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Abstract

Drug repurposing has become an increasingly attractive approach to drug development owing to the ever-growing cost of
new drug discovery and frequent withdrawal of successful drugs caused by side effect issues. Here, we devised Functional
Module Connectivity Map (FMCM) for the discovery of repurposed drug compounds for systems treatment of complex
diseases, and applied it to colorectal adenocarcinoma. FMCM used multiple functional gene modules to query the
Connectivity Map (CMap). The functional modules were built around hub genes identified, through a gene selection by
trend-of-disease-progression (GSToP) procedure, from condition-specific gene-gene interaction networks constructed from
sets of cohort gene expression microarrays. The candidate drug compounds were restricted to drugs exhibiting predicted
minimal intracellular harmful side effects. We tested FMCM against the common practice of selecting drugs using a genomic
signature represented by a single set of individual genes to query CMap (IGCM), and found FMCM to have higher
robustness, accuracy, specificity, and reproducibility in identifying known anti-cancer agents. Among the 46 drug
candidates selected by FMCM for colorectal adenocarcinoma treatment, 65% had literature support for association with
anti-cancer activities, and 60% of the drugs predicted to have harmful effects on cancer had been reported to be associated
with carcinogens/immune suppressors. Compounds were formed from the selected drug candidates where in each
compound the component drugs collectively were beneficial to all the functional modules while no single component drug
was harmful to any of the modules. In cell viability tests, we identified four candidate drugs: GW-8510, etacrynic acid,
ginkgolide A, and 6-azathymine, as having high inhibitory activities against cancer cells. Through microarray experiments
we confirmed the novel functional links predicted for three candidate drugs: phenoxybenzamine (broad effects), GW-8510
(cell cycle), and imipenem (immune system). We believe FMCM can be usefully applied to repurposed drug discovery for
systems treatment of other types of cancer and other complex diseases.
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Introduction

An important goal for biomedical research is to understand the

underling genetic mechanisms of human diseases and discover

therapeutic drugs for the diseases. Drug discovery is expensive; the

average research and development (R&D) cost in the past 15 years

for developing a new drug exceeds 1 billion US dollars [1]. Anti-

cancer agents are especially costly [2]. The standard R&D

procedure includes compound identification, toxicity tests in cell

and animal models, safety evaluation on early clinical trials, and

efficacy in late phase trials. The very high failure rate has led to a

crisis known as innovation gap in new drug discovery [3]. The

crisis is further compounded by the withdrawal of many previously

thought successful drugs, mostly through issues related to harmful

side effects [4–6]. Such issues may be a corollary of the prevailing

method for new drug discovery, which is to find specific

biomolecules as targets, typically membrane receptors [7].

However, a biological target may regulate more than one

biological pathway, only one of which may be disease related. If

this is the case, then altering the function of a biological target by a

drug can lead to unintended results of disruption of healthy

pathways [8].

The strategy of finding specific biological targets for drug

treatment may have also contributed to the disappointing progress

made in the last 40 years in reducing the overall mortality rates for

most types of cancer [9]. This is partly because cancer is a disease
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involving the dysfunction of multiple parallel pathways controlling

many fundamental processes [10]. Cancer cells accumulate

multiple genetic mutations that equip it with a of myriad of

survival and death-avoiding capabilities: for inducing angiogenesis;

to maintain proliferative signalling; to escape suicidal apoptotic

programs; for enabling replicative immortality; and to activate

invasion and metastasis [11]. Evidences are emerging that the

pathology of cancer is more a consequence of small abnormalities

on many genes, than a major abnormality on a single gene

[12,13], and that drug compounds acting on multiple targets may

be a more effective treatment strategy than a single drug on a

single target [14]. In short, cancer is a systems disease and ought to

be dealt with by a systems treatment [15].

Here, we present a computational drug-screening procedure

that addresses the issues raised above. Our program has two main

aims: to surmount the innovation gap through drug repurposing,

and to find drug compounds for a systems treatment of cancer.

Drug repurposing is the search for novel indications for already

approved drugs [1,16]. Because an approved dug has already been

optimized for safety and efficacy for its originally designed

indication, its route for approval for a novel indication may be

significantly shorter and likely far less costly than that for a new

drug.

Recently the computational screening drugs for repurposing has

been greatly facilitated by the advent of the Connectivity Map

(CMap), a comprehensive and continuously updated database of

the genomic profiles of many existing drugs [17]. CMap provides a

platform for utilizing a pattern-matching strategy to determine the

similarity, or the opposite, in genomic signatures among diseases,

functional gene sets, and drugs. It has been employed in many

studies for discovering repurposing drugs against common

diseases, including diabetes and Alzheimer’s disease [17], and

for treating solid tumours, including those associated with colon

cancer [18], breast cancer [19], and lung adenocarcinoma [20].

The basic concept of CMap-based repurposing drugs discovery

studies is the identification of disease associated genomic signatures

that reversely correlate with perturbation in genomic signature

associated with the administration of molecules or drugs

[17,21,22]. In these studies, the essence of the protocol – the

individual-gene CMap approach (IGMP) – for identifying drugs

for treating a specific disease is straightforward: find a set of

differentially expression genes (DEGs) obtained by, say, comparing

two sets – controls and patients – of gene expression microarrays,

score the match between the DEG set and genomic profiles of

drugs given by CMap, and rank the drugs by score. Candidate

drugs are those with the highest scores. Because it draws on the

entire genomic information of the patients and of the drug, one

may view this approach as an attempt at systems treatment.

However, it suffers from being too crude an approach. In

particular it makes no specific reference to any of the many

altered states of biological functions associated with the disease. By

not paying attention to individual biological functions, a ‘‘best’’

drug could very well be a compromise, chosen for having strong

beneficial effects on a subset of functions at the expense of being

harmful to some other functions.

Another study that utilizes variable gene signatures to screen

repurposed drugs has successfully identified many heterogeneous

Food and Drug Administration (FDA) approved drug candidates

for breast, myelogenous leukemia, and prostate cancer [23]. This

method typically yields a long list of heterogeneous drug

candidates without providing details that may help in differenti-

ating the drugs, details such as how a drug differently impact the

multi-functionalities of (a specific) cancer. Other more sophisti-

cated methods based on computational network models have been

developed to identify novel therapeutic targets for the purpose of

treating regulatory cellular networks [24,25]. The effectiveness of

these approaches, which aim to elevate the relative activity of

certain cell regulatory networks, and base their predictions on

elaborate models optimally tuned to fit existing temporal and

spatial data, may be restricted by the limited existing knowledge

on networks and parameters describing protein activities.

