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Abstract

Disease module is a group of molecular components that interact intensively in the disease specific biological network.
Since the connectivity and activity of disease modules may shed light on the molecular mechanisms of pathogenesis and
disease progression, their identification becomes one of the most important challenges in network medicine, an emerging
paradigm to study complex human disease. This paper proposes a novel algorithm, DiME (Disease Module Extraction), to
identify putative disease modules from biological networks. We have developed novel heuristics to optimise Community
Extraction, a module criterion originally proposed for social network analysis, to extract topological core modules from
biological networks as putative disease modules. In addition, we have incorporated a statistical significance measure, B-
score, to evaluate the quality of extracted modules. As an application to complex diseases, we have employed DiME to
investigate the molecular mechanisms that underpin the progression of glioma, the most common type of brain tumour.
We have built low (grade II) - and high (GBM) - grade glioma co-expression networks from three independent datasets and
then applied DiME to extract potential disease modules from both networks for comparison. Examination of the
interconnectivity of the identified modules have revealed changes in topology and module activity (expression) between
low- and high- grade tumours, which are characteristic of the major shifts in the constitution and physiology of tumour cells
during glioma progression. Our results suggest that transcription factors E2F4, AR and ETS1 are potential key regulators in
tumour progression. Our DiME compiled software, R/C++ source code, sample data and a tutorial are available at http://
www.cs.bham.ac.uk/~~ szh/DiME.
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Introduction

With the increasing availability of high-throughput, genome-

wide assay data and high-performance computational resources,

network biology (systematically reviewed by Barabási in [1]),

which addresses the intrinsic structure and organisation of

networks of pairwise biological interactions, has rapidly evolved

as a promising research area. Viewing the functional machinery of

the cell as a complex network of physical and logical interactions

rather than a simple assembly of individual functional components

has contributed unprecedented insight into the cell’s wiring

scheme.

The implications of methodology in network biology have been

taken a step further by network medicine which focuses on the

application to the understanding of complex disease pathophys-

iology [2]. The fundamental hypothesis is that the impact of

genetic and environmental disturbance upon disease phenotype is

likely to be asserted through coordinated activity of a group of

genes and their products which interact intensively, termed as

disease modules [2]. It has been argued that there is a significant

overlap among the topological module (e.g., highly interlinked

local region in the network), the functional module (e.g., a group of

molecular components responsible for a particular cellular

process), and the disease module consisting of disease-associated

genes. A primary objective in network medicine, therefore, is to

integrate the topological modules of biological networks and

functional annotation to identify disease modules that contain both

known and unknown disease genes and potential therapeutic

targets.

To identify disease modules with high confidence, the first and

most important step is the identification of significant and robust

topological modules in a network constructed from patient data

(e.g., gene co-expression network built from tumour microarray

data). Several module identification algorithms was previously

applied. One of the most popular algorithms is community

detection algorithm that maximises a modularity measure brought

forth by Newman (2006) [3]. Though it is capable of yielding

biological insight in several case studies (e.g. [4][5][6]), a major

drawback of the community detection algorithm is the resolution

limit problem [7][8] which results in huge modules with large

numbers of genes (e.g., in [5]). Such problem is serious in disease

module identification since it will inevitably introduce a lot of false
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disease genes (hence low specificity) and consequently adds

difficulties to validation and interpretation.

Another popular algorithm is Molecular Complex Detection

(MCODE) [9], which only identifies the nodes that actually belong

to a module. It was originally developed to discover protein

complexes in PPI networks but was extended to analyses of other

network types (e.g., [10]). The key idea of the MCODE algorithm

is to weight each node in the network with the minimum degree of

the most densely connected set of nodes in its neighbourhood

multiplied by the local density of that set, and recursively include

neighbouring nodes into a module according to a user-tunable

weight threshold starting from the highest weighting node.

MCODE in general generates smaller and denser modules than

the community detection algorithm does, but has the drawback

that it only considers local connectivity, i.e., the links inside a

module but ignores the links outside, which might generate biased

results towards disease modules that contain genes or proteins with

lots of interacting partners [11].

The community extraction (CE) algorithm is a novel commu-

nity structure identification algorithm originally proposed for

social network analysis [12]. This algorithm extracts the tightest

module at a time, regardless of whether the rest of the network

contains other modules. The algorithm is based on a novel module

criterion, called community extraction (CE) criterion, which

defines core modules in a network to be groups of nodes that

are as densely connected as possible within the group while as

loosely connected as possible to the rest of the network. This

module criterion is very attractive for disease module identification

because, unlike community detection, it will not result in huge

modules. Moreover, in contrast to MCODE, it takes into

consideration both the local connectivity of the module and its

relationship to the global topology of the entire network. However,

we found that in the original CE algorithm, the tabu search

algorithm [13,14], which is used for optimising the CE criterion, is

not scalable to handle medium and large networks, hampering its

application to disease module identification from biological

networks which commonly consist of thousands of nodes.

In this paper, we propose a novel Disease Module Extraction

(DiME) algorithm based on the CE criterion. Previously, we

proposed a evolutionary community extraction algorithm and

applied it to medium scale low and high grade glioma protein-

protein interaction networks [15]. In order to handle large-scale

biological networks, our DiME algorithm introduces a novel

search heuristics using a simple local moving algorithm and a

sample-and-seed step to prioritize candidate modules. Our

algorithm has the advantage of good scalability (quadratic in time

with respect to the network size), better accuracy and robustness

than existing methods, and having few parameters to tune. In

addition, we incorporated a statistical significance measure - the B-

score as defined by Lancichinetti et al. [16,17] - into the module

extraction workflow to assess the quality of extracted modules

without having to simulate large numbers of random networks for

p-value calculation.

After identification of topologically and statistically significant

modules, it would then be relatively straightforward to overlay

biological annotations from multiple sources, such as Gene

Ontology, transcription factor binding databases (e.g., the HTRI

database) and literature reported disease genes (e.g., from the

GeneCards catalogue) onto the modules to reveal key regulatory

processes in disease and prioritize possible disease modules.

As a case study we have applied DiME to gliomas (glial tumours

of the central nervous system). A large percentage (60%) of low

grade (grade II) glioma patients have relatively long survival length

of 5 years [18]. However, some patients may progress to more

aggressive high grade (grade IV or GBM) glioma, termed

Glioblastoma multiforme (GBM), which has a short survival

length of approximately 15 months [19]. Although GBM has been

intensively studied, the molecular mechanisms that underpin the

progression from low to high grades gliomas still remain unclear.

