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Abstract

Calcitonin gene-related peptide (CGRP) promotes neuron recruitment and neurogenic activity. However, no evidence
suggests that CGRP affects the ability of stem cells to differentiate toward neurogenesis. In this study, we genetically
modified rat adipose-derived stem cells (ADSCs) with the CGRP gene (CGRP-ADSCs) and subsequently cultured in complete
neural-induced medium. The formation of neurospheres, cellular morphology, and proliferative capacity of ADSCs were
observed. In addition, the expression of the anti-apoptotic protein Bcl-2 and special markers of neural cells, such as Nestin,
MAP2, RIP and GFAP, were evaluated using Western blot and immunocytochemistry analysis. The CGRP-ADSCs displayed a
greater proliferation than un-transduced (ADSCs) and Vector-transduced (Vector-ADSCs) ADSCs (p,0.05), and lower rates of
apoptosis, associated with the incremental expression of Bcl-2, were also observed for CGRP-ADSCs. Moreover, upon neural
induction, CGRP-ADSCs formed markedly more and larger neurospheres and showed round cell bodies with more
branching extensions contacted with neighboring cells widely. Furthermore, the expression levels of Nestin, MAP2, and RIP
in CGRP-ADSCs were markedly increased, resulting in higher levels than the other groups (p,0.05); however, GFAP was
distinctly undetectable until day 7, when slight GFAP expression was detected among all groups. Wnt signals, primarily Wnt
3a, Wnt 5a and b-catenin, regulate the neural differentiation of ADSCs, and CGRP gene expression apparently depends on
canonical Wnt signals to promote the neurogenesis of ADSCs. Consequently, ADSCs genetically modified with CGRP exhibit
stronger potential for differentiation and neurogenesis in vitro, potentially reflecting the usefulness of ADSCs as seed cells in
therapeutic strategies for spinal cord injury.
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Introduction

Spinal cord injury (SCI) is a devastating neurological injury that

often results in profound functional deficits and a frequent cause of

mortality worldwide [1–3]. The pathophysiology of SCI is

complicated, as this multifactorial and multiphasic event is

determined not only by the initial mechanical insult but also by

secondary processes, including ischemia [4–6], anoxia [7], free-

radical formation [8], and excitotoxicity [9]; thus, various

combination strategies, including the regeneration of neurons,

neuroprotection from second injury, enhancement of axonal

regrowth and synaptic plasticity, and inhibition of astrocytosis,

are required for SCI repair.

Neural tissue engineering provides great promise for treating

SCI and has achieved great success in experimental investigations

[10], but the optimal cell donor remains unknown. For instance,

embryonic stem cells (ESCs) can be induced to typical ectodermal

cells in phenotype, but problems of histocompatibility, inadequate

tissue supply, and ethical concerns exist [11,12]. Neural stem cells

(NSCs) were successfully used in neurogenesis in vitro and vivo

[13,14]; however, this process was obviously limited for clinical use

reflecting an insufficient cell population harvested from neural

tissue isolated from the brain of postmortem human cortices [15].

Similarly, bone marrow stromal cells (BMSCs) can be effectively

differentiated into neurons and glial cells [16,17], but bone narrow

aspiration can harm patients, and problems of inadequate tissue

supply are also observed.

As donor cells, adipose-derived stem cells (ADSCs) have shown

many advantages, such as easy acquisition from sufficient adipose

tissue, with a little harm to patients [18–21] and easier induction of

differentiation and neurogenesis [22–25]. However, previous

studies have indicated that the ability and capacity of ADSCs

for neural differentiation are limited [23].

Calcitonin gene-related peptide (CGRP) is a neuropeptide

found in nerves within the central and peripheral nervous systems.