Here, we present a novel analytical framework, called Func-

tional Module Connectivity Map (FMCM), for the discovery of

drug compounds for systems cancer treatment. We constructed

condition-specific function-function networks (FFNs) and applied a

gene-selection-by-trend-of-progression procedure (GSToP) [26] to

identify complexly connected and highly expressed hub genes in

the FFNs. We then used functional modules constructed around

the hub genes to query CMap for the discovery of ontology-

specific repurposing drugs, and further screened the drugs by

requiring that they exhibit minimum intracellular harmful side

effects. Relative to the standard IGCM protocol, FMCM was

more robust in its drug selection and it more consistently predicted

higher hit rates (,65%) on effective drugs against early

tumorigenesis in colorectal cancer. When checked against known

drug indications in Therapeutic Target Database (TTD), FMCM

showed significantly higher accuracy and lower false positive rates

on the discovery of the anti-cancer agents than IGCM, except for

the immune system. Our viability tests on eight of the candidate

drugs showed three, GW-8510, ginkgolide A, and 6-azathymine,

represented high inhibitory activities against the survival of cancer

cell lines with specific concentrations and administration dura-

tions. Follow-up microarray experiments confirmed that both the

CMap and our datasets showed consistent results on three

independent drugs – phenoxybenzamine (broad effects), GW-

8510 (cell cycle), and imipenem (immune system). These results

demonstrated the effectiveness of FMCM, and suggested its

potential for formulating repurposed drug regimes with minimum

harmful side effects in cancer patients.

Materials and Methods

Data sources
Gene expression data for 32 patients with sporadic colorectal

polyps (adenoma) and corresponding adjacent normal mucosa

from the same individuals were obtained from Gene Expression

Omnibus (GEO) database (accession number: GSE8671) [27]. We

extracted 30,047 protein entries and 39,194 protein-protein

interactions (PPIs) from the Human Protein Reference Database

(HPRD) [28] and used Gene Ontology (GO) [29] for functional

information.

External database
We used the Connectivity Map database (CMap) build 02 [17],

with 6,100 treatment expression profiles representing 1,309 drugs

(and compounds), to compute enrichment scores (ES) of gene set

against drugs.

For reference on drug indication we used L01 class, antineo-

plastic agents, Anatomical Therapeutic Chemical (ATC) Classifi-

cation System, World Health Organization (WHO) (http://www.

whocc.no/).

We extracted information on known therapeutic protein targets,

relevant diseases or cancers, and corresponding drugs (787 drugs;

60% of CMap datasets) from the Therapeutic Target Database

(TTD: http://bidd.nus.edu.sg/group/ttd/) [30]. In addition, we

queried key words on searching engines to define relative

therapeutic drugs on cancer treatment.

Functional Module Connectivity Map
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We downloaded the annotated 4,884 gene-sets from the

Molecular Signatures Database (MSigDB: http://www.

broadinstitute.org/gsea/msigdb/index.jsp) [31]. The gene-sets

are of four types: C2: curated gene-sets from known pathways,

online databases, and knowledge of domain experts; C3: motif

gene-sets based on conservative cis-regulatory motifs from human,

mouse, rat, and dog genomes; C4: computational gene-sets

determined by co-expression neighbourhoods centered on 380

cancer-related genes; C5: gene-ontology gene-sets collected from

the same GO annotations of genes. Gene symbols in each gene-set

were combined and converted into HG-U133A Affymetrix ID

according to the updated annotation file at the website http://

www.affymetrix.com/estore/.

Gene selection by individual gene analysis (IGA) and
Individual gene connectivity map (IGCM)

Differentially expressed genes (DEGs) were selected using the

Significance Analysis of Microarrays algorithm (SAM) [32]. Unless

otherwise stated, threshold values for false discovery rate (FDR)

,0.05 and fold change (FC) .2 were used. Enrichment score (ES)

matching gene set to drug was computed through CMap [17].

Beneficial and harmful drugs
Given a gene set, a drug was designated beneficial or harmful if

the ES is ,20.5 or .0.3. For drugs to be designated beneficial a

randomization p-value,0.005 was required, unless otherwise

stated.

Construction of gene-gene interaction network (GGIN)
and function-function interaction network (FFN)

For a given condition – control (Nor) or adenoma patient (Ade)

– and a Pearson p-value (see below) threshold p0, we included a

pair of genes in the GGIN if: (1) the p-value for the pair was not

greater than p0; (2) the protein pair encoded by the gene pair was

linked in the PPI data. For a given set of n microarrays, a Pearson’s

correlation coefficient (PCC) between a pair of genes was

calculated using the two sets of n intensities of the pair. Each

PPC is assigned a Pearson p-value based on permutation tests and

t-statistics. Genes in each type-specific GGIN were assigned to

over-represented biological functions, called functional modules,

through Gene Ontology term association [29]. Enrichment

analyses based on conditional hypergeometric test [33] were

made using the R package GOstats downloaded from the

Bioconductor website. Each GGIN was reduced to function-

function network (FFN) using functional modules as nodes.

GSToP and the functional module connectivity map
(FMCM) framework

The FMCM framework for selecting therapeutic drug com-

pound consisted of two segments, selection of functional modules

of predicted cancer genes based on the GSToP procedure [26]

(steps 1–5 below), and multiple queries, one for each functional

module, of the CMap for drug identification (steps 6–8). Steps in

the selection procedure (Figure 1) were: (1) Construct Nor and Ade

GGINs and FFNs using threshold Pearson p-value = 0.001. (2)

SAM. Identify DEGs for Ade vs. Nor using thresholds FDR ,0.01

and FC .2. (3) GSToP. Assign a gene as a cancer gene if: (a) it

appears in at least the Ade or Nor GGIN; (b) its degrees and

clustering coefficients increase (decrease) along the sequence. (4)

Take overlap of SAM and GSToP lists. (5) Cancer genes

(including up-regulated and down-regulated genes) form function-

al modules having GO terms used for the FFNs. (6) Beneficial and

harmful drug lists. Use functional modules separately to query

drugs in the CMap [17] to obtain for each function two lists

respectively for predicted beneficial (ES ,20.5) and harmful (ES

.0.3) drugs (see above for requirement on randomization p-value).