We have applied our DiME algorithm to two co-expression

networks constructed from high- and low-grade glioma patient

data to extract statistically significant modules. We then have

compared the topology and activity (expression) of the disease

modules, their functional annotations and regulatory mechanisms,

to gain insights into molecular mechanisms in the acquisition of

more aggressive malignancy during glioma progression. We have

identified several statistically significant modules which are

reproducible across three different datasets as potential disease

modules. We then discovered that the dynamic activity, e.g., gene

expression levels of these disease modules correlated with glioma

progression. Finally from these disease modules we identify their

upstream transcription factors E2F4, AR and ETS1 as potential

key regulators in tumour progression.

Methods

The DiME framework
A general work flow of the DiME framework for disease module

identification and analysis is given in Figure 1. Note that our

framework is readily adaptable to other types of study. For

example, the construction of co-expression networks may be

replaced by PPI networks to examine protein complexes or

signaling modules, and the procedures downstream of the

statistical significance evaluation step may also be varied according

to specific aims of research, e.g. validation of disease modules via

prediction of patient recovery/survival instead of correlating with

tumour grade in our case study. In the following sub-sections, we

provide details for the core steps of the DiME work flow - network

construction, module extraction algorithm and evaluation of

statistical significance.

The DiME algorithm
Our DiME algorithm, as summarised as pseudo-code in Table 1,

aims at maximizing the following objective function for commu-

nity (termed as ‘‘module’’ throughout this paper) extraction

defined in [12]:

~WWS~DSD:DScD:
OS

DSD2
{

BS

DSD:DScD

� �
, ð1Þ

where S and Sc denote a module and its background network,

respectively. OS~
P

i,j[S Aij , BS~
P

i[S,j[Sc
Aij and Aij is the

adjacency matrix. D:D denotes cardinality. Intuitively the criterion

seeks to maximise the density of connections within a module and

minimise that with the rest of the network.

Maximizing the above objective function is essentially a

combinatorial optimization problem, where each solution i can

be represented as a binary vector of 0 s and 1 s that denote the

module membership status of each node:

xi~ xi
1,xi

2,:::,xi
N

� �
ð2Þ

where
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xi
j~

1 if j th node is in module

0 otherwise

�

and N equals the total number of nodes in the network.

Finding the exact optimal solution for the problem takes

exponential time. Therefore in the original publication [12], a

generic metaheuristic algorithm, e.g., tabu search was used to solve

the problem. Similarly, other metaheuristic algorithms such as

evolutionary computation can be used [15]. However, from our

experience, these generic metaheuristic algorithms suffer from

scalability issues, e.g., when network size grows larger the time

required for extracting a module increases disproportionately and

quality of the extracted modules deteriorate significantly. This

Figure 1. General work flow for the DiME framework.
doi:10.1371/journal.pone.0086693.g001
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scalability issue greatly hinders the application of module

extraction to biological network analysis where most of the

networks consist of thousands of nodes.

In this paper, we propose a simple greedy local search algorithm

that efficiently handles large networks. At each iteration, the

algorithm visits all nodes in a sequential order. For each node, the

algorithm performs the best move, e.g, flip the membership status

of the node if it increases ~WW . The algorithm iterates until no ~WW -

increasing move is found for any node. In order to speed up the

algorithm, we only calculate the changes in the value of ~WW :

D ~WWk~
OS
: N
DSD DSD{1ð Þ{2 N

DSD{1

P
j[S Akj

xjz
P

j[S Akj
if k[S

{OS
: N
DSD DSDz1ð Þz2 N

DSDz1

P
j[S Akj

xj{
P

j[S Akj
if k[Sc

(

where OS~
P

i,j[S Aijxixj . The detailed derivation of ~WW is

provided in Section S3 in File S1. The local moving algorithm is

summarised as pseudo-code in Table 2.

However, our greedy local search algorithm will be trapped by

local minima and the initial starting point is crucial to its

performance. We propose a sample-and-seed approach to guide

the greedy local search that both speeds up the search process and

obtains better optima than the commonly used methods (data not

shown). As shown in Table 3 and Table 4, the approach consists of

two distinct stages of optimization: a sampling stage and a seeding

stage. In the sampling stage, a small number of solutions are

optimized using our local greedy search algorithm mentioned

above, resulting in a set of locally optimal solutions. Note that at

this stage no prior information about the size distribution of

modules in the network is available, thus a gradient-like

probability for each node being ‘‘1’’ is used, i.e., probabilities

ranging from 0 to 0.5 are used evenly among the solutions. The

probability is capped at 0.5 as we assume that for large biological

networks it is unlikely that a meaningful module would cover more

than half of the entire network. The optimized solutions are then

passed to the second stage of the algorithm to estimate

probabilities for each node being the ‘‘seed’’ of a module, which

are then used to initialize a new set of solutions for optimization.

The estimation and seeding process used in our algorithm is

relatively simple and straightforward: since our DiME method

only extracts a single best module at a time, and by definition such

a module should be a connected subgraph of the entire graph, we

could for each extraction procedure view each node as a possible

‘‘seed’’ for the module to be extracted, which will progressively

include its surrounding nodes to form the module during

optimisation. The initial extraction with relatively few individuals

would, then, act as the seed prioritizer. The probability of each

node becoming the seed is naturally designed to be proportional to

the frequency it appears in the initial solutions (Pj denotes

probability of node j becoming the seed):

Pj~afj~
a

N

X
i

xij ð3Þ

Additionally, when viewed as a probability mass function (PMF)

where each node position corresponds to a certain (possibly zero)

probability of being the seed, the probabilities of the nodes being

the seed should also sum to one:

X
j

Pj~
a

N

X
j

X
i

xij~1, ð4Þ

which yields

Table 1. Algorithm 1. DiME algorithm. 

Require: N|N adjacency matrix A, number of initial solutions to be used (M)

repeat

Create M empty solutions (binary vectors) x1,x2,:::xM of length N

SAMPLING(x1,x2,:::xM ,A)

Create empty real-valued vector p of length N

SEEDING(x1,x2,:::xM ,p)

Create 10|M empty solutions x1,x2,:::x10M of length N

for i~1?10M do

for j~1?N do

if randNumvpj then

xi
j/1

else

xi
j/0

end if

end for

LOCALMOVING(xi ,A)

end for

Return solution with highest ~WW

Delete current best solution (module) from network and update A

until highest ~W~0

doi:10.1371/journal.pone.0086693.t001
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a~
NP

i

P
j xij

ð5Þ

Plug a into equation 3, the above probabilities Pj could be

estimated by

Pj~

P
i xijP

i

P
j xij

: ð6Þ

These probabilities are then used to randomly seed a set of

solutions. For the ith node, a random number randNum is

generated and compared with pj , if randNumvpj , then xi
j is

seeded as 1, otherwise 0. Repeat this for all N nodes to obtain

solution x. We construct 10M solutions and optimise them using

local moving. After all 10M rounds of local moving, the best

solution that emerges will be returned.