CGRP is primarily synthesized in the cell bodies of the dorsal root

ganglion (DRG) and transported axonally to the peripheral and

central endings of nerve fibers [26]. Moreover, CGRP has been

recognized as a nerve regeneration-promoting peptide [27], and

increasing CGRP expression could improve the survival of injured

neurons and prevent neuronal loss. Furthermore, it has been

suggested that CGRP might ameliorate SCI by inhibiting the
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release or production of TNF and increasing the expression of

PGI2 [28]. Other studies have implicated CGRPs derived from

spinal cord neurons in repair and regeneration after nerve injury

[29]. Although numerous studies have characterized the stimula-

tory effects CGRPs on neurons, no studies have examined these

effects on stem cells, particularly ADSCs.

In the present study, adult rat ADSCs were genetically modified

to over-express CGRP, which would stimulate stem cells,

facilitating neural differentiation and enhancing neurogenic

capacity in vitro. Based on these results, we further speculate that

CGRP-modified ADSCs might be effective seed cells in tissue

engineering to promote the healing of SCI.

Materials and Methods

Fetal bovine serum (FBS), trypsin, Dulbecco’s modified Eagle’s

medium (DMEM) and Lipofectamine 2000 were purchased from

Invitrogen, USA. PCR primers, Taq DNA polymerase, DNA

ladder and oligo(dT)s were obtained from Sangon, China. The

PmeI, PacI, and HindIII restriction enzymes were purchased from

NEB. The plasmid DNA extraction (Mini) kit was obtained from

QIAGEN, UK. The Escherichia coli strain DH5a and the AdEasy

Vector System were purchased from GeneChem, China.

HEK293T cells (ATCC#: CRL-11268) were used to generate

adenoviral particles. Sprague-Dawley rats were obtained from the

Experimental Animal Center of Tongji Medical College and used

in the following protocols approved through the Animal Care and

Use Committee of Tongji Medical College of Huazhong

University of Science and Technology (Permit Number:

20051007).

Construction of plasmid vectors and adenoviral particles
The AdEasy Vector System was used to construct the pAd-

EGFP adenoviral vector. This vector contained the EGFP reporter

gene derived from pEGFP-C. The transfer vector pShuttle-CGRP

was constructed using standard methods. pShuttle-CGRP was

linearized with PmeI and co-transformed into the competent E. coli

strain BJ5183 along with pAdeasy-1, the viral DNA plasmid.

Briefly, 1 mg of the linearized recombinant transfer vector

pShuttle-CGRP (5 mL) and 1.0 mL of the pAdEasy-1 vector

(100 mg/mL) were added to 200 mL of competent-BJ5183 cells in a

14-mL culture tube. These components were gently mixed,

incubated on ice for 1 h, heat-shocked at 42uC for 1 min and

immediately returned to ice for 5 min. Subsequently, 1000 mL of

LB media was added, and the cells were incubated with shaking

(280 r/min) for 1 h at 37uC. The cells were plated onto 100-mm

Petri dishes containing LB agar and incubated overnight at 37uC.

The recombinant clones (pAd5-CGRP) were identified through

restriction enzyme analysis.

pAdEasy-1 lacks E1 and E3, and the E1 function can be

complemented in 293 cells. The recombinant adenoviral con-

struct, pAd5-CGRP, was digested with PacI to expose inverted

terminal repeats and transfected into 293 cells to produce viral

particles. The Ad5-CGRP construct was purified through two

cesium chloride gradients, and the purified virus was desalted

through dialysis at 4uC against 10 mmol/L Tris-HCl buffer

containing 4% sucrose. The virus was stored in aliquots in liquid

nitrogen, and the viral titer was determined using the Adeno-XTM

Rapid Titer Kit.