(7) Function-drug association map (FDAM). Use the drug lists to

construct a map with two kinds of nodes, function module and

drug, and two kinds of function-drug links, beneficial and harmful.

Include in FDAM only drugs that have at least one beneficial link.

(8) Construct from FDAM all predicted drug compounds, where a

compound is minimum set of purely beneficial drugs that covered

all functions.

Accuracy, specificity, and reproducibility in performance
tests

Positives NB and negatives NA were drugs predicted to be

beneficial and harmful, respectively; true positives TP and false

negatives FN were known anti-tumor agents predicted to be

beneficial and harmful, respectively; true negatives is TN = NA–

FN, and false positive is FP = NB–TP. Accuracy was defined as

(TP+TN)/(NB+NA), and specificity as TN/(FP+TN).

For reproducibility a drug prediction procedure (FMCM or

IGCM) was repeated 10 times, each time working on a set of 40

randomly chosen microarrays, 20 each from controls and patients,

and reproducibility was measured over the 1069/2 = 45 pairs of

results. For each pair reproducibility was (the size of) the

intersection of the two sets of selected drugs divided by the

geometric mean of the two sets.

Cell cultures and reagents
Human colon cancer cell lines (HCT116, RKO, SW403, and

SW620), and breast cancer cell lines (MCF7) were obtained from

ATCC (American Type Culture Collection, Manassas, VA) and

maintained as suggested by ATCC. The growth media for all cell

lines were supplemented with 10% fetal bovine serum (FBS), 50

units/ml of penicillin and streptomycin, and incubated at 37uC
with 5% carbon dioxide. In experiments, cells were treated with

ethanol, water or DMSO as corresponding vehicle control.

Phenoxybenzamine, GW-8510, etacrynic acid, ginkgolide A,

triflusal, imipenem, 6-azathymine were purchased from Santa

cruz (CA). Phthalylsulfathiazole was purchased from Sigma (St.

Louis, MO). Phenoxybenzamine, phthalylsulfathiazole, etacrynic

acid, ginkgolide were dissolved in ethanol. Imipenem was dissolved

in water. The remaining drugs were dissolved in Dimethyl

sulfoxide (DMSO).

Cell Proliferation assay
Proliferation activities of five cell lines – colon cancer, HCT116,

RKO, SW403, and SW620, and breast cancer, MCF7 – were

monitored by Alamar Blue (Molecular Probes, Invitrogen Corpo-

ration), an oxidation-reduction reagent, and determined by

measuring the reduction of resazurin (blue, non-fluorescent) to

resorufin (red, highly fluorescent). Cells were seeded in 96-well

cultured plates and, following the study design of the CMap [17],

treated with single drugs with concentration of 0, 0.1, 1,10, 30 mM

for 5 days, then assayed for proliferation activities. One-tenth

volume of alamar blue reagent was added and plates were

incubated at 37uC for 2–3 hours. Cell viability was determined by

measuring fluorescence with excitation at 550 nm and emission at

590 nm on Synergy HT (BioTek Instruments, Winooski, VT). Cell

survival was calculated as relative value of the difference between

the reductions of Alamar Blue in treated versus controls.

Functional Module Connectivity Map
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RNA extraction and microarrays
Cells were seeded in 100 mm dishes and treated with drugs.

After drug treatment for 6 hours, total cellular RNA was isolated

using mirVana miRNA Isolation Kit (Ambion, Austin, TX)

according to the manufacturer’s instructions. 250 ng of total RNA

was used for microarray experiments. Extracted RNA was labelled

with GeneChipH 39 IVT Express Kit (Affymetrix, Santa Clara,

CA, USA) and hybridized onto Affymetrix GeneChipH Prime

View Human Gene Expression Array. This array contained

approximately 530,000 probes covering more than 36,000

transcripts and variants. Raw images were analysed by Affymetrix

GeneChipH Operating Software. We performed microarray

analysis of the effect of imipenem and phenoxybenzamine (PB)

(treated and non-treated) on HCT116 and MCF7, and GW-8510

on HCT116 under the U219 (primeview) platform, all in

duplicates. Treatment dosages and duration times were the same

as in [17].

Microarray experiments and analysis by IGA and gene-set
approach (GSA)

Genome-wide gene expression profiles from drug-perturbed

tumour cells evaluated by the Affymetrix GeneChipH Prime View

platform were analyzed in R environment (version 2.15.1). Two

cell lines, HCT116 and MCF7, were treated with three drugs,

GW-8510, phenoxybenzamine (PB), and imipenem, with the same

dosages (10 uM, 11.8 uM, 13.4 uM, respectively) and time

(6 hours after overnight culture) as in [17]. The microarray

profiles were compared with ten profiles from the CMap for

MCF7 treated with the three drugs. Gene expression intensities

were normalized by Robust Multi-array Average (RMA) [34]. In

the IGA approach DEGs were identified by one-way ANOVA

using the eBayes function in the limma package [35]. In a gene-set

approach (GSA), given a list of ranked differential gene

expressions, we used GSEA [31] to convert the 4,884 annotated

gene sets in MSigDB [31] to a list of 4,884 ranked ESs, then

applied one-way ANOVA to find differential gene sets. In IGA (or

GSA) a gene (or a gene-set) with false discovery rate (FDR) less

than 0.01 was considered significant and selected for two-way

hierarchical clustering of the microarray set. GO terms for

overrepresented gene (or gene-set) clusters in the IGA (or GSA)

heatmap were determined using DAVID [36].

Figure 1. Flowchart of methodology.
doi:10.1371/journal.pone.0086299.g001

Functional Module Connectivity Map
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Results

Function-function networks
High quality of microarray data was indicated by the clean

separation of control (from 32 normal tissues) and sample (32

patients) in Principle Component Analysis (Figure S1A). The

2,164 DEGs selected by SAM (with thresholds FDR ,0.01 and

FC .2) correctly classified the controls and sample in hierarchical

clustering (Figure S1B). Clustering results were not sensitive to

moderate variations in threshold values (not shown). Gene-gene

interaction networks (GGINs) were constructed with a threshold of

Pearson p,0.001 from the control and adenoma cohort micro-

array data (Figure S2). The adenoma GGIN has 6.4% more genes

(1,792 vs. 1,684) and 32% more links (2,656 vs. 2,017) than the

control GGIN. The difference between the two cases became

evident when the GGINs were reduced to function-function

networks (FFNs) having functional modules as nodes (Figure 2,

Table S1). Cell cycle, DNA replication, and DNA repair

functional modules were much larger in the adenoma FFN and

exhibited much high levels of intra-function activity. There were

also more inter-module activities in adenoma than in control. In a

noted exception, the inter-module activity between immune

system process and cell proliferation was weaker in adenoma than

in control.