To extract all possible modules from the network, a sequential

extraction procedure is used where each extracted module is

deleted from the network before extracting the next one, until no

more modules can be extracted from the network (i.e., best ~WW
becomes 0). In all following analyses only modules with size larger

than 2 were considered valid.

Evaluation of the statistical significance of extracted
modules

To ensure that the modules extracted from the biological

networks are statistically significant, i.e. they are significantly

different from modules that arise from random networks of an

appropriate null model, we incorporated a B-score significance

measure as proposed in [16][17] as a quality control step for the

modules. The B-score measure assumes a null model where edges

within the module (community) of interest is held unchanged while

the remaining connections in the network are randomly shuffled.

Then the B-score is calculated based on the null module to

Table 2. Algorithm 2. Local moving function.

function LOCALMOVING(binary vector x, adjacency matrix A, problem size N)

~WW/ ~WW (x)

incr/FALSE

repeat

for j~1?N do

if D ~WWw0 then

xj/1{xj

incr/TRUE

end if

end for

until incr~~FALSE

end function

doi:10.1371/journal.pone.0086693.t002

Table 3. Algorithm 3. DiME sampling function.

function SAMPLING(binary vectors x1,x2,:::xM of length N , network adjacency matrix A)

for i~1?M do

for j~1?N do

if randNumv0:5| i
M

then

xi
j/1

else

xi
j/0

end if

end for

end for

for i~1?M do

localMoving(xi ,A)

end for

end function

doi:10.1371/journal.pone.0086693.t003
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quantify how often we should expect to see the module ‘‘by

chance’’. The B-scoring measure has a major advantage of

avoiding large amounts of resampling cycles for simulating null

model results. In our later experiments, we also showed that the B-

scoring measure worked well with our DiME algorithm to detect

statistically significant modules.

For details of the B-score calculation, the reader is referred to

the original works [16][17]. In order to make this paper self-

contained, we provide the full procedure for B-score computation

in Section S1 in File S1. In this study all B-score calculations were

based upon default parameters in the original work with 20

independent runs for each module evaluation.

Data acquisition and preprocessing
Raw expression data of 97 WHO grade II glioma patient and

126 glioblastoma (GBM) samples was downloaded from the NCI

Rembrandt database [20]. The expression data was collected

using Affymetrix Human Genome U133 Plus 2.0 microarrays

(54,675 probe sets in total). Raw expression (.CEL files) was

preprocessed and normalized using standard Robust Multi-array

Average (RMA) [21] procedures in R and filtered for probe sets

with duplicate Entrez ID mappings, no Entrez IDs or low variance

in expression values (in this case lower 50% quantile of inter-

quartile ranges). The resulting expression matrix contained 9,971

genes.

Two independent sets of brain tumour data for validation: the

TCGA GBM dataset and grade II glioma expression dataset from

the Gene Expression Omnibus database (GSE30339) [22], each

consisting of 197 and 23 samples respectively (low-grade glioma

data sources are relatively scarce) - were downloaded from the

respectively online data repositories. The validation sets used the

Affymetrix HG-U133A arrays (22,277 probe sets in total), different

from the Rembrandt dataset. The downloaded datasets were

already preprocessed and normalized with standard RMA

[21]methods, and were subsequently filtered using R for non-

specific binding with the same method as described above for the

Rembrandt datasets. Preprocessing of the microarray data resulted

in a total of 6,247 genes.

Glioma co-expression network construction
For samples in each tumour grade, pair-wise Pearson’s

correlation coefficient (PCC) was calculated for each gene pair

to generate the correlation matrix of all genes. In order to guard

against possible outliers, a jackknife [23][24] approach was used to

estimate the true gene expression correlation coefficients. The raw

PCC values, r, were first converted to z values using Fisher

transformation [23]:

z~
1

2
ln(

1zr

1{r
) ð7Þ

The (z-transformed) jackknife correlation value for any given

gene pair (gi,gj) (i=j), ~zzgi ,gj
, is calculated as follows:

~zzgi ,gj
~Nzgi ,gj

{
N{1

N

XN

k~1

zJ(k)
gi ,gj

ð8Þ

where N is sample size and zJ(k)
gi ,gj

is z-transformed PCC between

genes i and j calculated with the kth sample excluded.

To construct a co-expression network, similar to the construc-

tion method used in [25], we ranked all gene pairs according to

their absolute values of the jackknife correlation values Dzgi ,gj
D. We

then selected the a certain percentage of the top ranking gene pairs

as significant co-expressions, which will be connected as a co-

expression network. This percentage, called network construction

threshold in our paper, will affect the edge noise level of the

resulting network. For example, a stringent threshold will miss

large numbers of true edges while a larger threshold will introduce

many false-positive edges. For our glioma co-expression network

analysis, we set the network construction threshold to 0.1%. In the

Results section, we also present data regarding how different

network construction threshold values, therefore different noise

levels, affect module extraction results of the DiME algorithm.

Our main analyses will be focused on the Rembrandt grade II

glioma and GBM datasets described in Data Acquisition and

Preprocessing, and datasets from other sources will be used for

result validation. The resulting networks for the Rembrandt

datasets contained 2,739 (GBM) and 3,888 (grade II glioma) nodes

(genes) respectively. The networks have 49,705 edges for both

GBM and grade II glioma networks. The resulting networks both

followed good power-law degree distribution, with power-law fit

correlation of r2~0:845 (GBM) and r2~0:903 (grade II glioma)

respectively.

Results

The DiME algorithm has better accuracy and scalability
than the original CE algorithm

Since biological benchmark networks are scarce, we chose four

social networks, which have been widely used as benchmarks in

many previous studies, to evaluate the accuracy and scalability of

our DiME algorithm in comparison with the original CE

algorithm. In addition, these four benchmark networks also

covered a wide range of size and complexity and are thus ideal

Table 4. Algorithm 4. DiME seeding function.

function SEEDING(real vector p~(p1,p2,:::,pN ), solutions from sampling x1,x2,:::xM )

for j~1?N do

pj/
PM

i~1 xijPM
i~1

PN
j~1 xij

end for

end function

doi:10.1371/journal.pone.0086693.t004
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for evaluating the scalability of DiME. These benchmark networks

include: 1) a university e-mail network [26], referred to as the

Email network; 2) the Erdös collaboration network among

mathematicans [27], referred to as the Erdös network; 3) a

network of users of the pretty good privacy (PGP) algorithm for

secure information transactions [28], referred to as the PGP

network; 4) the relationships between authors that shared a paper

in condensed matter physics [29], referred to as the Cond-mat

network. The basic characteristics of the network are listed in

Table 5.