Isolation, culture and genetic modification of ADSCs
The isolation and cell culture of rats ADSCs were performed as

previously described [23].To achieve high rates of viral infection,

we used a protocol involving two centrifugation steps. The cells

from sub-confluent cultures were harvested through treatment

with 0.05% (w/v) EDTA in phosphate-buffered saline (PBS)

containing MgCl2, CaCl2 and 0.25% (w/v) trypsin. The cells were

seeded at a density of 100,000 cells/cm2 and centrifuged at

10006g at 37uC for 10 min. The concentrated virus preparation

was diluted 1:1.5 with DMEM medium and applied to the pre-

centrifuged cells, which were subsequently incubated at 37uC for

40 min, followed by a second centrifugation for 60 min. The

infected cells were incubated under standard conditions overnight,

followed by a medium change. To calculate the efficiency of

infection in ADSCs was harvested and analyzed by flow cytometry

to determine the proportion of cells expressing EGFP 24, 48, and

72 h after transduction. ADSCs without transduction and those

transduced with Ad-EGFP-CGRP or Ad-EGFP are termed

‘‘ADSCs’’, ‘‘CGRP-ADSCs’’, and ‘‘Vector-ADSCs’’, respectively.

All experiments and cell number determinations were performed

in triplicate.

Fluorescence-activated cell sorting
FACS was carried out on a BD FACS (Aria Sorter, San Jose,

CA) at 4uC and a pressure of 20 psi, using a laser at the 488 nm

line, a 530/30 band pass filter, a 100 mm sorting tip, and a

34.2 kHz drive frequency, sterilized with 10% bleach. This

instrument allowed us to characterize cells by size as well as

fluorescence. Low flow rate improved the purity of cell sorting.

Data acquisition and analyses were performed using BD FACS

Diva 5.0.3 software, gated for a high level of EGFP expression.

The clear separation of EGFP+ from EGFP- cells explains the ease

of sorting. Sorted cells were re-analyzed to confirm that all were

EGFP+. They were then plated on laminin-coated dishes.

Formation of neurospheres from ADSCs
ADSCs cultured at high densities spontaneously formed

spherical clumps of cells, isolated using 0.25% trypsin (Invitrogen,

USA). We also collected the free-floating spheres released from the

cell culture surface into the culture media. The spheres of cells

were transferred to a Petri dish and cultured in Neurobasal

medium (Invitrogen, USA) supplemented with B27 (Invitrogen,

USA), 20 ng/ml of bFGF, and 20 ng/ml of EGF (Sigma, St.

Louis, MO, USA) for 4–7 days. The culture density of the

spheroid bodies was maintained at 10–20 cells/cm2 to prevent self-

aggregation.

In vitro differentiation of ADSCs to neural cells
For neural lineage differentiation, neurospheres derived from

ADSCs were layered onto PDL-laminin double-coated chamber

slides. The spheres were cultured and maintained for 10 days in

NB media containing only the B27 supplement. Approximately

70% of the media was replaced every 4 days. These cells were

examined at 1, 3 and 7 days after differentiation using a western

blot analysis. All data represent at least three different experi-

ments.

Morphology, growth curve of ADSCs after transduction
After transduction for 3 and 7 days, the cells of each group were

plated at a cell density of 26104/ml, and the cell morphology was

observed under an inverted microscope. In addition, the growth

curve of the two groups was plotted using an MTT assay.

Cell apoptosis assay
At the indicated times, cells were harvested using trypsin/

EDTA, counted, and collected through centrifugation in PBS.

Phosphatidylserine (PS) exposure on the outer leaflet of the plasma

Neurogenesis of ADSCs Modified with CGRP
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membrane was detected using the fluorescent dye Annexin V-

FITC Apoptosis Detection Kit (BD Biosciences, USA) according

to the manufacturer’s instructions. All data were collected and

analyzed using Lysis II software (BD Biosciences, USA). The

experiments were repeated 3 times and the results are presented as

the means 6 SD.