Repurposed therapeutic drugs selected by IGCM
CMap gives enrichment scores (ES) to gene lists not longer than

1,000 entries. We complied with this constraint (i.e., restricting the

size of the DEGs) by requiring FDR ,0.01. Five DEG lists with

FC thresholds of 3.0 to 5.0 with 0.5 intervals were generated and

their ES’s for the 1,308 drugs (or small compounds) were obtained

by querying CMap. The list of beneficial (i.e., anti-adenoma) drugs

was sensitive to (the threshold value of) FC, with the size of the list

decreasing with increasing FC (Figure 3A). The number of

beneficial validated drugs decreased with increasing FC (Figure

S3). According to TTD, many known therapeutic anti-cancer

drugs, such as chrysin (pink, TTD id: DNC004715), GW-8510

(red, TTD id: DNC004631), daunorubicin (cyan, TTD id:

DAP000788), apigenin (light purple, TTD id: DNC004714),

resveratrol (yellow green, TTD id: DNC001205), coincidentally all

changed from beneficial at FC = 3 to harmful at FC = 3.5

(Figure 3A). At FC = 5.0, the most stringent threshold that we

used mostly, AG-012559 was the only beneficial drug under

permutation p,0.005 (Figure S3).

Repurposed therapeutic drugs selected by FMCM
In the FMCM program, genes selected in each functional

module (Table S2) were used separately to query CMap, yielding

separate functional specific drug lists. Each functional module was

the union of the control and adenoma functional modules given by

the respective FFNs, filtered by the GSToP procedure (see

Methods). In FMCM the gene size of the module had a much

stronger dependence on the value of FC than IGCM (Figure 3). In

IGCM, size of DEG dropped from just above 600 to 200 when the

value of FC threshold was raised from 3 to 5. In FMCM module

gene size dropped from about 600 to about 30 as (the threshold)

Figure 2. Function-function networks for colorectal adenoma. Condition specific function-function networks (FFNs) were generated from
gene-gene networks (GGINs), shown in Figure S2, by reduction. Nodes in an FFN are functional modules (FMs), which are gene sets in the
corresponding GGIN forming over-represented Gene Ontology terms. FMs containing less than 70 genes are not shown. The diameter of a node
scales with the logarithm of the number of genes in the node. The color shade of a node indicates the number of intra-node gene-gene interactions
per gene. The thickness of the edge indicates the number of inter-node gene-gene interactions.
doi:10.1371/journal.pone.0086299.g002

Functional Module Connectivity Map

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86299



FC was raised from 1 to 3, and became too small for CMap

application when FC was raised above 3. Even so, within the

respective range of FC used, FMCM provided a much more stable

and robust environment for drug screening by CMap than IGCM;

in FMCM the character of selected drugs (i.e., beneficial or

harmful) changed very little (21 out of 256, Figure 3B) while in

IGCM changed occurred to 54.5% of selected drugs (12 out of 22,

Figure 3A).

Figure 3. Enrichment score versus fold-change for CMap drugs. Enrichment score (ES) was obtained by querying the CMap with gene set
(size indicated by vertical bar) determined using varying fold-change (FC) threshold. A drug is considered beneficial for the treatment for colorectal
adenoma if ES ,20.5, harmful if ES .0.3, and neutral otherwise. (A) Screening by IGCM procedure. Querying gene set was complete set of
differentially expressed genes (DEGs) identified from gene expression arrays of colorectal adenoma cohort (versus control) using the SAM algorithm
with fixed FDR ,0.01. (B) Screening by FMCM procedure. Querying gene sets were functional modules obtained by partition of over-represented
Gene Ontology terms in GSToP filtered DEGs.
doi:10.1371/journal.pone.0086299.g003

Functional Module Connectivity Map
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Function-drug association map (FDAM) and therapeutic
drug compounds

Purely beneficial and harmful drugs (see Material and Methods)

that were beneficial to at least one FM were identified in the

FMCM program (FC .2) and used to construct FDAM. The 46

drugs in the FDAM (Table 1) were much more numerous than the

corresponding list found in traditional IGCM approach (which

had 22 drugs). Thirty of the 46, or 65%, have either been studied

individually as anti-tumour agents or have been certified to have

preventive effects against a broad range of cancers (Table 1 and

Table S3). The five drugs, thapsigargin, pyrvinium, trifluopera-

zine, ellipticine, and 0297417-0002B, which in our FDAM were

harmful to at least one module, have been reported to show

evidence for carcinogenesis/immune suppression activities

(Figure 4, Table 1 and Table S3). We view the 41 drugs on the

FDAM with no harmful links as candidate therapeutic drugs. The

number of modules, or degrees (Table 1), to which a candidate

drug was beneficial varied from 1 to 7. There were two degree-7

drugs, phenoxybenzamine and GW-8510, and three degree-5

drugs, thapsigargin, phthalylsulfathiazole, and medrysone (see

Table 1 for full details on degrees and drug-module relation). A

therapeutic drug compound is a minimum set of drugs culled from

the list of candidate therapeutic drugs that covered all the

modules. Many compounds could be constructed from the

candidate drug list. There were two 2-compnent compounds,

phenoxybenzamine+ISP and GW-8510+ISP, and 20 compounds

with up to six drug components (Table 2). Barring drug-drug

interaction, we predict these compounds to be free of harmful side

effects at the intracellular level.

Comparison between IGCM and FMCM
Stability. As mentioned earlier, the characterization of a

drug, namely beneficial or harmful, was much more stable FMCM

than in IGCM (Figure 3).

Accuracy and specificity. We used anti-tumor agents in the

Therapeutic Target Database (TTD) to evaluate the accuracy and

specificity (Material and Methods) of the FMCM and IGCM

predictions. The ‘‘true’’ drug set in the test was the intersection of

TTD and the CMap list, which included about 40% of TTD. For

simplicity, we denote by IG3 the IGCM query at FC = 3 and the

rest (queries with FC .3) by IGL. We found that FMCM had

overall accuracy (Figure 5A) and specificity (Figure S4) similar to

IG3 and higher than IGL, except for the immune system process

module, where FMCM was worse than IGL.