We ran the DiME algorithm to extract the tightest module (i.e.,

module with highest ~WW in the network) in each network and

repeated the extraction for 50 times to calculate the mean and

standard deviation of ~WW and computation time. We compared our

DiME algorithm with the original CE method which is based on

the tabu search algorithm. In our experiments, we used a tabu list

size of 10, and for each independent run the algorithm stopped

when the highest ~WW ever achieved did not increase in 300

consecutive iterations. The choice of tabu list size, ranging from 2

to 100, did not affect the general output ( ~WW , data not shown), and

a choice of 300 iterations in the stopping criterion is a compromise

between computational overhead and full convergence of the

algorithm. All these experiments were performed using single CPU

threads.

The statistics for ~WW and computation time were shown in

Tables 6 and 7, respectively. Note that no data was shown for the

Cond-mat network using original CE algorithm as it took several

hours even for a single run which made multiple runs infeasible.

It can be seen from Table 6 that in general our DiME algorithm

outperforms the original CE algorithm in terms of accuracy as it is

capable of locating better maxima of ~WW for the Email and PGP

networks with relatively low variation in the 50 trial runs. DiME is

also more scalable than the original CE algorithm as it consumes

significantly less average computation time with much smaller

standard deviations, as shown in Table 7.

Parameter setting of the B-score cutoff
One parameter that needs to be tuned in DiME is the statistical

significance (B-score) cutoff for extracted modules. As the B-score

cutoff becomes smaller, e.g., more stringent, more modules and

thus more genes including disease genes would be discarded,

decreasing the sensitivity of DiME. Vice versa, when the B-score

cutoff becomes larger, large number of non-disease genes will be

included which reduces DiME’s specificity.

In order to balance the specificity and sensitivity of DiME, we

carried out experiments to find the optimal value of B-score cutoff.

Since the B-score is based on null distribution probabilities and

may thus be viewed as the widely used statistical p-values, here we

evaluated the loss of genes under three most commonly used levels

of statistical significance cutoff - 0:05,0:001 and 1|10{5. The

results for all datasets used in this paper (see Data Acquisition and

Preprocessing in Methods for dataset specifics) are shown in

Table 8.

Table 8 shows that in general 50%–70% of the genes identified

by the DiME algorithm belong to modules with B-score statistical

significance level of 0:05, 0:001 and 1|10{5. The percentage of

retained genes experienced a large decrease at a B-score cutoff of

0:001, but dropped more smoothly at a further increase in the

stringency of cutoff. Observe that the grade II glioma datasets

show a larger loss of genes than the GBM datasets at the same

cutoff, probably due to the relatively scarcer low-grade glioma

samples and possibly higher tumour heterogeneity in the sample

cohort. It seems that 0:001 is a reasonable value for the B-score

threshold where relative loss of genes stops increasing dramatical-

ly. We used this 0:001 as our default value throughout our

experiments.

Statistical significance measure B-score correlates with
module extraction criterion ~WW

In order to investigate the relationship between Statistical

significance measure B-score and module extraction criterion ~WW ,

we applied our DiME algorithm to extract all modules from the

Rembrandt grade II glioma and GBM networks. We excluded

modules identified by DiME with size smaller than 2 genes. We

calculated the Pearson’s correlation between B-score and ~WW . As

shown in Figure 2, the B-score of statistically significant (B-score

v0:05) modules extracted from both the glioma networks is well

correlated with the value for the CE criterion, ~WW (Pearson’s

correlation test p-values smaller than 0:0001), indicating that the

CE criterion is likely to be built upon a null model which fits well

with that assumed by the B-score measure.

DiME identifies more significant modules than the
community detection algorithm

Using Rembrandt glioma networks, we carried out experiments

to compare the performance of DiME with the community

detection algorithm [30]. It is worth mentioning that although the

community detection algorithm essentially partitions the network

into modules, which is very different from our DiME algorithm

and therefore difficult to compare with, it is still interesting to

investigate which algorithm is better at identifying biological

relevant disease modules.

We executed the community detection algorithm on the

Rembrandt networks to partitioned the two networks into 131

and 105 modules, respectively. However, we found that the largest

module identified by the community detection algorithm consist-

ing of 1,372 genes out of a total of 3,888, and is statistically non-

significant under the B-score scheme (B~0:17). A careful

inspection of this large module shows that three of the statistically

significant (Bv0:001) modules extracted by DiME, with sizes of

212, 39 and 42 genes respectively, are contained or almost

contained within it (i.e., over 90% overlap with the large module).

It also has significant overlaps with several other non-significant

DiME modules. Such an observation suggests that community

detection is not appropriate for disease module identification in

large biological networks, since it generates huge modules with

large numbers of genes of different functions, which adds

difficulties to validation and interpretation. Based on the results,

we exclude community detection for comparison with DiME in

the subsequent experiments.

DiME is more robust for identifying significant modules
from noisy co-expression networks than MCODE

As discussed in the network construction section, the network

construction threshold for selecting significant co-expressions as

Table 5. Characteristics of the benchmark networks.

Network Name

Algorithm Email Erdös PGP Cond-mat

No. of Nodes 1,133 6,927 10,678 27,519

No. of Edges 5,451 11,850 24,316 116,181

doi:10.1371/journal.pone.0086693.t005

DiME with Application to Glioma Progression

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e86693



edges significantly affects the edge noise level of the resulting

network. In this sense is the DiME algorithm able to robustly

capture the most essential (‘‘core’’) topological components of the

network against different levels of edge noise? In other words, will

the modules extracted by DiME differ significantly when the

network noise level is altered?

In order to evaluate the robustness of DiME, we define a

conservation score, which essentially quantifies the similarity

between the modules extracted from a noisy network and those

extracted from a reference network, which can be viewed as a

ground-true network without any edge noise. We chose the two

Rembrandt networks of grade II glioma and GBM with a network

construction threshold of 0.1% as the reference networks for

comparison since they are the networks that were used in our

further analyses. The details of the calculation of the conservation

score is in Section S2 in File S1. We then constructed noisy

networks with different levels of edge noise by changing the

network construction thresholds of the reference networks to

0.5%, 0.2% and 0.05%. The DiME algorithm was then applied to

each of these networks to identify all modules for the calculation of

the conservation score. Box plots of the distribution of scores

across modules in a network were plotted. We also compared the

popular MCODE algorithm [9] with DiME using the same

experiments.

As shown in Figure 3, the conservation scores of DiME modules

were significantly better (Student’s t-tests pv0:001) than those of

MCODE modules across networks constructed with the same set

of genes but different edge noise levels. Such robustness is further

strengthened by the fact that under all B-score cutoffs the DiME

algorithm extracts more nodes in total than does MCODE, and

that loss of nodes in DiME modules was not very dramatic even

under very stringent B-score cutoffs (See Table S1 in File S1).