Western blot analysis
The cells were washed twice with ice-cold phosphate-buffered

saline (PBS) and directly lysed in Laemmli buffer. The lysate was

sonicated, boiled for 5 min and centrifuged at 16,0006g for

10 min at 4uC. The supernatant was recovered as total cell lysate,

aliquoted and stored at 280uC. Equal amounts of protein (10 mg)

were separated through 8% SDS-PAGE and electro-transferred

onto 0.45 mm polyvinylidene difluoride membranes (Millipore,

Bedford, USA). Following transfer, the membranes were blocked

with a solution of 0.1% Tween 20/TBS (TBS/T) containing 5%

non-fat milk for 1 h at room temperature and subsequently

incubated overnight at 4uC with monoclonal mouse anti-human

CGRP (Santa Cruz Biotechnology, Santa Cruz, CA, USA, final

dilution 1:400), Bcl-2 (GeneTex, USA, final dilution 1:300), Wnt-

1, Wnt-3a, Wnt-5a, Wnt-7 and b-catenin (Sigma, St. Louis, MO,

USA, final dilution 1:400) antibodies or rabbit polyclonal anti-

human nestin, MAP2, RIP, and GFAP antibodies (Sigma, St.

Louis, MO, USA, final dilution 1:500). The bands were visualized

using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl-phos-

phate. GAPDH served as an endogenous control. For densito-

metric analyses, the blots were scanned and quantified using

Quantity One analysis software (Bio- Rad, Hercules, CA, USA).

The results were expressed as a percentage of GAPDH

immunoreactivity.

Immunocytochemistry analysis
For analysis of neural differentiation of ADSC, differentiated

cells were fixed with 4% paraformaldehyde, and incubated with

10% goat serum to prevent nonspecific antibody binding. The

cells were incubated overnight at 4uC with several rabbit

polyclonal anti-human Nestin, MAP2, RIP, and GFAP antibodies

(Sigma, St. Louis, MO, USA, final dilution 1:500). After

extensively washing in PBS, the cells were then incubated for

30 min with Alexa fluor 488 conjugated secondary antibodies

(1:400–500; Invitrogen, Carlsbad, CA, USA). Controls in which

primary antibodies were omitted or replaced with irrelevant IgG

resulted in no detectable staining. Specimens were examined using

a Leica TCS SP2 laser scanning microscope equipped with three

lasers (Leica Microsystems, USA). Immunocytochemical studies

were repeated at least three times.

Statistical analysis
Each experiment was repeated three times. All data are

represented as the mean 6 SD, and the statistical analysis was

performed using the SPSS software package (Version 12.0). The

data were analyzed using the independent-samples t-test and a

paired t-test. The CGRP data were not normally distributed and

were therefore tested using the Wilcoxon signed-rank test. p,0.05

was considered statistically significant.

Results

Over-expression of CGRP in genetically modified ADSCs
The transduction efficiency for genetically modified ADSCs was

evaluated according to the expression of EGFP gene using flow

cytometry. At 72 h, the transduction efficiency peaked, showing

approximately 81.5% (Fig. 1A) Vector-ADSCs or CGRP-ADSCs.

To accurately evaluate the expression of CGRP among all the

groups, a western blot analysis was performed on days 1 and 3. As

Figure 1. Overexpression of CGRP in genetically modified ADSCs. (A) The transduction efficiency was determined using flow cytometry at
72 h after transduction. Scale bar equals 100 mm. (B) The expression of CGRP among all groups was detected on days 1 and 3. *p,0.05, CGRP-ADSCs
group vs. controls.
doi:10.1371/journal.pone.0086334.g001
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Figure 2. CGRP overexpression altered the characterization of ADSCs. (A) The growth curves showed that CGRP-ADSCs had a significantly
higher proliferation than ADSCs or V-ADSCs. *p,0.05, CGRP-ADSCs group vs. controls. (B) Apoptosis was quantified through FACS analysis after
staining with Annexin V and PI. The Annexin V+/PI2 cells appeared early in the apoptotic process. The viable cells were Annexin V2/PI2. The
quantitative analysis showed that the number of TUNEL-positive cells in CGRP-ADSCs was significantly decreased compared with ADSCs and V-
ADSCs. (C) The expression of BCL-2 among all groups was detected on day 3. *p,0.05, CGRP-ADSCs group vs. controls.
doi:10.1371/journal.pone.0086334.g002
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PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86334



shown in Fig. 1B, significantly higher CGRP expression in

CGRP-ADSCs was observed on either days 1 or 3 (p,0.05),

compared with ADSCs and Vector-ADSCs.