Reproducibility. We tested the reproducibility (Material and

Methods) of the drug predictions by repeating 10 times the

FMCM and IGCM procedures, each time working on a set of 40

randomly chosen microarrays, 20 each from controls and patients.

In the FMCM procedure, GGINs were constructed using DEGs

selected by SAM at FDR ,0.01 and FC .2, and the selected drug

set was the sum of beneficial and harmful drugs. FMCM had

significantly higher reproducibility (on average ,80%) than

IGCM (on average ,50%), except for the module immune

system process (on average ,60%) (Figure 5B, two-sample t-test

p,10215).

Clinical application I. We took four known anti-cancer

drugs, irinotecan (no. 29 in Table 1), thapsigargin (no. 3), 8-

azaguanine (no. 15), and vorinostat (no. 18) as examples for

comparison (Figure 6). The first drug, irinotecan (trade mark

Camptosar), is in current use, in particular in combination with

other chemotherapy agents such as 5-fluorouracil and leucovorin

in a common colorectal cancer regimen called FOLFIRI [37], was

significantly beneficial only to the apoptosis module by FMCM

(Figure 6A). Thapsigargin, a known endoplasmic reticulum Ca2+

ATPase inhibitor [38], was both significantly beneficial and

harmful to colorectal cancer in FMCM (apoptosis and RNA

metabolic process, respectively, Figure 6B), but was neutral

IGCM. The third example, 8-azaguanine, a purine analog that

exhibits anti-neoplastic activity and have been used in the

treatment of acute leukemia [39], was significantly beneficial to

the apoptosis and cell proliferation modules in FMCM, but was

harmful (not significantly) in all IGCM tests (Figure 6C).

Vorinostat (trade mark Zolinza), a member of a larger class of

compounds that inhibit histone deacetylases (HDACs), and known

to arrest cancer cells epigenetically, was significantly and broadly

beneficial in both IGCM (FC from 3 to 4.5) and FMCM (cell

proliferation, signal transduction, and transcription) and showed

no harmful effects (Figure 6D). These results suggested that

FMCM have higher resolution to detect known ant-cancer agents

than IGCM.

Clinical application II. Using the IGCM and FMCM gene

lists we examined the ES versus FC patterns of 27 chemo-drugs,

not necessarily specific to colon cancer treatment, listed in the

Anatomical Therapeutic Chemical (ATC) classification system

(L01 class; anti-neoplastic agents), and partitioned the group by

pattern into six types (Figure S5A–F). An overall characterization

of our results was that IGL, which represent queries using more

stringently selected DEGs, on the one hand and IG3/FMCM on

the other tended to give contrast indications to many of the anti-

neoplastic agents. In Figure S5A, to which the drug irinotecan

belongs, drugs were mostly harmful in the IGL queries but were

beneficial in the IG3 and most of the FMCM queries. In Figure

S5B, the IGL queries were mostly beneficial and the IG3/FMCM

mostly harmful. In Figure S5C and S5D, all IGCM queries (IGL

and IG3, with one exception) were beneficial while the FMCM

queries had significant harmful components. The most beneficial

drug was vorinostat, the single entry in Figure S5E, where all

queries were beneficial. The most harmful drugs were the all-

harmful celecoxib and paclitaxel, with carmustine and imatinib

close behind (Figure S5F). Vorinostat, doxorubicin, daunorubicin,

irinotecan – all in Figure S5A – satisfied our stringent criteria for

inclusion in Table 1 as components for therapeutic drug

compounds.

Cell viability on single predicted drugs
Eight beneficial drugs from Table 1, phenoxybenzamine (PB;

beneficial to 7 functional modules), GW-8510 (GW; 7), phthalyl-

sulfathiazole (PS; 5), etacrynic acid (EA; 2), ginkgolide A (GA; 1),

triflusal (TF; 1), imipenem (IM; 1), and 6-azathymine (6-AT; 1),

were selected for their commercial availability and degree of

beneficence for preliminary cell model experimental validation on

five cell lines: colon cancer, HCT116, RKO, SW403, and SW620,

and breast cancer, MCF7. GW had the strongest effect on the cell

lines and MCF7 was the cell line most susceptible to the tested

drugs (Figure 7). GW, EA, GA, and 6-AT could selectively or

broadly inhibit cell viability on the cell lines. GW, a known CDK2

inhibitor used in protection of hair-loss in chemotherapy,

exhibited strong inhibitions against HCT116 and MCF7, moder-

ate effects against RKO and SW620, and weak effects against

SW602. EA, GA, and 6-AT moderately to weakly inhibited the

viability of MCF7 (Table 3).

Microarray results and test of the perturbagen concept
We tested the implicit perturbagen assumption [17] that CMap

data on gene expression profiles from drug treatments on one cell

line (MCF7) are useful for drawing inferences more generally on

the effects of the drug, in particular, its effect on different cell lines.

We generated five microarray global gene expression profiles, of

Functional Module Connectivity Map
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PB and IM on HCT116 and MCF7, and of GW on HCT116 (the

efficacy of GW on MCF7 is similar). As control we extracted from

the CMap database 10 corresponding datasets of the three drugs

on MCF7 (4, 4, and 2 datasets from PB, GW, and IM,

respectively). We carried out separate two-way hierarchical

clustering of the 15 profiles employing the IGA and GSA

procedures. In spite of different cell lines, microarray platforms,

and laboratory conditions, the samples, especially the five GW

administered samples, clustered more according to drugs than not

in both procedures (Figure 8). The outstanding qualitative

difference between the IGA and GSA procedures was that the

IGA heatmap was dominated by a single GO term, cell cycle

(Figure 8A, Table S4, S5, S6), whereas the GSA heatmap was

characterized by four terms: monosaccharide metabolic process,

response to hormone stimulus, inflammatory response, and cell

cycle phases (Figure 8B, Table S7, S8, S9, S10). The IGA heatmap

corroborates the result mentioned earlier, that GW, alone among

all the drugs, had high negative impact on cell survival. The GSA

heatmap allowed the effects of smaller gene sets to be displayed

and had a closer correspondence to our FMCM approach to drug

selection. For example, it provided an independent support that

IM, but not the other drugs tested, exhibited a strong beneficial

effect on the immune system process in colorectal cancer cells

(Table 1).