Module extracted by DiME from Rembrandt Grades II and
GBM networks are biologically relevant to glioma
progression

We applied the DiME algorithm with a B-score cutoff of 0:001
to the two Rembrandt glioma datasets, and visualised the resulting

modules and their interconnectivity in Figures 4 and 5. Each

module is annotated with a specific function summarised from its

enriched Gene Ontology terms (false discovery rate v0:05 in

hypergeometric tests). Edge widths are designed to be proportional

to the number of connections (co-expression pairs) between two

modules, in order to illustrate strength of coordination between

functional components in the disease network. Node color

represents fold change of average expression level of all genes in

one module compared with normal patient samples.

The grade II glioma module network (Figure 4) demonstrates a

significant shift in the tumour phenotype compared with normal

samples. As would be expected, there appears to be a marked

down-regulation of normal neuronal function (i.e. synapse

transmission-related processes), and a significant increase in cell

cycle-associated processes. It is of interest to note that the modules

associated with immune response are slightly, but significantly

increased in grade II tumours.

As shown in Figure 5, progression to grade IV (GBM) is marked

by a significant shift in network topology despite the general

conservation of module functional annotation: inter-module

connectivity was significantly altered in the GBM tumour network

compared with that of grade II gliomas, with strengthened co-

expression between cell cycle-related processes and ECM

reorganisation and modules associated with differentiation status,

such as synaptic transmission and CNS development. In addition,

there was a breakdown in the co-expression of immune processes

and the above mentioned modules. However, GBM tumours

appear to have altered levels of transcripts involved in extracellular

matrix (ECM) reorganisation and angiogenesis - markers of a

more aggressive phenotype.

Modules extracted by DiME from Rembrandt grade II and
GBM networks are reproducible in independent datasets

To verify the reproducibility of the disease modules from the

Rembrandt networks, we applied the DiME work flow to two

independent sets of brain tumour data: a GBM dataset from the

TCGA database, and a WHO grade II glioma expression datasets

from the GEO database published by Turcan et al. [22], which

used a different microarray chip from that used by the Rembrandt

dataset (see Data Acquisition and Preprocessing in Methods for

details). The aim of this experiment is to see if DiME can extract

disease modules that reproducible in independent datasets. The

Table 6. ~WW scores of the first module of each benchmark network.

Network Name

Algorithm Email Erdös PGP Cond-mat

DiME 14420.04622.76 103544.862.32 401530.966274.66 303292560

Original CE 12967.58614.18 103587.5679.22 38567563681.49 -

The results in bold font indicate the they are statistically significant (Student’s t-tests pv0:05).
doi:10.1371/journal.pone.0086693.t006

Table 7. Computation time (second) for extracting the first module in each benchmark network.

Network Name

Algorithm Email Erdös PGP Cond-mat

DiME 0.91560.104 30.83762.419 54.43662.705 350.920623.567

Original CE 1.21960.246 162.0236641.856 463.9166364.553 -

The results in bold font indicate the they are statistically significant (Student’s t-tests pv0:05).
doi:10.1371/journal.pone.0086693.t007
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same DiME work flow, i.e., disease co-expression network

construction, module extraction and evaluation of statistical

significance were performed using exactly the same methods and

parameters as those for the Rembrandt dataset. We also employed

MCODE for comparison. The same experiments and the same

work flow except evaluation of statistical significance, i.e., B-score

thresholding (see discussion) were applied.

Network construction resulted in a network with 3,635 nodes

and 19,509 edges for the GEO grade II glioma expression data,

and one with 1,787 nodes and 19,509 edges for the TCGA GBM

data. The GEO grade II glioma data co-expression network had

1,617 nodes in common with the Rembrandt network (Jaccard

index 0.2737), while the TCGA GBM network had only 717

nodes in common with the Rembrandt counterpart (Jaccard index

0.1882). We show that even in this situation where the two sets of

glioma disease networks significantly differ from each other in

gene ensemble, our DiME algorithm is still capable of reproducing

modules with fairly similar composition.

Because classical methods for comparing graph clusterings, e.g.,

the adjusted Rand index or normalized mutual information [31],

are designed for comparing partitioning of the same network, they

cannot be used to evaluate the similarity between extracted

modules of the Rembrandt dataset and those of the validation

datasets. Here we score the reproducibility of each module from

the Rembrandt networks (grade II glioma and GBM) using the

following steps:

1. For each tumour grade, project all modules from both the

Rembrandt and the validation (TCGA or GEO) network onto

the intersection of all genes in the two networks, resulting 2 sets

of projected modules. (Projection is calculated as intersection.)

2. For each projected module with size larger than 5 from the

Rembrandt network, calculate its maximum possible Jaccard

index with the projected modules (corresponding to a best-

matching pair of modules) from the corresponding validation

network and return the Jaccard index as its reproducibility

score.

Note that we chose a module size threshold of 5 here to guard

against random effects brought about by small modules. Such a

threshold did not qualitatively affect comparison with the

performance of MCODE over a reasonable range of 2–10 (data

not shown).

The results are shown as box plots of Jaccard index distributions

in Figure 6. Average Jaccard indices of 0.28 and 0.51 were

observed for the grade II and GBM datasets respectively, showing

a high level of module reproducibility for both tumour grades

considering the remarkable differences in the microarrays.

Inspection of Gene Ontology enrichment of modules in the

independent datasets also showed that they are functionally similar

to the matched modules in the Rembrandt counterpart (data not

shown). It may be seen from the GBM data box plots that under

stringent B-score cutoffs (Bv0:001) the upper quantiles of the

Jaccard index distribution show markedly increased average values

and decreased range of variation, compared with those of

MCODE modules. The average Jaccard index for all DiME

modules with Bv0:001 is also significantly higher than that of the

MCODE modules (Student’s t-test, pv0:05) in the GBM datasets,

Table 8. Relative loss of genes under different B-score cutoffs.

B-score Cutoff

Algorithm 0.05 0.001 1|10{5

Rembrandt Data (GBM) 32.97% (574/1741) 50.09% (872/1741) 54.68% (952/1741)

TCGA Data (GBM) 30.19% (358/1186) 42.50% (504/1186) 51.85% (615/1186)

Rembrandt Data (grade II Glioma) 47.27% (1230/2602) 62.95% (1638/2602) 68.14% (1773/2602)

GEO Data (grade II Glioma) 42.46% (1106/2605) 66.64% (1736/2605) 71.48% (1862/2605)

doi:10.1371/journal.pone.0086693.t008

Figure 2. Correlation of ~WW scores with B-scores. All modules with size larger than 2 and B-score v0:05 are included. A few modules whose B-

score is 0 (indicating scores exceeding the lower limit of detection in the B-score algorithm) were excluded. Fitted lines of log10( ~WW ) versus {log10(B)

are shown. The fitted Pearson’s correlation r2 values are 0.57 (grade II glioma, left panel) and 0.65 (GBM, right panel) respectively, with both
correlation p values smaller than 0.0001 in Pearson’s correlation tests.
doi:10.1371/journal.pone.0086693.g002
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and a similar trend, though not highly significant (Student’s t-test,

p~0:09), was observable for the grade II glioma datasets.