Morphology and cell growth characterization of ADSCs
after transduced CGRP gene

The ADSCs genetically modified with CGRP exhibited bright

green EGFP fluorescence. Despite of some colony growth, the

CGRP-ADSCs were evenly distributed and the cell morphology

predominantly showed a heterogeneous population of long,

spindle-shaped cells. Conversely, ADSCs or Vector-transduced

ADSCs primarily grew in a monolayer style as flat fibroblast-like

cells. Meanwhile, the proliferative capacity of each group was

calculated using an MTT assay, and the results were differently

displayed on growth curves (Fig. 2A). Apparently, the prolifera-

tion of CGRP-ADSCs was significantly higher than the other

groups (p,0.05).

CGRP modified ADSCs protect against apoptosis in vitro
To examine the capability of CGRP-ADSCs to protect against

apoptosis, the rates of cell apoptosis were assessed through Flow

Cell detection. The rates of cell apoptosis in ADSCS and Vector-

ADSCs significantly exceeded that of CGRP-ADSCs by almost

1.7-fold according to the detection of Annexin V/PI staining

(Fig. 2B). In addition, the quantitative analysis showed that the

expression of BCL-2 in CGRP-ADSCs was significantly higher

than that in the other groups on day 3 (p,0.05) after transduction

(Fig. 2C). These findings demonstrated that the CGRP-modified

ADSCs protect against apoptosis in vitro.

Neurosphere formation and morphological changes of
CGRP-ADSCs on neural induction

When the ADSCs approached densities of approximately 80%,

all groups were induced toward neural differentiation. First,

neurospheres were formed as shown in Fig. 3, and the size and

quantity of neurospheres on CGRP-ADSCs were increased

compared with the other groups.

Subsequently, the morphology of some single cells, particularly

CGRP-ADSCs, began to change and developed into characteristic

round cell bodies with several branching extensions as shown in

Fig. 4, concomitantly expressing EGFP fluorescence. Approxi-

mately 60% of the CGRP-ADSCs were bipolar or multipolar in

shape and more of these cells contacted neighboring cells widely.

Neural markers expression in differentiated ADSCs
To fully characterize the differentiated ADSCs after neural

induction, western blot analyses for specific antigens indicative of

neural cell lineages were performed on days 1, 3 and 7. The

expression of Nestin in CGRP-ADSCs early after induction,

particularly on day 3, indicated a high degree of neural

differentiation. However, after 7 days of induction, the rate of

differentiation was remarkably decreased (Fig. 5A). Despite the

similar trend in ADSCs or Vector-ADSCs, the expression of

Nestin in CGRP-ADSCs showed significantly higher level

compared with the other groups on days 1, 3 or 7 (p,0.05)

(Fig. 5B; Fig. 6A). The expression of MAP2 and RIP apparently

showed an up-regulated expression profile at the whole phases of

neural-induced commitment among all groups (Fig. 5A), but the

expression of these proteins in CGRP-ADSCs was significantly

higher than that in the other groups on days 1, 3 or 7 (p,0.05)

(Fig. 5B; Fig. 6B; Fig. 6C). Lower levels of GFAP expression

among all groups were confirmed on days 1, 3 or 7. Moreover,

there was no significant difference in CGRP-ADSCs (p.0.05),

compared with the other groups (Fig. 5A and Fig. 5B; Fig. 6D).

Expression of Wnt signal proteins as a neural indication
To fully characterize the regulation of the neural differentiation

of ADSCs, western blot analyses for specific antigens indicative of

Wnt/b-catenin signaling were performed on induction day 7. The

data from these analyses indicated a high degree of Wnt 3a, Wnt

5a and b-catenin expression among all groups (Fig. 7A).