Discussion

CMap has been widely applied to drug discovery for treatment

of complex diseases, including cancer. Methodologies employed

for applying CMap for this purpose are simply variations of a [17].

The important differences between the FMCM procedure used

here and IGCM include: (i) In addition to differential expression,

genes selected from querying CMap were screened by the GSToP

procedure making use of GGINs [26]; (ii) functional modules

(FMs) were built from selected genes and used for separate

querying of CMap to select function specific beneficial drugs

(Table 1); (iii) querying results were used to form drug compounds,

each compound being a minimum set of drugs that collectively

were beneficial to all the FMs and not harmful to any FM

(Table 2).

Our tests showed FMCM to perform better than IGCM in

terms of prediction stability (Figure 3), accuracy (Figure 5A),

specificity (Figure S4), and reproducibility (Figure 5B). In short,

FMCM was much more robust than IGCM in drugs selected. One

reason for the relative robustness of FMCM prediction over

IGCM may be that most modern drugs were designed to affect a

specific biological function, say, by targeting a transcription factor,

not to affect all functions. An FM-drug association is therefore

expected to be more stable than that between the whole DEG set

and the drug.

Figure 4. Function-drug association map (FDAM) for colorectal adenoma. Nodes in the map are functional modules (FMs; gene sets) and
drugs obtained by querying CMap using individual FMs. Drug-function links indicate beneficial (green) or harmful (red). Only drugs beneficial to at
least one FM are included.
doi:10.1371/journal.pone.0086299.g004

Functional Module Connectivity Map
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Because IGCM does not test drugs for function specific

harmfulness, drugs selected by IGCM may be deemed overall

beneficial yet still harmful to some functions, or vice versa. This

was the case for three well-known drugs used in the cancer

chemotherapy listed in the CMap database: thapsigargin, 8-

azaguanine, and irinotecan (Figure 6).

Drugs selected by FMCM had high sensitivity and low false-

positive rate. Of the total 46 candidate drugs (Table 1), 41 were

entirely beneficial and five were harmful to some FMs. Thirty of

46 drugs have been reported in the literature to have properties

related to cancer. Of the 41 putative entirely beneficial drugs, 25

have been reported to have anticancer properties and one has

been reported to be carcinogenic (or mutagenic). Of the five

putative partly harmful drugs, four have been reported to be both

anticancer and carcinogenic.

Phenoxybenzamine, an a-adrenergic-antagonist, was our only

false-positive case. We identified it as a degree-7 beneficial drug,

but there has been no literature suggesting its anti-tumorigenicity.

Instead, there are two clinical studies suggesting possible

carcinogenic effects in patients [40,41].

A novel feature of the FMCM approach was its ability to

discover intracellular harmful side effect in agents known to be

anti-cancer. This is not surprising given the widespread practice of

targeting specific biomolecule in drug designs when it is now

known that the typical regulatory relation between transcription

factors and biological networks is many-to-many. We identified

pyrvinium, trifluoperazine, ellipticine, and 0297417-0002B to be

harmful to immune system process but otherwise beneficial. The

first three – there is no literature on 0297417-0002B – has been

reported to have anti-tumor properties but also have lethal effects

in cell or animal models (Table 1). We identified thapsigargin to be

beneficial to the apoptosis FM but broadly harmful to the signal

transduction, transcription, cell proliferation, and RNA metabolic

process FMs. This drug has been reported to have the ability to

promote apoptosis on prostate and breast cancer cells but also to

stimulate cell growth in mouse keratinocyte models (Table 1) [42–

47].

Based on our in silico screening and cell viability experiments, we

selected the four drugs, GW-8510 (GW, no. 2 in Table 1),

etacrynic acid (EA, no. 16), ginkgolide A (GA, no. 39), and 6-

azathymine (6-AT, no. 44), as potential therapeutic agents for

colorectal adenoma. GW, which exhibited clear inhibitory effects

against colon cell growth (Figure 7) in our viability experiments, is

a cyclin-dependent kinase 2 (CDK2) inhibitor used for preventing

hair loss in chemotherapy. It was suggested that the observed

antitumor efficacy of GW’s derives from its inhibition of tumor

growth via cell cycle control [48], a suggestion supported by our in

silico study. EA is a potent inhibitor of glutathione S-transferase

(GST) family members and has been used to treat high blood

pressure and swelling caused by kidney failure. It has been

suggested that EA may inhibit cell growth and induce cancer cell

death through apoptosis [49–51], a notion that correlated well

with our findings (Figure 4). In our analysis the ES’s for EA were

20.891 and 20.875 versus the apoptosis and cell cycle modules,

Table 2. Predicted drug compounds for colorectal cancer adenoma.

