamer by computer

program where a stem-loop secondary structure was investigated

and the stem part (30-residue ssDNA sequence) was largely

responsible for the binding. Nucleotide composition consists of the

elemental information of aptamers and determines the intrinsic

traits such as secondary structure. As a result, it is reasonable for

this study to employ the nucleotide composition to depict

aptamers.

Analysis of the Optimal Features
The 220 optimal features derived from mRMR program can be

categorized into 7 terms, namely, target frequency (amino acid

composition), target secondary structure, target codon diversity,

target electrostatic charge, target molecular volume, target polarity

and aptamer frequency (the composition of nucleotide and dual-

nucleotide) (Fig. 3).

The target codon diversity ranks the first making up approx-

imately 20%. The codon diversity implies that the codon usage is

an essential factor for aptamer-target interactions, because this

trait to a large extent resides in the optimal features of interactions.

This finding is consistent with the previous studies that proved

codon usage play an important role in interaction related to

proteins [38,39,40]. Probably, this is also stem from the reason

that aptamers have to date been selected against a broad range of

targets, including proteins (e.g. proteases, cell-surface receptors,

kinases, cytokines, and cell-adhesion molecules), phospholipids,

sugars, nucleic acids, as well as whole cells [41,42,43,44]. Indeed,

the applications of aptamers are widely exploited in the fields of

diagnostics, therapeutics and medical imaging [45]. It suggests that

our prediction of aptamer is based on a highly various scope of

aptamer protein target and thus this prediction through mRMR

program might be widely implemented into the design of aptamer.

Furthermore, the counts of features about conformational

properties (secondary structure and molecular volume) as well as

the trait of polarity nearly remain equal, with the number of about

35 in the optimal features. These traits take up a large part of the

optimal features. This elucidates the importance of these traits and

is consistent with the analyses of detecting subtle modifications

with aptamer [46] and polarity of thrombin binding aptamer [47].

It has been proved that changes in the proteins can be detected by

aptamers with specific activities [46] and the aptamer binding

modified thrombin, which contains a 59-59 polarity inversion site,

particularly has higher affinity and higher stability [47]. A subtle

folding and harmonious charge density are beneficial for aptamers

to recognize their targets effectively and selectively [48]. These

conformational properties play crucial roles in interactions

between small molecules and protein targets. For example, the

size and position of functional groups of proteins are generally

direct factors in interaction between molecules [49,50,51]. On the

basis of Lock and Key Theory [52] which analyzed the effects of

the size and shape of molecules in interactions, molecular volume

is another main factor for strictly determining the affinity and

specificity of interactions between aptamers and targets. Electro-

static charge of the targets is derived from the distribution and

proportion of polar and charged amino acid residues. It facilitates

forming short range interactions including salt-bridges and

hydrogen-bonds. Little hydrophobicities in protein complexes

and their interactions mainly benefit from the polar and charged

residues [53], particularly in complexation when a small molecular

binds to proteins [54]. Our results further affirm that the

conformational and polar properties are important for identifying

the pattern of interaction between aptamers and their targets.

As a result, our prediction of proper aptamer could be precise

depending on the traits of conformation, polarity of proteins as

well as electrostatic charge. Overall, our prediction through

mRMR program is based on these targets’ propensities to interact

with apatmers combining with certain pattern of amino acid and

nucleotide composition selected in our prediction and thus it

bestows us the ability to design several suitable aptamers to

specifically recognize the given target protein.

Conclusion

In this study, we developed a new method for predicting and

analyzing aptamer-target pairs. Our method considered not only

sequence information from aptamers but also traditional amino

acid composition and pseudo amino acid composition from

targets. By means of the feature selection algorithm, an optimal

set of 220 features were selected. These features were regarded as

the ones that contributed significantly to the prediction of

aptamer-target pairs. With the 220 optimal features selected, our

approach achieved an overall accuracy of 77.41% and 0.3717 MCC

on an independent dataset. These selected features may shed some

light on in-depth understanding of the mechanisms of interactions

between aptamers and their targets, providing guidelines for

designing novel and effective aptamers binding to certain

interested targets.

Supporting Information

File S1 This file contains two sheets. The first one
shows the positive samples of aptamer-target pairs. The

second one shows the negative samples of aptamer-target pairs.

(XLSX)

File S2 The polarity, codon diversity, electrostatic
charge, molecular volume and secondary structure of
20 amino acids.

(XLSX)

File S3 The training dataset consisting of the 580
positive samples and 1740 negative samples, the testing
dataset consisting of the 145 positive samples and 435
negative samples, with each having the 290 feature
components.

(XLSX)

File S4 This file contains two sheets. The first one shows

the MaxRel feature table, which ranked the features according to

the relevance between features and class of the samples. The

second one shows the mRMR feature table, which ranked the

features according to the redundancy and relevance criteria.

(XLSX)
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File S5 The sensitivity (Sn), specificity (Sp), accuracy
(Ac), Matthews’s correlation coefficient (MCC) of each
run of IFS.
(XLSX)
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