Moreover, the CGRP-ADSCs showed significantly higher expres-

sion of these neural markers compared with the other groups (p,

0.05) (Fig. 7B). However, the expression of Wnt 1 and Wnt 7 was

low among all groups (Fig. 7A), and no significant difference was

observed among the groups (Fig. 7B).

Figure 3. CGRP overexpression promoted neurosphere forma-
tion. When ADSCs approached densities of approximately 80%, all
groups were induced toward the neurogenic lineage through neuro-
sphere formation. Apparently, the size and quantity of neurospheres
were increased CGRP-ADSCs compared with the other groups. Scale
bars = 100 mm.
doi:10.1371/journal.pone.0086334.g003

Figure 4. Effect of CGRP on morphological changes of ADSCs
on neural induction. On light microscopy or fluorescence microscopy
on day 3 after neural induction, ADSCs develop characteristic round cell
bodies with several branching extensions on day 3 after neural
induction; Specially, the CGRP-ADSCs exhibited more branching
extensions on contacting with neighboring cells widely (as show on
white arrows). Scale bars = 50 mm.
doi:10.1371/journal.pone.0086334.g004

Neurogenesis of ADSCs Modified with CGRP
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Discussion

Genetically modified neural tissue engineering is an attractive

approach with great potential for use in the treatment of spinal

cord injury or brain damage [30]. Many studies have focused on

bone marrow mesenchymal or neural stem cells. However, few

related reports on adipose tissue-derived stem cells are available

[31]. Adipose tissue has several advantages, including abundance

and ease of acquisition [18–21] and easier induction to different

lineages [22–25], and this tissue is becoming a promising seed cell

source [23]. In addition, adenoviral vectors transduce both

dividing and non-dividing cells and incorporate into the host

genome, facilitating prolonged target gene expression, high

transfection efficiency, and low toxicity [32,33]. In our study,

ADSCs were selected as donor cells, and adenoviral vectors were

used for transduction. CGRP-transduced ADSCs could be

transduced with high transduction efficiency, (approximately

81.5%), demonstrating that the transduction of ADSCs using an

adenoviral vector was a feasible and efficient method to

incorporate a foreign gene. Moreover, on days 1 and 3 after

transduction, the over-expression of CGRP was detected at a

significantly higher level than that in the other control groups (p,

0.05). Consequently, these results demonstrated that ADSCs and

adenovirus-mediated gene-targeting vectors were applicable to

tissue engineering.

The calcitonin family of peptides has been extensively studied in

neural system disorders over the past few years because of the

effects of these peptides on neural cells, particularly neurons.

However, little is known about the effect of CGRPs on the

proliferation or differentiation of stem cells. In this study, it was the

over-expression of CGRP in CGRP-ADSCs promoted cell

proliferation and significantly higher growth rate (p,0.05)

compared with the control groups. Furthermore, the apoptotic

cell number in CGRP-ADSCs was remarkably reduced after the

CGRP genetic modification. Meanwhile, the expression of BCL-2

in CGRP-ADSCs was significantly higher than that in the other

groups on day 3 (p,0.05). Hence, CGRP over-expression should

reduce death and apoptosis of ADSCs, and these cells also retain

their proliferation capacity and likely generate different lineages,

particularly neurogenesis. Previous studies have shown that CGRP

acts as a survival factor, inhibiting apoptosis in liver cells [34] [35].

The anti-apoptotic action of CGRP is potentially regulated, in

part, through the ERK signaling pathway [36], further increasing

our understanding of the biological mechanism of CGRP.

Thus, the results of the present study revealed that CGRP-

ADSCs undergo morphological and phenotypical changes consis-

Figure 5. Results of neural markers expressions by Western blot. (A), (B) Western blot analysis to examine the expression of various protein
markers after neural induction on 1, 3, and 7 days. *p,0.05, CGRP-ADSCs group vs. controls.
doi:10.1371/journal.pone.0086334.g005
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tent with neural differentiation. First, neurospheres were formed,

followed by CGRP-ADSCs aggregation after neural induction.