Code No. of components Compound Ratio of degrees

1 2 phenoxybenzamine + ISP 7:1

2 2 GW-8510 + ISP 7:1

3 3* phthalylsulfathiazole + etacrynic acid + ST 5:2:1

4 4 daunorubicin + TDNA + APO + ISP 4:2:1:1

5 4 apigenin + etacrynic acid + ST + ISP 4:2:1:1

6 4 apigenin + alsterpaullone + CC + ISP 4:2:1:1

7 5 camptothecin + ifenprodil + DR + CC + ISP 3:2:1:1:1

8 5 vorinostat + etacrynic acid + TDNA + RM + ISP 2:2:2:1:1

9 6 ifenprodil + 8-azaguanine + DR + CC + ST + ISP 2:2:1:1:1:1

10 6 ifenprodil + etacrynic acid + DR + CP + CC + ISP 2:2:1:1:1:1

11 6 ifenprodil + alsterpaullone + DR + CP + ST + ISP 2:2:1:1:1:1

12 6 TDNA + 8-azaguanine + RM + CC + ST + ISP 2:2:1:1:1:1

13 6 TDNA + etacrynic acid + RM + CP + ST + ISP 2:2:1:1:1:1

14 6 TDNA + alsterpaullone + RM + CC + CP + ISP 2:2:1:1:1:1

15 6 TDNA + vorinostat + RM + CP + APO + ISP 2:2:1:1:1:1

16 6 vorinostat + etacrynic acid + DR + TR + RM + ISP 2:2:1:1:1:1

17 6 vorinostat + ifenprodil + DR + CC + APO + ISP 2:2:1:1:1:1

18 6 ifenprodil + 8-azaguanine + DR + CC + ST+ ISP 2:2:1:1:1:1

19 6 ifenprodil + alsterpaullone + DR + CC + CP+ ISP 2:2:1:1:1:1

20 6 ifenprodil + etacrynic acid + DR + CP + ST+ ISP 2:2:1:1:1:1

The eight GO terms (biological function classifications) included are APO, CC, CP, ST, TR, DR, CP, RM and ISP (see abbreviations below). All drugs in the table have ES
(enrichment score) ,20.75 (with only one exception). None of the drugs have harmful effects (ES .0) on any of the GO functions. Only compounds with up to 6
components are given. Abbreviations: ISP: immune system process – trifusal or morantel or gingolide or cetirizine or imipenem; APO: apoptosis – irinotecan or
doxazosin or cycloserine or repaglinide; CC: cell cycle – doxorubicin or withaferin A; ST: signal transduction – 6-azathymine or tyloxapol; TR: transcription – sanguinarine;
DR: DNA replication – piperlongumine; CP: Cell proliferation – bepridil; RM: RNA metabolic process – skimmianine; TDNA: transcription and DNA replication –chrysin or
thioguanosine or luteolin or thiostrepton or sulconazole. The ‘‘degrees’’ in ‘‘Ratio of degrees’’ indicate the number of functional modules to which the corresponding
component is beneficial.
doi:10.1371/journal.pone.0086299.t002
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Figure 5. Accuracy and reproducibility in drug prediction. (A) Accuracy is the sum of true positive (predicted beneficial and known anti-tumor
agent) and true negative (predicted harmful and known cancer-inducing agent) over sum of predicted beneficial and harmful drugs. IGCM results are
in black, and FMCM, in red and cyan. Specificity is given in Figure S5. (B) Reproducibility is the measure of agreement between the selected drugs in
two runs using different subsets of microarray data (Materials and Methods). Results shown are averaged over 45 pair-wise comparisons of selected
drugs. The five towers on the left are IGCM results for given threshold FC value. The eight towers on the right are FMCM results (FC .2) for the 8
functional modules. Size of querying gene set is given by line in red.
doi:10.1371/journal.pone.0086299.g005

Functional Module Connectivity Map
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respectively (Table 1). EA has also been reported to have

therapeutic potential in cancer therapy by reversing drug

resistance [52–54]. GA, a Ginkgo biloba leaf extract, has been used

for treatment in a wide variety of cognitive and vascular disorders,

including dementia and peripheral arterial occlusive diseases [55–

57]. Its structural homolog Ginkgolide B has been reported to

possess anti-inflammatory anti-allergic, anti-oxidant, anti-cancer,

and neuroprotective effects [58]. In our analysis GA had

ES = 20.834 against the immune system process module

(Table 1). Recent studies conducted with various molecular,

cellular, and animal model experiments have concluded that

Ginkgolide B may have chemopreventive abilities associated with

anti-angiogenic, antioxidant, and gene-regulatory events [59–62].

6-AT, an analog of thymine, has been shown to inhibit the

pathway of biosynthesis of nuclear acids in cancer tissues [63,64].

It had ES = 20.813 against the signal transduction module

(Table 1) and inhibited tumor growth in the cell line MCF7

(Figure 7). Our study showed that the pair GW and GA combined

would yield beneficial effects on all eight FMs (Table 2).

We were not able to find another gene expression microarray

set on colon adenoma that passed our quality test (Principal

Component Analysis, Figure S1). We did find a dataset on

colorectal cancer (CRC) that did, from GEO database (accession

number: GSE32323). The dataset, Affymetrix HG-U133 plus 2.0

arrays, contained 17 pairs of cancer and healthy colon tissues from

CRC patients [65]. We subjected the set to the same IGCM and

FMCM analyses as we did the adenoma data. For the predicted

repurposed candidate drugs, FMCM performed better than

IGCM in stability and reproducibility, and was comparable with

IGCM in accuracy and specificity. Through FMCM we selected

43 candidate drugs for CRC. Among this drug set, 20 also

belonged to the set of 46 drugs for adenoma (Figure 9). This

Figure 6. Enrichment scores of known anti-cancer drugs. (A) irinotecan, (B) thapsigargin, (C) 8-azaguanine, and (D) vorinostat. CMap querying
gene sets are shown on the horizontal axis. The first five entries from left are whole DEG sets selected by SAM using FDR = 0.01 and FC ranging from
3.0 to 5.0. The rest are the eight functional module selected by GSToP with FC = 2.0. Star indicates permutation p-value,0.005.
doi:10.1371/journal.pone.0086299.g006

Functional Module Connectivity Map
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overlap set of 20 drugs included 9 of the 13 adenoma drugs with

degrees equal to or greater than 3 (Table 1). Given that IGCM-

based drug screening for disease specific but different data sets is

known to lead to drug sets that are highly variable, and that colon

adenoma and CRC are related but not the same conditions, the

degrees of overlap between the colon adenoma and CRC drug sets

are encouraging. The overlap set contained 5 of the 8 adenoma

drugs selected for cell viability tests. This is significant because the

tests were conducted prior to the analysis of CRC data.

There are limitations inherent to our approach. It depends on

the availability of gene expression profiles of drugs; many FDA-

approved drugs are not among the more than 1,000 compounds

with profiles given in CMap database 2.0 release, the version used

in this work; the implicit perturbagen assumption that the drug-

specific genomic profiles given by CMap are only mildly

dependent on the specific (mostly breast cancer) cell lines requires

validation in every application; the reliability of our results

depends on the quality and accuracies of patient gene expression

profiles, PPI, and GO data; and, specific to this work, how the

drug screening results may depend on the selection of FMs for

drug screening has not been thoroughly studied.

Our results need further experimental validation because

therapeutic efficacy of a drug is always more complex than just

a simple matching of expression profiles, even when conducted in

the refined fashion of FMCM. In addition, not known at this stage

are how components in a compound (Table 2) would interact with

each other and how the interaction would impact its predicted

property. Such effects can only be assessed in animal model tests

when the selected drugs are applied in compound form.

These limitations are common to all CMap-based or similar

drug discovery methods, yet our method has merits not possessed

by other screening methods. We believe our method is useful for

drug discovery for therapeutic systems treatment not only for

colorectal adenoma, but also for other types of cancer as well as for

other complex diseases and conditions.