Statistical insignificance may be attributed to the fact that the

MCODE modules showed large variance in the Jaccard indices. It

is noteworthy that the low-grade glioma data generally displayed

considerably less reproducibility than that of the high-grade

counterpart. This might be due to the relatively smaller sample

size and possible heterogeneity in the samples (which might

indicate existence of molecular subtypes across the patient

cohorts).

Expression levels of common modules shared by Grade II
and IV gliomas are correlated with tumour grade

It is natural to expect that disease modules extracted from grade

II and GBM sample datasets might be used to distinguish samples

of different tumour grades. Such distinguishibility did not seem to

be readily achievable solely at the functional level: GO Biological

Process enrichment analysis of the two sets of modules obtained

from the two tumour grades showed that they are enriched with

highly similar functions, with the majority of modules in both

grades functionally annotated with 1) immune response, 2)

synaptic transmission, 3) cell cycle regulation, 4) nervous system

development and/or 5) cell migration/adhesion, though the GBM

modules seemed to have a larger portion annotated with immune

response and cell cycle-related functions. We hypothesize that a

combination of functional annotation and expression landscape of

the common modules, however, may shed light upon the shifts in

the major regulatory mechanisms responsible for tumour progres-

sion.

To test our hypothesis, we first matched functionally similar

modules extracted from the Rembrandt grade II and GBM

networks using a GO semantic similarity measure as used in [5].

Using this method, we obtained a pair-wise similarity matrix by

calculating the GO semantic similarity measure between all pairs

of modules with one module from the Rembrandt grade II glioma

network and the other from the Rembrandt GBM network. Since

the number of modules extracted from the GBM network and of

those from the grade II glioma network are similar, best-matching

module pairs may be easily found by the Hungarian algorithm for

assignment problems [32] [33]. The above process resulted in 41

best-matching pairs (one-to-one mapping) of modules which were

then intersected to yield 12 common modules shared by both

tumour grades in the Rembrandt networks. We discard the

modules with less than 5 genes to guard against possible artifacts of

noise in data acquisition and/or network construction. The 12

modules were then projected onto the gene universe of the

independent GEO grade II glioma and TCGA GBM networks to

identify common modules that are conserved across two micro-

array types. We also excluded modules with less than 5 genes. The

final set of common modules is comprised of 9 modules and 208

genes.

Two-tailed Jonckheere-Terpstra test was then performed to

examine whether tumour grade was correlated with the expression

signature of the 9 conserved modules. The expression signature of

each common module was calculated as the average expression of

all genes in the module. The test discovered 7 out of the 9

common modules (183 genes in total) whose expression signatures

were significantly correlated with tumour grade (p value v10{5

after adjusting for FDR control).

We carried out GO Biological Process enrichment analysis on

the 7 common modules. As tabulated in Table 9, the 7 common

modules are all significantly enriched with at least one GO BP

term after Benjamini-Hochberg adjustment for false discovery rate

(FDR v0:05). It is also interesting to see from the table that the

functional annotations of these modules covered most of the

summarised functions in the connected components of module

inter-connectivity networks shown in Figure 4.

Figure 7 shows a heat map of the expression level of individual

genes in the 7 modules grouped by modules (rows) and samples by

tumour grade (columns). The clear differential expression patterns

of genes belonging to the same module across grades are easily

observable in Figure 7. For example, activity of modules 1 and 7,

Figure 3. DiME is robust to edge noise in co-epxression networks. Shown in the plots are results for the grade II glioma networks (left panel)
and GBM networks (right panel). The horizontal axes display the technique used, and vertical axes show average conservation scores. Only modules
with size larger than 5 are taken into consideration. Asterisks denote statistical significance in Student’s t-tests when comparing means with MCODE
modules: ‘‘***’’ - pv0:001.
doi:10.1371/journal.pone.0086693.g003
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corresponding to the regulation of immune response, increased

with malignant progression - i.e. grade II to GBM. Taking into

account that the expression arrays were performed on samples of

the total tumour mass (not isolated glial cells), and the nature of the

transcripts represented by the immune-associated modules, this

may be a significant observation. We hypothesize that the

significant loss of co-expression observed between the modules

associated with cell cycle and glial differentiation and those

involved in immune function is indicative of the infiltration of

immune cells into the tumour mass in GBM samples. Indeed, this

is in agreement with literature reports that have shown an increase

in T cell infiltration into GBMs which is around 5 times more than

that observed in grade II gliomas [34].

Regulatory mechanisms underlying the common
modules shared by grades II and IV

We also extracted the transcription factors that bind to the genes

of each common modules from the Human Transcriptional

Regulation Interactions database developed by Bovolenta et al.

(2012) [35]. We summarise the results in Table 9. An intriguing

observation is that the 7 common modules showed high similarity in

their transcriptional regulators, as seen from the transcription

factors that bind to genes in each module. All 7 modules are

regulated by ETS1, which is involved in the control of stem cell

development and often in tumorigenesis [36–38]. E2F4, a

transcription factor that binds to and inhibits several tumour

suppressor proteins, as well as induces DNA synthesis required for

cell proliferation, is also shared by 5 modules. Another important

cancer-associated transcription factor that is shared among the

modules is AR, a steroid hormone receptor that regulates

Figure 4. Visualisation of grade II glioma modules with B-score less than 0:001 and their inter-module connectivity. Nodes represent
extracted modules, node size represents module size and node color represents (log-transformed) fold-change in average module gene expression
level compared with normal patient samples (Red - increase in average expression, green - decrease in average expression, lavender - no change in
average expression). Edge widths are proportional to connectivity (i.e., number of co-expression gene pairs) between module pairs.
doi:10.1371/journal.pone.0086693.g004
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downstream processes such as proliferation and differentiation and

whose mutation has been shown to play important parts in cancer

[39–41]. The transcription factors E2F4, ESR1, ETS1 and MYC are

all downstream targets of the well-established tumour supressor

gene TP53 that is responsible for multiple alterations in the gene

regulatory network in gliomablastoma [42–44]. These results

suggest that the common modules identified through our method

are likely to be downstream mediators of the effects of alterations to

master regulators in glioblastoma-associated pathways.