Furthermore, the size and quantity of the neurospheres in CGRP-

ADSCs were increased compared with the other groups. Second,

the morphology of CGRP-ADSCs developed into characteristic

round cell bodies, with more branching extensions, bipolar or

multipolar in shape, and some ADSCs contacted neighboring cells

widely (Fig. 4). Third, specific antigens indicative of neural cell

Figure 6. Results of Neural markers expressions by immunostaining. Immuostaining analysis to detect the expressions of various protein
markers after neural induction on 7 days. (A) expression of Nestin (red); (B) expression of MAP2 (red); (C) expression of RIP (red); and (D) expression of
GAFP (red). Scale bars = 100 mm.
doi:10.1371/journal.pone.0086334.g006

Figure 7. Expression of Wnt signal proteins on neural differentiation of ADSCs. (A), (B) During neurogenesis, Wnt 3a, Wnt 5a and b-catenin
expression was detected among all groups. Moreover, in the expression of these signals in CGRP-ADSCs was significantly higher than that in the other
groups (p,0.05). However, the expression of Wnt 1 and Wnt 7 among all groups was detected at lower levels in all groups, and there was no
significant difference among the groups.
doi:10.1371/journal.pone.0086334.g007

Neurogenesis of ADSCs Modified with CGRP
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lineages were detected after neural induction. The expression of

Nestin, typically observed at a high level in neural stem cells,

representing potential neurogenic capacity [37], exhibited a high

degree in CGRP-ADSCs early after induction. However, at 7 days

after induction, the high levels of Nestin expression were

remarkably reduced. The phenomenon of high Nestin expression

is consistent with our previous work [23] and other studies in

stromal cells of bone marrow origin [38,39], demonstrating that

ADSCs with or without Ad-CGRP transduction might retain a

native potential for neural differentiation. The strong up-regulated

expression of MAP2, as a neuron marker [40], and RIP, as an

oligodendrocyte marker [41], in neural induction were observed in

CGRP-ADSCs on days 1, 3 or 7. Moreover, the expression of

these markers was significantly higher than that observed in the

other groups (p,0.05). Conversely, the expression of GFAP, as a

marker for astrocytes [42], was nearly undetectable until day 7,

showing slight expression among all groups. Taken together, these

results demonstrated that ADSCs, with or without genetic

modification through CGRP, could promote differentiation into

neurocytes rather than astrocytes, and CGRP-ADSCs showed

easier neurogenesis than ADSCs or Vector-ADSCs under the

conditions provided in this study.

In addition, Wnt/b-catenin signaling was detected when

ADSCs were induced to neural differentiation in this study. On

day 7 of neural induction, the increased expression of the

canonical Wnt signals, Wnt 3a, Wnt 5a and b-catenin, was

observed among all groups. Furthermore, significantly higher

expression of these markers was observed in CGRP-ADSCs

compared with the other groups (p,0.05). However, lower levels

of Wnt 1 and Wnt 7 expression were detected, showing no

significant difference among the groups. Based on these results, it

is reasonable to speculate that canonical Wnt signals, primarily

Wnt 3a, Wnt 5a and b-catenin, are involved in the regulation of

the neural differentiation of ADSCs, suggesting that the CGRP

gene could up-regulate the expression of canonical Wnt signals

during neurogenesis in ADSCs [43]. However, additional research

is needed to characterize the mechanisms of molecular regulation

in detail.

In summary, this study demonstrated that the adenovirus-

mediated CGRP-ADSCs successfully underwent neurogenesis in

vitro, maintained a high proliferative capacity and successfully

secreted extracellular matrix. CGRP-ADSCs might also serve as

ideal seed cells for neural tissue engineering. Whether the CGRP-

ADSCs retain the same ability to differentiate into neurogenic

lineages and repair SCI in vivo should be further tested.
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