Figure 7. Viability test of colon and breast cancer cells treated with single drug. Tests were conducted on eight drugs: phenoxybenzamine
(PB), GW-8510, phthalylsulfathiazole (PS), etacrynic acid (EA), ginkgolide A (GA), triflusal (TF), imipenem (IM), and 6-azathymine (6-AT), with
concentrations of 0, 0.1, 1, 10, and 30 mM. (A) Viability of MCF7 on treatment of the eight drugs. (B) Viability of five cell lines on treatment of GW-8510.
Colon cancer cells HCT116, RKO, SW403 and SW620, and the breast cancer cell MCF7, were treated with single drug for 5 days. After 5 days,
proliferation activities of these cells were detected by Alamar Blue assay.
doi:10.1371/journal.pone.0086299.g007

Table 3. Inhibitory effects of single predicted drugs on colon
cancer and breast cancer cell lines.

Half maximal inhibitory concentration (IC50) (mM)

Drugs HCT116 RKO SW403 SW620 MCF7

phenoxybenzamine – – – – –

GW-8510 0.7 3.3 .30 8.4 0.8

phthalylsulfathiazole – – – – –

etacrynic acid – – – – 6.80

ginkgolide A – – – – 22.5

triflusal – – – – –

imipenem – – – – –

6-azathymine – – – – 7.9

–: not detected from 0.1 to 30 mM.
doi:10.1371/journal.pone.0086299.t003

Functional Module Connectivity Map
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Figure 8. Clustering of genomic profiles of drug-treated cancer cell lines HCT116 and MCF7. (A) Individual gene approach (IGA). (B)
Gene-set approach (GSA). Cell lines were treated with three drugs: GW-8510, phenoxybenzamine (PB), and imipenem. Entries marked ‘‘cmap’’ were
microarray drug treatment genomic profiles of MCF7 taken from the CMap. Others were from drug treatment microarray experiments (Affymetrix
U219 (PrimeView) platform) conducted for the present study, where the same experimental protocol used in CMap were followed: averaged over
three dosages of 10 M, 11.8 M, 13.4 M; treatment time 6 hours after overnight culture. Heatmaps were results of two-way hierarchical clustering.
doi:10.1371/journal.pone.0086299.g008

Functional Module Connectivity Map
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Supporting Information

Figure S1 Assessment of chip quality and sample
classification of colorectal adenocarcinoma paired pa-
tients. (A) Principle Component Analysis. The first component,

with about 35% variances in data, was sufficient to correctly

partition the samples, 32 of adenoma patients and their 32

parental normal tissues, into two groups. (B) Two-way hierarchical

clustering analysis. On the side, 2,164 differentially expressed

genes (DEGs) were used for clustering. The DEGs, including 964

up-regulated and 1,200 down-regulated genes, were selected by

the SAM algorithm with thresholds for false discovery rate (FDR)

,0.05 and fold change (FC) .2. On the top, green bar covers the

normal tissue and blue bar, adenocarcinoma.

(TIF)

Figure S2 The gene-gene networks constructed using
gene expression data from normal and colorectal
adenoma patients. There are 1,684 genes and 2,017 links in

the normal network, and 1,792 genes and 2,656 links in the

adenoma network. Genes assigned to over-represented biological

Gene Ontology terms are highlighted in term specific color.

(TIF)

Figure S3 Drugs selected by standard application of
CMap, or IGCM, using different fold change (FC)
thresholds. Sum of up- and down-regulated genes given under

each FC threshold constituted the querying gene set. Drugs listed

are those predicted to be beneficial. Red arrow indicates known

TTD anti-cancer agents that coincidentally all changed from

beneficial at FC = 3 to harmful at FC = 3.5. Vorinostat was the

only drug selected at FC .3, 3.5, 4.0, and 4.5; it was also selected

in the FMCM procedure.

(TIF)

Figure S4 Specificity of predicted drugs. Specificity is true

negative (known cancer-inducing agent predicted to be harmful)

over all drugs predicted to be harmful; higher specificity implies

lower false positive. Seven of the eight FMCM results (red), except

immune systems process (cyan), have higher specificities than the

five IGCM results (black).

(TIF)

Figure S5 Enrichment scores of 27 chemo-drugs. The 27

chemo-drugs, selected from the L01 class (antineoplastic agents) in

the Anatomical Therapeutic Chemical system, are not specific to

colon cancer treatment. The ES is those from five IGCM (FC

threshold 3 to 5) and eight FMCM runs (FC .0.2). Solid symbol

indicates an ES with permutation p value,0.05. The 27 drugs are

clustered into six groups according to overall pattern.

(TIF)

Table S1 Gene ontology enrichment analysis for func-
tional modules.

(XLS)

Table S2 Gene signature tags used in the FMCM
program.

(XLS)

Table S3 References listed in Table 1.

(XLS)

Table S4 GO terms analysis for genes in the lightblue
block in the IGA heatmap (Figure 8A). Top-10 gene

ontology annotation clusters were determined by DAVID [36].

(XLS)

Table S5 GO terms analysis for genes in the pink block
in the IGA heatmap (Figure 8A). Top-10 gene ontology

annotation clusters were determined by DAVID [36].

(XLS)

Table S6 GO terms analysis for genes in the purple
block in the IGA heatmap (Figure 8A). Top-10 gene

ontology annotation clusters were determined by DAVID [36].

(XLS)

Table S7 GO terms analysis for genes in the green
block in the GSA heatmap (Figure 8B). Top-10 gene

ontology annotation clusters were determined by DAVID [36].

(XLS)

Table S8 GO terms analysis for genes in the blue block
in the GSA heatmap (Figure 8B). Top-10 gene ontology

annotation clusters were determined by DAVID [36].

(XLS)

Table S9 GO terms analysis for genes in the orange
block in the GSA heatmap (Figure 8B). Top-10 gene

ontology annotation clusters were determined by DAVID [36].

(XLS)

Table S10 GO terms analysis for genes in the purple
block in the GSA heatmap (Figure 8B). Top-10 gene

ontology annotation clusters were determined by DAVID [36].

(XLS)
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Figure 9. Overlap of candidate repurposed drug sets curated
from colon adenoma and colorectal cancer data sets. Numbers
in brackets correspond to those given in the first column of Table 1,
which lists the drug set for colon adenoma. The overlap includes 9 of
the 13 drugs in Table 1 with degrees not less than 3, and 5 of the 8
drugs selected for cell viability tests marked by ‘‘*’’.
doi:10.1371/journal.pone.0086299.g009
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