DiME Identifies Unique Biologically Relevant Modules
Not Discovered by Other Methods

In order to investigate whether DiME can discover modules

that cannot be identified by other algorithms, we compared all B-

score significant (v0:001) DiME modules to those identified by

MCODE and the original CE algorithm. We defined a module to

be missing if it has no corresponding modules showing an overlap

of larger than 20% of the smaller module in comparison.

Our results showed that the original Tabu-search based CE

algorithm, under the same ~WW module criterion, failed to identify

several both statistically significant and biologically meaningful

coexpression modules in grade II glioma and GBM. Besides, the

results were highly unstable across independent runs. Even when

we looked at the best results (containing 7 and 6 modules with B-

score v0:001 for grade II glioma and GBM respectively) we have

so far obtained, the original CE algorithm still missed several of the

statistically significant DiME modules shown in Figures 4 and 5,

Figure 5. Visualisation of GBM modules with B-score less than 0:001 and their inter-module connectivity. Nodes represent extracted
modules, node size represents module size and node color represents (log-transformed) fold-change in average module gene expression level
compared with normal patient samples (Red - increase in average expression, green - decrease in average expression, lavender - no change in
average expression). Edge widths are proportional to connectivity (i.e., number of co-expression gene pairs) between module pairs.
doi:10.1371/journal.pone.0086693.g005
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such as the large ‘‘immune response’’ module in grade II glioma

and the ‘‘myelination and CNS development’’ module in GBM.

There is one module from each of the two grades that was

identified by DiME method but missed by the MCODE method.

As they were also missed by the original CE method, we view these

modules as uniquely identified by DiME, and employ previously

reported evidence to demonstrate their pathophysiological rele-

vance. Both modules contain more than 10 genes and are thus

non-trivial.

In the unique module identified by DiME from the grade II

glioma network (corresponding to ‘‘mesenchyme morphogenesis

and cell division/differentiation’’ module in Figure 4), we highlight

Figure 6. Comparison of module reproducibility among different algorithms. Shown are box plots of average reproducibility (Jaccard
index) for each technique used. Asterisks denote statistical significance in Student’s t-tests when comparing means with MCODE modules: ‘‘*’’ -
pv0:05.
doi:10.1371/journal.pone.0086693.g006

Table 9. Summary of functional annotation and location information of the conserved common modules.

Module
Number Top 3 GO BP Terms

Chromosome
Locations

Transcription
Factors

1 immune response (p~2:8|10{20)

immune system process (p~3:2|10{20)

regulation of immune system process (p~1:1|10{16)

1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 14, 16,
17, 19, 20, 21, 22, X

AR, E2F4, EGR1, ETS1,
GATA2, GATA3, YBX1

2 synaptic transmission (p~9:6|10{20)

multicellular organismal signaling (p~1:9|10{19)

cell-cell signaling (p~7:4|10{19)

1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 15,
16, 17, 19, 20, 22, X

AR, E2F4, ESR1, ETS1,
FOXP3, GATA1, GATA2,
HIF1A, MYC, YBX1

3 nervous system development (p~2:3|10{3)

myelination (p~3:7|10{3)

ensheathment of neurons (p~3:7|10{3)

1, 2, 3, 4, 6, 7, 8, 9,
11, 12, 15, 16, 17,
19, X

AR, ESR1, ETS1, GATA2,
PRDM14, TFAP2C, YBX1

4 ribonucleoside triphosphate catabolic process (p~1:2|10{2)

purine ribonucleoside triphosphate catabolic process (p~1:2|10{2)

positive regulation of growth (p~1:2|10{2)

3, 6, 7, 8, 12, 14, 17,
X

AR, ESR1, ETS1, HIF1A

5 antigen processing and presentation of exogenous peptide antigen via MHC class I,

TAP-dependent (p~3:5|10{12)
antigen processing and presentation of exogenous peptide antigen via MHC class I

(p~3:5|10{12)

antigen processing and presentation of peptide antigen via MHC class I (p~9:4|10{12)

6 E2F4, ETS1

6 M phase (p~2:0|10{8)

cell cycle progress (p~2:4|10{8)

nuclear division (p~3:4|10{8)

1, 4, 8, 10, 15, 17,
20

AR, E2F4, ESR1, ETS1

7 type I interferon-mediated signaling pathway (p~2:5|10{9) cellular response to type

I interferon (p~2:5|10{9)

response to type I interferon (p~2:5|10{9)

1, 2, 12, 21 AR, E2F4, ETS1, GATA1

doi:10.1371/journal.pone.0086693.t009
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the genes ABCA5, RGN and MYC, all among the top degrees of

connectivity in the module. They encode a member of the ATP-

binding cassette (ABC) sub-family 1 transporters, regucalcin and

the Myc proto-oncogene protein, respectively. ABC transporters

have been suggested to mediate drug sensitivity of subpopulations

of cancer stem-like cells across many tumour types [45][46][47].

Regucalcin is a calcium-binding protein involved in calcium

homeostasis and carbohydrate metabolism, and is recently

reported as a newly identified tumour suppressor [48]. It is also

not surprising for the module to include the well-established proto-

oncogene MYC which has a wide spectrum of downstream

effectors [49][50], and the SLC family member SLC13A3, the

expression of which found to be down-regulated in tumour cells

over-expressing MYC family genes [51][52]. Interestingly, MYC

did not appear in the entire set of genes in MCODE modules.

Decreased expression of one of RGN’s coexpression partner

SELENBP1 which encodes a selenium-binding protein, has also

been shown to be associated with multiple tumour types

[53][54][55].

In the unique module identified by DiME from the GBM

glioma network, the RRAS oncogene, the SH3 domain binding

kinase gene SBK1 and the transcription factor SOX8 involved in

CNS development have the highest degrees of connectivity. RRAS

regulates cell migration and has been identified as a glioblastoma

multiforme signature gene [56][57]. SBK1 is dysregulated in

multiple cancer types and may display a broad range of cellular

functions [58]. SOX8 has been shown to be predominantly

expressed in oligodendrocytomas, astrocytomas and glioblastomas

and may be an early glial marker for medulloblastomas [59]. In

Figure 5 this module corresponds to the ‘‘regulation of vesicle-

related processes’’ node as it contains several components involved

in intra-cellular vesicle transport.

In conclusion, DiME algorithm identified two disease modules

missed by the other two algorithms whose components were

established targets of tumour treatment and/or key regulatory

molecules in glioma. Gene members of the above two mentioned

modules are provided in Tables S2 and S3 in File S1.

Discussion

One major advantage of our DiME algorithm is that it is

relatively fast, with worst case time complexity of O(N2). In

general for a network of ,7,000 nodes, it takes less than one

second to fully optimise a single solution on a Core i7 computer

using a single thread. Another advantage of the algorithm is its

small number of parameters and robustness to varying parameters.

The only user-specified parameter is the solution set size, and in

most cases 50,100 solutions should give satisfactory results for

large networks.

Since optimization of individual solutions is independent of one

another, the optimization process is readily parallelizable. In our

implementation the publicly available OpenMPH [60] library for

parallel computing on IntelH processors is used, and multi-core

processor users can specify the number of parallelly processing

cores to be used.

We have not only demonstrated that the new DiME algorithm

outperforms the original Tabu search-based community extraction

method in terms of speed and maxima of ~WW values, but also

shown that the original method does not seem to be feasible for

analysing coexpression networks even if it could handle the time

complexity - the modules extracted by the original method were

Figure 7. Heat map showing expression landscape of all genes in the 7 conserved common modules across grade II glioma and
GBM samples. Rows correspond to genes grouped by modules and columns correspond to samples grouped by tumour grade.
doi:10.1371/journal.pone.0086693.g007

DiME with Application to Glioma Progression

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e86693



too large for interpretation, and contained unconnected nodes

which are indicative of premature convergence.

An additional advantage of incorporating the B-score scheme

into our DiME algorithm is that a simple hard-thresholding

approach alone is sufficient to retain most of the large modules.

Whereas modules with low statistical significance may be trimmed

into significant ones using the OSLOM algorithm proposed by

Lancichinetti et al. (2011) [17], such a procedure might be

inefficient as the calculation of B-scores is quadratic in time with

respect to module size and may become computationally

expensive, especially for huge modules that arise from modular-

ity-based community detection algorithms.

Note that while more than 45% of extracted genes were

retained under the most stringent B-score cutoff used (1|10{5),

such robustness against statistical significance cutoffs was not

observed for other algorithms such as MCODE and modularity-

based community detection. Even at a less stringent B-score cutoff

of 0:05, the MCODE and modularity-based modules would

generally suffer from a loss of over 50% and 95% of identified

genes, respectively (see Table S1 in File S1 for comparison).

Therefore, we did not include the B-score significance measure for

the MCODE modules in all comparative analyses.

The problem of resolution limit in community detection

methods is also manifested in the size and statistical significance

of modules. Using the Rembrandt grade II glioma data as an

example, the largest module identified by the community detection

method as of [30], consisting of 1,372 genes out of a total of 3,888,

was deemed statistically non-significant under the B-score scheme

(mean B~0:17). A careful inspection of this large module showed

that three of the statistically significant (Bv0:001) DiME modules

(corresponding to immune response, macromolecular complex

transport and localization and nucleobase metabolism and cell

differentiation, see Figures 4 and 5), with sizes of 212, 39 and 42

genes respectively, are contained or almost contained within it (i.e.,

larger than 90% overlap with the large module). It also has

significant overlaps with several other non-significant DiME

modules. In comparison, three MCODE modules are contained

within the above mentioned large module, with sizes of 77, 18 and

13 genes respectively (corresponding to immune responses, nucleic

acid metabolism and regulation of cytoskeleton). Such an

observation suggests that community detection is not appropriate

for disease module identification in large biological networks, since

it generates huge modules with large numbers of genes which add

difficulties to validation and interpretation.

An analysis of the variability of module identification results

show that core modular structure of the Rembrandt coexpression

networks used in the case study is well conserved under varying

network construction parameters (see Appendix, Figure 3). Such

conservation is consistent with the concept of ‘‘module core’’

described by the original authors of module extraction [12]. It is

worth pointing out, however, that the less conserved modules do

not necessarily bear little functional significance in the network, as

their fluctuations may be due to the noise in the biological data

itself, rather than in the module identification algorithm. The

construction of a highly robust network per se is still a highly active

area of research and is not the main focus of this paper.

The module connectivity networks for grade II glioma and

GBM samples provide a high-level yet insightful understanding of

brain tumour progression and the associated rewiring of cellular

machinery. A common expression signature of both tumour

grades is down-regulation of nervous system development and

normal neuronal functions (e.g., synaptic transmission) and up-

regulation of cell cycle (cell proliferation) related progresses

(Figures 4 and 5), light green and red nodes). Such concomitant

alterations in transcriptome are consistent with a malignant

phenotype - cells that are becoming less differentiated and are

proliferating more. The coordination between the two types of

functional processes is remarkably strengthened in GBM com-

pared with grade II glioma samples (manifested in the increased

coexpression links between the corresponding modules), a possible

consequence of the significant increase in the transcription factors

AR and ETS1 shared by the two processes in both grades. Core

components of the two processes are also conserved across

microarrays, as is shown by the expression levels of modules 2,

3, and 6 in Figure 7.

Also of pathological significance is the significant increase in the

activity of the angiogenesis-related module in GBM. The module

is linked via coexpression to another module which is related to

extracellular matrix organisation and controls cell morphology

and physical interaction with its environment, in accordance with

putative functions of extracellar matrix components (e.g., TGF b-

induced, encoded by TGFBI from the extracellular matrix

organisation module) in promoting angiogenesis [61]. The

increase in these modules as well as those representing cell cycle

processes and the further decrease in modules associated with

differentiation are indicative of a tumour that is becoming

markedly more malignant with progression from grade II to

GBM. As this analysis has shown that all of these processes are co-

ordinately regulated, the identification of two transcription factors

that are associated with all or almost all of these modules suggests

that both E2F4 and ETS1 play a significant role in the

pathogenesis of glioma.

Our results suggest that DiME could uncover statistically

significant modules whose highly connected members have been

found to be important biomarkers or key cancer regulators, as

exemplified in the last section in Results. These modules were not

found in the overlap of genes between DiME and MCODE

modules, indicating the inherently different modular structures

detected by the two methods. Though MCODE was able to

identify genes such as TGFB2, a putative glioma tumour regulator

and drug target [62][63], they were mostly included in modules

that displayed very low statistical significance (B-score close to 1),

indicating a high likelihood of statistical artifacts. Because these

individual candidate genes with weaker topological context but

significant dysregulation in cancer are readily identifiable using

single-gene analysis methods such as differential expression and

copy number variation, we conclude that our DiME algorithm can

be applied to biological networks in parallel with single-gene

analysis for enhanced understanding of the overall shift in the

cellular regulatory program in disease.

Taken together, the above discussed modules may be viewed as

potential disease modules whose dynamic activity dictates tumour

progression. The results show that the core methodology

introduced in this paper, including the DiME algorithm and the

accompanying B-score scheme for evaluating statistical signifi-

cance, is capable of extracting modules of coordinately expressed

genes that point to key regulators in disease networks and thus

provide a more systematic understanding of complex disease

progression.
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